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Modeling of the wind power forecast errors and associated optimal
storage strategy

Roman Le Goff Latimier1, Enzo Le Bouëdec1,2, Valérie Monbet2

Abstract— Production forecast errors are the main hurdle
to integrate variable renewable energies into electrical power
systems. Regardless of the technique, these errors are inherent
in the forecast exercise, although their magnitude significantly
vary depending on the method and the horizon. As power
systems have to balance out these errors, their dynamic and
stochastic modeling is valuable for the real time operation.
This study proposes a Markov Switching Auto Regressive –
MS-AR – approach. The strength of such a model is to be
able to identify weather types according to the reliability of
the forecast. These types are captured with a hidden state
whose evolution is controlled by a transition matrix. The
autocorrelation and variance parameters of the AR models
are then different from one state to another. After having
validated its statistical relevance, this model is used to solve
the problem of the optimal management of a storage associated
with a wind power plant when this virtual power plant must
respect a production commitment. The resolution is carried
out by stochastic dynamic programming while comparing the
proposed MS-AR with several other models of forecast errors.
This illustrative problem highlights the improvements made by
a fine modeling of forecast errors.

Keywords : forecast errors, wind energy, Markov Switching
Auto Regressive, Stochastic Dynamic Programming

NOMENCLATURE

∆P forecast error of the wind power W
∆T time step h
P̃ Wind power generation forecast W
Esto rated capacity of the storage device Wh
f cost function of the storage management problem –
fdyn dynamic equation of the system –
P actual wind power generation W
Ploss power of the losses in the storage device W
Psto power exchanged with the storage device W
SoE State of Energy of the storage device –
x,X state variable of the system, set of the discretised

values of the state variable
AR Auto Regressive
MS-AR Markov Switching Auto Regressive

I. INTRODUCTION

The integration of variable renewable energies into elec-
trical systems is mainly hampered by the difficulty of fore-
casting their electricity production [8], [30]. This low pre-
dictability compels the power grid as a whole to compensate
for their fluctuations in real time. This may involve adjusting
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production [33] and consumption – Demand Side Manage-
ment [28]– or using storage [9]. This global problem, which
involves all the players in the electricity networks, is already
sensitive when it deals with planning future operations on
the basis of forecasts. Adapting dynamically the planned
schedule is therefore all the more difficult when the deadline
arrives and actual production is accessible.

Because of the burden of forecast errors, a major share
of the literature is devoted to forecasting renewable energy
production. Several techniques are implemented and their
complementarity makes it possible to refine the forecast
progressively when more and more information becomes
available while approaching the deadline [18], [25]. These in-
clude global numerical weather prediction – NWP – models
[26] that provide a quality forecast with a horizon of several
days. Statistical models allow this forecast to be improved
using time series [6] or neural networks [15], [27]. Finally,
very short term forecasting can be done by means of imagery,
satellite or by fisheye camera.

Nevertheless and however good they may be, these fore-
casts are necessarily tainted by an irreducible error. This error
is inherent in the weather forecasting task. Recent models
therefore provide information on the reliability of their fore-
cast, in the form of an error range or ensemble forecast [25].
First of all the characterization of these errors [5] is important
to help the progress of forecasting models. Moreover, this
characterization is useful for electricity networks in order
to anticipate sufficient operating reserves and infrastructure
[10], [31].

However, error modeling must go beyond a statistical
description [29]. Indeed, their dynamic behavior is also
crucial : how does the error evolve over time, will it be
prolonged or not [10] ? If such information is available,
this will be most helpful to decide how the error should
be counterbalanced. Calling upon storage resources is the
easiest bet as long as their capacity permits but starting up
a backup power plant when it is mandatory needs to be
anticipated. Moreover, it seems natural that error modeling
cannot but be stochastic modeling [16], [23].

This study focuses on wind energy forecast errors. Pre-
vious research on this issue has extensively used Auto
Regressive Moving Average models – ARMA [20], [10],
[31]. Indeed, one may consider as natural that the forecast
error signal will most probably follow the same dynamics
as the signal to be predicted. It is therefore relevant to
rely on ARMA models which are widely used to predict
wind power. However, these models do not capture the
diversity of regimes that wind generation may encounter.



Like any weather variable, it is driven by weather types that
can radically change the behavior of this variable. Several
studies devoted to wind speed forecasts have made use of
this idea by introducing Markov Switching Auto Regressive
MS-AR models [3], [34], [22]. The main idea of these
models is that the parameters of the AR model are not
unique but are determined by a hidden state whose evolution
follows a Markov chain. The characteristics of the signal
can consequently be very different from one time period to
the next one. This approach has proven its effectiveness in
capturing different wind regimes. However, weather types
have also an impact on forecast errors. Some types of weather
produce easily predictable wind conditions – hence small
forecast errors – while others are much more chaotic and
produce large errors.

The objective of this study is therefore to propose a
modeling of wind production forecast errors by the mean
of a Markov Switching Auto Regressive model, as well
as to highlight its relevance. Section II will be dedicated
to the presentation of these models and their validation by
several statistical criteria. Other simpler models will also be
introduced so as to allow comparison. Section III presents a
representative application of such a forecast error model :
the optimal management of a storage associated with a
wind power plant that must meet a generation commitment.
This optimal management problem will be solved using
stochastic dynamic programming. As this algorithm relies
on a stochastic modeling of the future, the resolution will
be carried out several time on the basis of various forecast
errors models in order to validate the added value of an
MS-AR model. This resolution method will be carried out
on the case study presented in Section IV. The Section V
will finally outline the results of this case study and how
a better modeling of the forecast errors may improve the
overall performance.

II. MODELING OF THE WIND POWER FORECAST ERRORS

A. Data description

Studying the forecast errors requires datasets with in-
formations on both wind power actual realization and its
associated forecast. While actual production can be directly
measured, the production forecast first takes the form of
a wind speed forecast delivered by meteorologists weather
models. This forecast must then be transformed into a pro-
duction forecast. An open dataset of the production forecast
– provided by the wind generators to the local grid operator
– and the realization is here provided by the Bonneville
Power Administration [2]. It includes aggregated forecast and
realization over BPA balancing authority area. Forecasts are
the aggregated value that the producers provided to the BPA
24 hours ahead. The time series consists of 9 years of data,
from 2009 to the present, with one input every 5 minutes.
Years from 2009 to 2017 have been used as a train dataset
and the period from January 1st 2018 to May 2nd 2018 as a
test dataset. In order to take the fluctuations out during this
long period, this time series has been normalized according
to the installed capacity P ] of wind power generation [2] and
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Fig. 1: Normalized prediction errors for 2009 - 2017 and a
zoom on November 2010

reduced to an hourly time step by averaging. The convention
used to define prediction errors is

∆P =
P − P̃
P ]

(1)

where P̃ stands for the forecast and P for the actual
realization. The entire time series is shown in Figure 1. A
sample from November 2010 is also presented to notice the
succession of periods when errors are very small – end of
month – and periods when errors are of high amplitude –
around November 15th.

B. Models descriptions

In this section, MS-AR models are defined. The autore-
gressive (AR) models are firstly remind, on the one hand
because they are at the genesis of MS-AR, on the other hand
because they will be used thereafter to provide a benchmark
for modeling performance. Along this section, the generic
notation Yt is used to denote the observation ∆Pt at time
t in any model. All of the models here introduced are
then identified on the previously described time series of
prediction errors (∆Pt).

a) Auto-Regressive (AR): AR(p) processes model the
process at time t as a linear combination (2) of the process
at the p previous time steps plus a white noise ε with unit
variance and an intercept a0. ε is also called innovation.

Yt = a0 + a1Yt−1 + ...+ apYt−p + σεt (2)

Conventional statistical models such as the AR and their
extensions to SARIMA are commonly used in wind speed
and power forecasting. However, with successive improve-
ments in forecasts accuracy and as stated by [14], these
models are now more considered as (basic) reference models.

b) Markov Switching Auto Regressive (MS-AR): MS-
AR models allow to model a time series by a mixture of
several AR processes. These models have been introduced
initially by [11] to capture markedly different regimes in
economy related time series. As the time series of production
errors exhibit regimes with low error and regimes with highly
varying error (e.g. Figure 1) such models seems particularly
adapted for wind power forecast errors. Although the regime
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Fig. 2: Example of forward probabilities (bottom panel) of a
MS(3)-AR(2) model for a given sequence of the time series
of wind energy production forecast errors (top panel).

are introduce as a latent variable π and learned in as unsu-
pervised methods (ie with no a priori about the meaning), it
is usually easy to associate a physical interpretation to them.

The dynamic of this latent variable π is driven by a Mar-
kov chain which respect the Markov fundamental property
(3).

P (πt+1|πt, πt−1, ..., π1) = P (πt+1|πt) (3)

Let us denote M the number of possible states of the latent
variable. The transition probabilities are defined by a M×M
matrix denoted Γ. An element γij represent the probability
to switch from state i to state j. The other fundamental
property of the MS-AR model is that the observations are
conditionally independent regarding to the current latent state
and the p previous observations. In other words, at time t,
given the latent state πt,

Yt = a
(πt)
0 + a

(πt)
1 Yt−1 + ...+ a(πt)

p Yt−p + σ(πt)εt

From a recorded time series, at each time step t, the
probabilities of being affiliated to each hidden state – smoo-
thing probability P(πt|Y1, · · · , YT ) – can be estimated using
a Viterbi algorithm. The most likely sequence of latent
states can therefore be deduced as illustrated in Figure 2.
In practice when implemented in real time context, it is
however impossible to wait for future observations before
estimating the most likely state. It is then necessary to use
forward probabilities P(πt|Y1, · · · , Yt) instead of smoothing
probabilities.

The MS-AR model parameters – transition matrix Γ and
AR coefficients a(π)

i – are calibrated using the Expectation
Maximization algorithm so as to maximize the likelihood of
the model regarding to a training time series. However the
number of regimes M and the order of the AR processes
p are upstream choices, usually selected according to the
Bayes Information Criterion (BIC). This criterion computes
a compromise between a model with a high likelihood and
low number of parameters. In practice, the model with the
smallest BIC should be retained.
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Fig. 3: Bayesian Information Criteria for different model
parameters : number of states and order of the AR model.

C. Results

Identifying a MS-AR model first requires to decide an
order p for the AR models and the number of hidden states
M . Figure 3 reports BIC evolution for MS-AR models with
p = 1 to 3 and M varying from 1 to 4. Remark that M = 1
corresponds to the AR model.

A first effect shown in Figure 3 is that the larger M
the smaller the BIC value. The improvement brought by
the number of possible hidden states can be contextualized
by the notion of weather type. Although this meteorological
notion makes possible to easily capture the main trends, the
real weather variations are a continuous phenomenon that
cannot but poorly be described in terms of a finite number of
states. Nevertheless the interpretability of the results quickly
becomes impractical when M ≥ 4 in addition to a very small
improvement of BIC for 3 to 4 regimes. For these reasons
the 3 states hidden model is chosen thereafter. Secondly the
decrease of BIC while increasing the auto regressive order
p brings a much smaller improvement. In a MS-AR model,
increasing the AR order introduces a significant number of
new parameters because of the several hidden states. Mo-
reover a longer memory can be computationally expensive
in some practical applications. As will be discussed in the
following sections, these models are likely to be used in the
context of stochastic optimization problems. Some of the
algorithms used may be sensitive to the dimension of the
problem. One can think in particular of the case of dynamic
programming and its curse of dimensionality. As adding an
extra memory therefore implies adding a new dimension,
an AR(2) model will therefore be preferred thereupon of
the study. The previous studies dedicated to the modeling of
wind power forecast errors be the mean of AR models [10]
– which did not take into account hidden states – were first
order models to the best of our knowledge.

The remainder of this section will therefore consider the
AR(2) and MS(3)-AR(2) models 1. Model parameters are
shown in table I.
• The AR parameters give an information on the smooth-

ness of the time series inside the regimes. The higher
the sum of a1 + a2 the smoother the time series.
The 3rd regime is the less regular. The observed time

1. The AR(1) and MS(3)-AR(1) versions will also be used in the
following sections to compare the impact that different modeling of various
complexities may have on the final applications.



TABLE I: Fitted parameters of the MS(3)-AR(2) and AR(2)

MS(3) - AR(2)
Transition matrix AR parameters

Reg. 1 2 3 a0 a1 a2 σ

1 0.90 0.10 8e−6 5e−4 0.64 -0.08 9e−6

2 0.04 0.87 0.08 5e−4 0.73 -0.12 3e−4

3 5e−13 0.06 0.94 −4e−3 0.67 -0.2 3e−3

AR(2)
1 1.0 0.0 0.0 −1.5e−3 0.68 -0.17 4e−3

series inside the various regimes have different inno-
vation standard deviation σ. That means that they are
associated with weather types characterized by their
predictability (strongly, moderately or weakly in this
case). Theses features are illustrated in Figure 2 where
a sample of the time series and its associated forward
probabilities are shown. The state 1 (red) is the most
likely when the errors have a very small amplitudes.
The state 3 (blue) appears to reflect high amplitude
and low correlation errors. Intermediate situations are
taken into account by a high probability of belonging
to regime 2 (green).

• The transition matrix of the hidden Markov chain is
diagonally dominant which entails that the regimes are
relatively stable. The mean duration of sojourn in the
regimes 1, 2, and 3 are respectively 10 hours, 7 hours
38 minutes and 16 hours 40 minutes. Indeed, weather
conditions are also relatively stable on a hourly scale.

• Transitions between states 1 (low and stable errors)
and 3 (high and variable errors) are almost impossible
which means that one does not abruptly move from
one weather type where predictions are reliable to
one where they would be very uncertain. This seems
consistent with an evolution in weather conditions and
supports the idea that these states are associated with
weather types.

One also notices that the parameters of the AR(2) are very
similar to those of the third regime of the MS(3)-AR(2).
Therefore these two models may in some circumstances
behave almost identically.

Both AR and MS-AR models allow to easily generate
synthetic data. This feature can be used in order to infer
how some specific statistics characteristics are captured
by comparing synthetic and original time series. Figure 4
shows the mean sojourn time over threshold values and the
number of up-crossings for synthetic data generated by the
previous models and the original series. On both the MS-AR
model show significant improvements compared to the AR
model. Figure 4b shows that the AR model overestimates
the variability for small errors whereas the MS-AR overlays
the original series’s up-crossings. One can note that, for
both models, the 50 scenarios have very little variation
between one another. Figure 4a shows that both models fail
to perfectly reproduce extreme prediction error – the reader’s
attention is drawn to the logarithmic scale. In this case,
the distinction between scenarios is very clear, especially
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Fig. 4: statistical characterization of the real series as well
as 50 synthetic series of the same length generated by the
AR(2) and MS(3)-AR(2) models

for extreme values. This is due to the fact that very slight
variations in the maxima reached will by definition have a
very strong impact on average sojourn time. However the
MS-AR brings significant improvements in both capturing
the dynamic of small prediction errors and allowing for
higher absolute errors to be reached.

According to [19] and [13] a classical method to estimate
the reliability of forecast errors is to compare the following
metrics : Mean Absolute Error (MAE), the model bias
defined as the average error (BIAS) and the Root Mean
Squared Error (RMSE). More specifically, [19] propose to
use the improvement score (4) to compare two models where
EC stands for one of the metrics mentioned before and new
and ref point out respectively to the new model and the
reference model.

ISC(new, ref) =
ECref − ECnew

ECref
(4)

These criteria, calculated on the test dataset, are presented
in Table II for forecast horizons of 12 hours and 24 hours.
One can notice that the MS-AR improves significantly on
both MAE and RMSE scores while enhancing BIAS. Ho-
wever BIAS magnitude shows that both models do perform
well on this metric. Overall performances on longer forecast
horizons tends to decrease. Indeed, after a few forecasting



TABLE II: Different scores per scenario obtained by the
AR(2) and MS(3)-AR(2) on the test dataset with 100 scena-
rios generated per time steps

Metric 12H forecast horizon 24H forecast horizon
AR MS-AR ISC AR MS-AR ISC

MAE 0.0450 0.0408 [9.3%] 0.0489 0.0452 [7.6%]
RMSE 0.0590 0.0544 [7.8%] 0.0632 0.0598 [5.4%]
BIAS 0.0049 0.0051 [-4.1%] 0.0054 0.0055 [-1.9%]

steps, the Markov chain tends to its stationary distribution
and therefore the positive impact of the initial probabilities
to belong in a particular state has vanished.

Figure 5 presents some sample scenarios generated by the
AR(2) and MS(3)-AR(2) models. In the MS(3)-AR(2) case,
the hidden state at the initial time step of every scenarios are
determined through random draws from a multinomial distri-
bution characterized by the forward probability P (πt|Y1...Yt)
of the last known observation. Transitions from one hid-
den state to another at every time steps are then fully
characterized by the transition matrix Γ. Figures 5d shows
that, through the forward probabilities, the MS-AR model
acknowledges that it is in a regime with small prediction
errors (as illustrated by the 90% simulation interval). On
the other hand, Figure 5c points out that the AR model
is not able to take this information into account and the
dispersion of scenarios remains the same all along. Figure 5b
shows that when initialized in a less predictable weather type,
the MS(3)-AR(2) produces scenarios that are more variable
and will occasionally reach more extreme values than those
reached by the AR(2) (see Figure 5a).

This section presented the MS-AR model that is here
suggested to describe wind generation forecast errors. After
having discussed the relevant orders for the AR model and
for the number of hidden states, several statistical scores were
used to validate that these models allow to reflect accurately
the behavior of forecast errors with a significant improvement
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Fig. 5: 50 15-hour scenarios generated by the AR(2) and
MS(3)-AR(2) models initialized on a sample of the test data
and their associated 90% simulation interval

in comparison with usual AR models. However the reader’s
attention should be drawn to the fact that the value of the
model coefficients are very largely sensitive to the series on
which it is identified. An illustration of this sensitivity is
presented in Appendix A, where the same model is applied to
another series [1]. Although the interpretability of the results
is similar, the parameters values are significantly different.
Another gap is moreover likely to appear between on one
hand forecast errors series that are aggregated on a vast
area with several wind farms and on the other hand single
location models. In order to go beyond the validation of the
statistical relevance of the proposed model, the following
sections propose to use them to solve a canonical problem in
order to evaluate the improvement on the final performance
that can be brought about by the modeling of forecast errors.

III. APPLICATION TO OPTIMAL STORAGE STRATEGIES

Because of the forecast errors of wind power generation
– as well as generally speaking variable renewable ener-
gies – their management within power systems is made
challenging in many different ways. Examples include their
integration into energy markets [21], [12], compliance with
grid constraints for voltage and frequency [17], supply of
reserves [32], et cetera. As all of these contexts come under
the hazard of forecast errors, using models to anticipate them
can therefore being useful in many different ways.

In many cases, combining the renewable power plant with
a storage unit is a particularly relevant solution to overcome
the intrinsic restrictions of variable renewable energies [35],
[36]. The issue of optimal management of this storage – how
much power must be exchanged with the storage unit at any
one time – is then a problem that has two characteristics that
require the use of a forecast error model.
• The problem is dynamic : using a storage unit in-

troduces a temporal coupling between successive mo-
ments due to the integrating behaviour of the storage.
This behaviour can be described by a dynamic equa-
tion – which is considered deterministic – over a time
step ∆T :

SoE(t+ ∆T ) = SoE(t) +
∆T · (Psto ± Ploss)

Esto
(5)

where SoE designates the state of energy of the
storage unit – which is bounded between 0 and 1, Psto
stands for the setpoint of the power exchanged with
the storage, Ploss indicates the internal losses of the
device – whose sign depends on that of Psto – and Esto
refers to the storage capacity, i.e. the maximum energy
that can be stored into it. This temporal coupling
will therefore make it necessary to anticipate future
moments, hence the need for a model describing the
evolution of the error.
• The problem is stochastic : since forecast errors are

by definition imperfectly controlled, the model used to
anticipate them must be a stochastic model. Only then
will it be possible for each agent to determine what



could be the best decision to anticipate an uncertain
future, depending of his own risk policy.

A. Optimal management of a storage

The scope of this section aims to highlight how a better
modelling of forecast errors can improve the final perfor-
mance of the renewable virtual power plant. In this section,
the problem of managing a storage associated with a wind
farm will therefore be used for this purpose. This problem is
at this stage formulated in a generic way and can be adapted
to as many situations as possible. The selected resolution
method is also chosen to require as few assumptions as
possible and to be easily adaptable. In the next subsection,
this method will be applied to a basic and representative
case study to quantify the contributions of the forecast error
model.

A wind power plant associated with a storage unit is
therefore considered. The goal of this virtual power plant is
to minimize a cost over time. This cost function is the sum
over time of instantaneous costs. The optimal management
problem can therefore be stated in the following form :

min
Psto(t)

E
∆P

{ ∞∑
τ=t

(
f
(
x (τ) , Psto (τ) ,∆P (τ)

))}
(6a)

such that,∀t,∀τ,
P [sto ≤ Psto ≤ P

]
sto (6b)

0 ≤ SoE ≤ 1 (6c)

where f refers to the cost function which allows to evaluate
the instantaneous cost at each moment. This depends on the
system state x, the command Psto and the forecast error with
random behavior ∆P .

Note : the capacity to shed productible is not taken into
account in this case. In an actual situation, the renewable
plant operator can deoptimize the conversion efficiency –
via the wind turbine blade pitch – which would provide an
additional decision variable. Although this could perfectly be
taken into account in the resolution method that is presented,
this possibility will not be exploited later on because this
study focuses on the impact of the forecast error model.
Indeed, taking production shedding into account would have
several consequences which would make more difficult the
interpretation of the results. First it would introduce an
asymmetry between the cost linked to positive and negative
errors. Secondly the calculation of the commitment would
no longer be equal to the expectation of the forecast.

B. Resolution using Stochastic Dynamic Programming

Several methods may be considered to overcome the
problem (6). Their required properties are to be able to
support the stochastic and multitemporal characters of the
problem. Methods like Model Predictive Control could be
considered. Nevertheless, such methods would require that
the calculation of the optimal decision should be carried out
at each moment according to the present situation, which
would potentially require a substantial real-time calculation
burden.

In order to support the stochastic and temporal coupling
characteristics of the problem while minimizing the real-time
computation cost, the resolution of the problem (6) is perfor-
med here by the use of stochastic dynamic programming [4].
This algorithm allows to establish an optimal strategy which
describes the best decision to take for any configuration of
the state vector. The result obtained is therefore not only the
decision to be taken in the current situation, but the optimal
decisions for all possible configurations. The real-time use
of this strategy then consists of a simple interpolation of the
matrix describing the optimal strategy.

Stochastic dynamic programming is based on the reso-
lution of the Bellman equation. This allows the calculation
of the costs associated with each configuration of the state
vector when the optimal decision is applied. It is calculated
from the final state of the system at the T horizon and going
back in time.

V (T,X) = 0 (7a)
∀t < T,∀x ∈ X,

V (t,X) = min
Psto

f(x, Psto)︸ ︷︷ ︸
instantaneous cost

+ (7b)

E
∆P

(
V
(
t+ ∆T, fdyn (x, Psto)

))
︸ ︷︷ ︸

expectation of the future cost

where
• The horizon T of the problem is not associated with

any particular value. This final value is therefore
initialized to a zero. However, no horizon value could
be preferable in the context of managing storage
associated with a wind power plant. Instead it would
be preferable for the problem to have an infinite
horizon rather than become myopic beyond a given
time frame. The resolution is thus iterated back in
time until the optimal strategy converges, so that it
does not change from one iteration to the next. We
then obtain a strategy considering an infinite horizon
of optimization.

• fdyn represents the dynamic function of the system.
This links the current state and the current control to
the future state of the system :

x(t+ ∆T ) = fdyn (x (t) , Psto (t)) (8)

In the present case, this dynamic function includes not
only the deterministic component of the equation (5),
but also a random component due to the evolution
of the forecast error which cannot be perfectly anti-
cipated. Therefore all quantities that are involved in
the forecast error model must be included in the state
vector in order to be able to evaluate the expectation
of the forecast error at the next time step. As this study
compares several models, the composition of the state
vector will then differ from one resolution to another.
Prediction error models described as uniform noise,



persistence or a first-order AR model will have the
state vector :

x =

(
SoE
∆P

)
(9)

In the case of the resolutions involving a second
order AR model, all possible configurations of the
forecast error at the two previous time steps must be
enumerated. The forecast error ∆P then appears twice
in their state vector, a first time for the current time step
forecast error and a second time for the forecast error
at the previous time step. Finally resolutions based on
MS-AR models add the hidden state into their state
vector :

x =

SoE∆P
π

 (10)

• the f notation represents the convex instant costs of
the problem. This generic notation emphasizes that the
method which is here used to solve the optimal mana-
gement problem is almost fully independent from the
formulation adopted to estimate instantaneous costs.
Any formulation depending on the system status x
and its command Psto can be adopted. Section IV will
present the example of formulations adopted for the
application case. During the optimal strategy calcula-
tion, the cost f is evaluated for each configuration of
the x state vector, hence the disappearance of the time
index.

As described in Section III, the resolution of this problem
is based on a model evaluating the expectancy of the future
cost, depending on the stochastic variables of the problem. To
compare the added value of a fine forecast error model, the
resolution will therefore be carried out several times using
the following models.
• a uniform distribution of the errors : all possible values

are supposed to be equiprobable.
• a persistence of the previous error : the error at the

previous time step is supposed to be equal to the
current value.

• AR(1) and AR(2) models.
• MS(3)-AR(1) and MS(3)-AR(2) models.

Finally a last resolution is carried out where the future is not
anticipated. This resolution is blinded and does not take into
account the future forecast errors.

IV. CASE STUDY

In order to present an application of the optimal strategy
described in the previous section, a case study is introduced
here. The objective of this case study is to present as
straightforwardly as possible the impact that the forecast
error model can have on the decisions to be made. A
situation as simple as it can is therefore under consideration.
A wind power plant is considered in association with a
storage unit. This virtual power plant is supposed to be
compelled to a production commitment. It can arise from a
participation in an energy market, a constraint linked to the
electricity network, a regulatory obligation, et cetera. In the

wind farm
grid

connectionstorage device

P

~P

Psto Pgrid

optimal storage
strategy

forecasting

error modeling
Psto*

(ΔPt+ΔT)𝕡

commitment
mismatch

Pgrid*

SoE

Fig. 6: Virtual power plant under commitment constraint
being considered for the case study.

case where the cost functions of the problem are symmetrical
and the possibility of load shedding is not taken into account,
the optimal commitment of the plant is then equal to the
expectation of the forecast :

P ∗grid = P̃ (11)

The objective function to be minimized encompass two
terms :
• losses within the storage system. Many technologies

of components can be considered in association with
a renewable power plant depending on the reactivity
and amount of stored energy required. Nevertheless,
losses are inherent in each exchange of energy while
it is charged or discharged. The case of lithium-ion
batteries is considered here, as this technology is used
in a wide variety of applications. A quadratic model
is adopted to describe the losses :

Ploss = aloss · P 2
sto (12)

Here it is necessary to decide how to quantify this
lost power in an objective function. In fine this choice
depends on the case study and the business mo-
del considered. For the purposes of this illustrative
example, the objective function will be considered as
simple as possible, i.e. the minimization of lost energy.

Closs = ∆T · Ploss (13)

• the penalty for deviations from the commitment. In the
various situations where the production commitment
obligation is present, a penalty is associated with non-
compliance. In a similar way to the quantification of
the cost of losses, the actual quantification of a de-
viation from the commitment will depend on the final
application case. Here a quadratic cost is considered
as an illustrative example.

Cmis = ∆T ·
(
P − Psto − P ∗grid

)2
= ∆T ·(∆P − Psto)2

(14)
in the case where the commitment is set as equal to
the forecast expectancy.
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The cost function of the problem is therefore here :

f = Closs + Cmis (15)

TABLE III: Values of the parameters and coefficients used
within the case study.

∆T Esto P [
sto P ]

sto P ]

1 h 5 MWh −1 MW 1 MW 1 MW

V. RESULTS AND DISCUSSION

The problem that is described in Section IV is solved
several times using the Bellman equation (7) on the basis of
the different forecast error models described in Section II.
This section will first present the observable consequences
on the optimal strategies thus obtained. In a second step
these optimal strategies will be applied to the time series
of forecast errors in order to compare temporal behaviors
and calculate the obtained performances.

A. Optimal storage strategies

The result of the resolution of the Bellman equation is a
response surface associating the optimal storage power with
every configuration of the state vector – discretized on a grid
fine enough to guarantee a satisfactory interpolation between
two grid points. These response surfaces are therefore of the
same dimension as the state vector. The Figure 7 represents
some of the calculated strategies. The interpretation of these
illustrations is that if the system is in a configuration where
the energy state is x on the abscissa and the forecast error is
y on the ordinate, then the storage power described by the
optimal surface must be applied.

• The first panel in this figure represents the optimal
strategy when no anticipation is made. The storage
then tries to perfectly compensate for the forecast error
until it is too much or too little charged. The iso-
powers curves are therefore perfectly horizontal, until
the storage can no longer provide.

• On the second panel, the forecast error is modelled by
a uniform distribution. All error values are therefore
equiprobable at the next instant, regardless of the
current state. This entails a strong forward-looking
behaviour of the optimal strategy. Indeed even in a
configuration of the state vector where the error is
low, it is nevertheless necessary to anticipate that
very strong errors can occur in the next time steps.
As a result, the isopowers curves are very steep,
which means that the forecast error is never perfectly
compensated, but only attenuated.

• On the third panel, the optimal strategy is determined
using an AR(1) model. Although rudimentary – this
model uses only autocorrelation and a standard de-
viation – it allows much better anticipation of future
errors. Especially when the errors are of small ampli-
tude, almost total compensation is possible because it
can be reliably anticipated that the error will remain
of small amplitude during the next few time steps.

• Finally, on the last panel of the figure, the optimal
strategy is determined using a MS-AR(1) model. The
overall behaviour is therefore very similar to that of
the strategy based on an AR(1). However, this is a
cut for only one of the three hidden states of the
model. Indeed, since the MS-AR model introduces the
possibility to switch from one hidden state to another,
the strategies corresponding to these three states differ
finely according to the standard deviation and the
correlation of errors from one hidden state to another.
When being used in real time, the probabilities of
belonging to a hidden state are reconstructed according
to the observations available up to now – for example
by a Viterbi algorithm. The storage power decision is
then the weighted average of the decisions for each of
the 3 hidden states.

Note : although persistence is usually an excellent way of
anticipating weather phenomena with ease, this model here
leads to dreadful results. Indeed, within the context of the
resolution here presented, the persistence suggests that the
value of the forecast error that is currently observed would
persist until the end of time. In such a case, any storage
system regardless of its capacity will eventually be saturated.
The optimal storage strategy when this model is used is
therefore to do nothing. This case is mentioned here to draw
the reader’s attention to this adverse effect.

B. Application to a forecast error time series

The previously described storage strategies are applied to
the time series of the wind power forecast error which has
been presented in Section II to identify the various models.
The initial state of energy of the storage is set to SoE(t =



0) = 0.5. At each time step of this simulation, the state
vector is formed, then the optimal strategy is interpolated to
determine the storage power. The dynamic equation of the
system is then applied to progress to the next time step. In
the case of MS-AR models, the decision being applied is
the average of the optimal decisions for each hidden state,
weighted by the probabilities of belonging to each state.
These forward probabilities are established on the basis of
the observations available so far. The Figure 2 represents
an example of temporal evolution of these probabilities.
The succession of regimes is clearly observable with the
naked eye : periods of very small errors are followed by
periods when errors are large and chaotic. This succession is
translated by the evolution of the probabilities of belonging
to each hidden state, represented in the second panel of
the figure. The state 1 – in red – is most likely when the
errors have a very small amplitudes. The state 3 – in blue –
appears to reflect high amplitude and low correlation errors.
Intermediate situations are taken into account by a high
probability of belonging to regime 2 – in green.

On the Figure 8, the temporal evolution of the stored
power and the corresponding energy state are represented
over a 700 hour sample. The forecast error is shown in blue.
The stored power tries to compensate it as much as possible.
• The myopic strategy – in red – does not anticipate

the future. Therefore it offers perfect compensation but
quickly causes storage saturation and then becomes
almost useless.

• The second strategy is based on a uniform noise model
of the forecast error. It always seeks to maintain an
energy state close to 0.5. This is due to the overem-
phasis this strategy places on extreme errors. The com-
pensation for current errors is therefore downgraded
because of this exaggerated anticipation. It can thus be
seen that the stored power deviates significantly from
the forecast error to unload the storage.

• Autoregressive models – with or without hidden state
– exhibit an intermediate behavior that allows them to
largely compensate for forecast errors while control-
ling changes in the energy state of the storage. The
differences between models with and without hidden
state are very fine. But, they are notable when total
costs are calculated over the course of a year.

The last year of the forecast error time series – described in
section II-A – is used to test the aforementioned management
strategies. Their overall performance can then be compared.
However the battery capacity plays a crucial role in the
performances of the storage strategy : the best strategy can
do nothing if it uses a storage that is too small to be effective.
The figure 9 shows the evolution of the total cost – associated
with the problem (6) – as a function of the battery capacity
and the model used to optimize the management strategy.
The first panel of the figure illustrates that a cost reduction
can obviously be achieved by increasing the size of the
battery. Even a rudimentary management strategy that does
not anticipate the future achieves so. However the addition
of a simple forecast error model is sufficient to obtain a
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ciated stored power according to various strategies. Bottom :
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significant gain – around 50% – compared to this short-
sighted strategy. It should be noticed that this gain is only
possible if the storage is of sufficient size, starting from a
one-hour ratio between peak power and storage capacity. The
second panel in the figure allows the forecast error models
to be more precisely distinguished from each other. The cost
reductions they bring are normalized against the reference
cost – that of a short-sighted strategy. It can then be seen that
a further improvement of up to 10% can be obtained when
the order of the autoregressive model is increased and hidden
states are used. Performance improves with increasing the
number of hidden states and the degree of the autoregressive
model. However, this latter factor is the more significant of
the two, unlike that observed behaviour regarding the BIC
criterion – figure 3.

Beyond the overall improvement in performance, the in-
troduction of hidden states to model forecast errors also
makes it possible to characterize the risk involved. Indeed,
the Figure 10 represents the distribution of intantaneous costs
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– in the sense of the cost at each time step of the problem
(6) – according to the underlying hidden state. During this
discussion of the results, a time step is considered to belong
to the hidden state for which the forward probability is
greatest. It can then be noticed that significant differences
appear from one state to another. Thus the state 1 – the
one at which the forecast error has the least volatility –
gathers together times when the cost associated with the
problem (6) is very low. The probability of zero is therefore
the highest among the three hidden states. Moreover, the
logarithmic scale representation shows that the distribution
tail is very short and that no more occurrences occur as
from 400 Whp. The opposite state 3 is characterized by the
highest volatility of forecast errors and has an extremely long
distribution queue beyond 3, kWhp. These cost probabilities
associated with operating a virtual power plant then open the
possibility of coupling this strategy with the optimization of
the purchase of power reserves. Indeed, the state 1 makes it
possible to be sure of one’ s ability to honour the production
commitment and therefore invites to provision extremely few
power reserves – either on one’ s own or via a specific
market.

VI. CONCLUSION AND FURTHER WORKS

The scope of this paper was the modeling of wind power
forecast errors. Such errors are inherent in any forecast,
regardless of the method used to generate it. Therefore a
modeling of forecast errors is necessary in any system that
relies on a forecast to establish its planning, in order to
compensate them in real time. In particular, such a model
must support the temporal evolution of errors – dynamic
modeling – and the intrinsic uncertainty in the forecast error
signal – stochastic modeling.

The temporal autocorrelation of wind generation forecast
errors was first pointed out. Moreover, the succession of
regimes where errors are of small or large amplitude has
been observed. This motivated the identification of a Markov
Switching AutoRegressive model for forecast errors. The
coefficients of such a model depend on a hidden state that is
driven by a Markov chain. The relevance of this model was
initially shown on the basis of several statistical scores.

In a second part, this MS-AR model was used to solve an
optimal storage management problem within the context of

an elementary and representative problem : the management
of a battery associated with a wind power plant subject to
a production commitment. As the storage must mitigate the
forecast errors as best it can, the forecast error modeling
is integrated into the resolution using stochastic dynamic
programming algorithm. Several error models were also
compared to the MS-AR models : autoregressive, uniform
and myopic. The contribution of a good error modeling was
highlighted, the management strategy based on an MS-AR
model having improved the overall performance.

As an outlook to this study, significant improvements
remain open in the MS-AR modeling of forecast errors. For
instance using different models for different periods of the
year seems a natural way to deal with the seasonality of wind
energy forecast errors. However, this seasonality could also
be integrated into a single model using non-homogeneous
transition probabilities. That is, the probabilities of switching
from one state to another would not be constant but would
depend on an observable variable, such as the calendar date
for example. It would then be possible to create states that
only appear at specific seasons of the year.

Furthermore taking spatial correlations into account in fo-
recast errors would be a particularly interesting development
for electricity network management. Indeed, geographical
effects are crucial to cope with the limitations of the power
grid within which many wind farms are connected. The
grid operator must then ensure that a forecast error on the
production injected at one location can only be compensated
by another remote equipment within the operating limits of
the network. These spatial effects are starting to be taken
into account when predicting wind conditions [24], [7].

Finally, the study presented here on the optimal storage
strategy should be extended by a study of the optimal
sizing of the battery. Sizing and management strategy are
indeed mutually dependent : in similar situations, the optimal
decision cannot be the same for two batteries having different
capacities. The present paper can therefore be a prerequisite
for the introduction of forecast error models within a co-
optimization approach over life cycle of the design and
management, integrating the effects of aging of the storage
device.

REFERENCES

[1] Actual and forecast wind energy feed-in - TenneT (Available
at https ://www.tennet.eu/electricity-market/transparency-
pages/transparency-germany/network-figures/actual-and-forecast-
wind-energy-feed-in/).

[2] BPA : Balancing Authority Load & Total Wind Generation. Available
at https ://transmission.bpa.gov/Business/Operations/Wind/.

[3] Pierre Ailliot and Valérie Monbet. Markov-switching autoregressive
models for wind time series. Environmental Modelling & Software,
30 :92–101, April 2012.

[4] Dimitri Bertsekas. Dynamic programming and optimal control, vo-
lume 1. Athena scientific Belmont, MA, 1995.

[5] H. Bludszuweit, J.A. Dominguez-Navarro, and A. Llombart. Statistical
Analysis of Wind Power Forecast Error. IEEE Transactions on Power
Systems, 23(3) :983–991, August 2008.

[6] Barbara G Brown, Richard W Katz, and Allan H Murphy. Time series
models to simulate and forecast wind speed and wind power. Journal
of climate and applied meteorology, 23(8) :1184–1195, 1984.



[7] Ahmed Aziz Ezzat, Mikyoung Jun, and Yu Ding. Spatio-Temporal
Asymmetry of Local Wind Fields and Its Impact on Short-Term Wind
Forecasting. IEEE Transactions on Sustainable Energy, 9(3) :1437–
1447, July 2018.

[8] A. Fabbri, T. GomezSanRoman, J. RivierAbbad, and V.H. Mendez-
Quezada. Assessment of the Cost Associated With Wind Generation
Prediction Errors in a Liberalized Electricity Market. IEEE Transac-
tions on Power Systems, 20(3) :1440–1446, August 2005.

[9] Nicolas Gast, Jean-Yves Le Boudec, Alexandre Proutière, and Dan-
Cristian Tomozei. Impact of storage on the efficiency and prices in
real-time electricity markets. page 15. ACM Press, 2013.

[10] Pierre Haessig, Bernard Multon, Hamid Ben Ahmed, Stéphane Las-
caud, and Pascal Bondon. Energy storage sizing for wind power :
impact of the autocorrelation of day-ahead forecast errors : Energy
storage sizing for wind power. Wind Energy, pages n/a–n/a, October
2013.

[11] James D. Hamilton. A New Approach to the Economic Analysis of
Nonstationary Time Series and the Business Cycle. Econometrica,
57(2) :357, March 1989.

[12] Li Han, Carlos E Romero, Xuesong Wang, and Liping Shi. Economic
dispatch considering the wind power forecast error. IET Generation,
Transmission & Distribution, 12(12) :2861–2870, July 2018.

[13] Ian T. Jolliffe and David B. Stephenson, editors. Forecast Verification :
A Practitioner’s Guide in Atmospheric Science. John Wiley & Sons,
Ltd, Chichester, UK, December 2011.

[14] Jaesung Jung and Robert P. Broadwater. Current status and future
advances for wind speed and power forecasting. Renewable and
Sustainable Energy Reviews, 31 :762–777, March 2014.

[15] Georges Kariniotakis, G. Stavrakakis, and E Nogaret. Wind power fo-
recasting using advanced neural networks models. IEEE Transactions
on Energy Conversion, 11(4) :762 – 767, 1996.

[16] Matthias Lange. On the Uncertainty of Wind Power Predic-
tions—Analysis of the Forecast Accuracy and Statistical Distribution
of Errors. Journal of Solar Energy Engineering, 127(2) :177, 2005.

[17] J.A. Peças Lopes, N. Hatziargyriou, J. Mutale, P. Djapic, and N. Jen-
kins. Integrating distributed generation into electric power systems :
A review of drivers, challenges and opportunities. Electric Power
Systems Research, 77(9) :1189–1203, July 2007.

[18] P. Louka, G. Galanis, N. Siebert, G. Kariniotakis, P. Katsafados,
I. Pytharoulis, and G. Kallos. Improvements in wind speed forecasts
for wind power prediction purposes using Kalman filtering. Journal of
Wind Engineering and Industrial Aerodynamics, 96(12) :2348–2362,
December 2008.

[19] Henrik Madsen, Pierre Pinson, Georges Kariniotakis, Henrik Aa
Nielsen, and Torben Skov Nielsen. A Protocol for Standardazing the
performance evaluation of short term wind power prediction models.
page 18.

[20] Phillip E. Mello, Ning Lu, and Yuri Makarov. An optimized autore-
gressive forecast error generator for wind and load uncertainty study :
An optimized autoregressive forecast error generator. Wind Energy,
14(8) :967–976, November 2011.

[21] Pierre Pinson, Christophe Chevallier, and George N. Kariniotakis.
Trading Wind Generation From Short-Term Probabilistic Forecasts of
Wind Power. IEEE Transactions on Power Systems, 22(3) :1148–1156,
August 2007.

[22] Pierre Pinson and Henrik Madsen. Adaptive modelling and forecasting
of offshore wind power fluctuations with Markov-switching autore-
gressive models. Journal of Forecasting, 31(4) :281–313, July 2012.

[23] Pierre Pinson, Henrik Madsen, Henrik Aa. Nielsen, George Papaef-
thymiou, and Bernd Klöckl. From probabilistic forecasts to statis-
tical scenarios of short-term wind power production. Wind Energy,
12(1) :51–62, January 2009.

[24] Teng Qijun, Wang Chengfu, Liang Jun, and Liang Zhengtang. Re-
search on modeling spatiotemporal correlation of wind power forecast
error on multiple wind farms based on Copula theory. pages 447–450.
IEEE, September 2017.

[25] Ye Ren, P.N. Suganthan, and N. Srikanth. Ensemble methods for wind
and solar power forecasting—A state-of-the-art review. Renewable and
Sustainable Energy Reviews, 50 :82–91, October 2015.

[26] Y. Seity, P. Brousseau, S. Malardel, G. Hello, P. Bénard, F. Bouttier,
C. Lac, and V. Masson. The AROME-France Convective-Scale
Operational Model. Monthly Weather Review, 139(3) :976–991, March
2011.

[27] Zhichao Shi, Hao Liang, and Venkata Dinavahi. Direct Interval Fore-
cast of Uncertain Wind Power Based on Recurrent Neural Networks.
IEEE Transactions on Sustainable Energy, 9(3) :1177–1187, July
2018.

[28] Goran Strbac. Demand side management : Benefits and challenges.
Energy Policy, 36(12) :4419–4426, December 2008.

[29] Lennart Söder. Simulation of Wind Speed Forecast Errors for
Operation Planning of Multi-Area Power Systems. 8th International
Conference on Probabilistic Methods Applied to Power Systems,
page 7, 2004.

[30] Falko Ueckerdt, Lion Hirth, Gunnar Luderer, and Ottmar Edenhofer.
System LCOE : What are the costs of variable renewables ? Energy,
63 :61–75, December 2013.

[31] Chengfu Wang, Zhengtang Liang, Jun Liang, Qijun Teng, Xiaoming
Dong, and Zhaoqing Wang. Modeling the temporal correlation of
hourly day-ahead short-term wind power forecast error for optimal
sizing energy storage system. International Journal of Electrical
Power & Energy Systems, 98 :373–381, June 2018.

[32] Fengyu Wang and Kory W. Hedman. Dynamic Reserve Zones for
Day-Ahead Unit Commitment With Renewable Resources. IEEE
Transactions on Power Systems, 30(2) :612–620, March 2015.

[33] C.K. Woo, I. Horowitz, J. Moore, and A. Pacheco. The impact of wind
generation on the electricity spot-market price level and variance : The
Texas experience. Energy Policy, 39(7) :3939–3944, July 2011.

[34] Megan Yoder, Amanda S. Hering, William C. Navidi, and Kristin
Larson. Short-term forecasting of categorical changes in wind power
with Markov chain models : Forecasting categorical changes in wind
power. Wind Energy, pages n/a–n/a, June 2013.

[35] Haoran Zhao, Qiuwei Wu, Shuju Hu, Honghua Xu, and Claus Nygaard
Rasmussen. Review of energy storage system for wind power
integration support. Applied Energy, 137 :545–553, January 2015.

[36] Yu Zheng, Junhua Zhao, Yue Song, Fengji Luo, Ke Meng, Jing
Qiu, and David John Hill. Optimal Operation of Battery Energy
Storage System Considering Distribution System Uncertainty. IEEE
Transactions on Sustainable Energy, 9(3) :1051–1060, July 2018.

APPENDIX

A. Identification of the MS-AR model on another time series

As it has been emphasized in section II, the parameters of
both the AR and MS-AR processes are highly dependent on
the considered time series. To highlight this, table IV shows
the parameters obtained on another time series of prediction
errors provided by Tennet [1].

TABLE IV: Fitted parameters of the MS(3)-AR(2) on ano-
ther time series provided by Tennet

MS(3) - AR(2)
Transition matrix AR parameters

Reg. 1 2 3 a0 a1 a2 σ

1 0.93 0.07 2e−4 5e−4 1.34 -0.41 3e−5

2 0.03 0.92 0.05 4e−4 1.35 -0.42 2e−4

3 9e−4 0.27 0.73 −2e−3 1.21 -0.34 2e−3

One can notice by looking at the variances σ that the
regimes seems again to match with weather type characte-
rized by their predictability. Moreover the transition matrix
shows that the hidden states are persistent with respectively
a mean sojourn time of 14 hours 16 minutes, 12 hours 30
minutes and 3 hours 42 minutes. However the autoregressive
coefficients are nothing alike. This means that the parameters
shown in this paper are not meant to be transposed as such
to another time series. Regardless of the fact that one needs
to fit the model himself to use it for its own purposes, it can
be seen as a benefit. Indeed, this allow the model to take
into account specificities of the considered time series.


