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Abstract
In many medical problems, it is common to face heterogeneous data with unknown pa-
tients profiles leading to difficulties to build a good diagnosis model. In this paper, our
aim is to build a suitable and interpretable diagnosis tool to predict the Non-Alcoholic
Steatohepatitis (NASH), taking into account the structure and the dimension of the spec-
trometric data. Thus, we introduce a penalized mixture of logistic regression model that
allows the prediction of a binary response. Parameters estimation is done using the EM
algorithm. In the presence of a high number of covariates, estimation of the full covari-
ance matrix and interpretation of the regression coefficients is not trivial. To highlight
relevant covariates for the prediction and their links, we apply a penalization to the co-
variance matrix and the regression coefficients. The estimated model depends on regu-
larization parameters that allow to adjust the strength of the penalization. Automatic
selection tools are used to choose the best model, namely with respect to the AIC criterion.
A simulation study is performed to evaluate the proposed method, and the application
on the NASH data set is presented. This model leads to better prediction performance
than the competitive methods and provides useful tools to better understand the data.

1. Introduction

Non-Alcoholic Fatty Liver Diseases (NAFLD) is nowadays one of the leading cause of liver
disease in Western countries. NAFLD is characterized by a built-up of fat in the liver. Due to
the worlwide increase of obesity and type 2 diabetes, its prevalence, currently estimated to
24%, is expected to further grow in the future (Younossi et al., 2018a). Combined with liver
cell injuries and inflammation, subgroups of NAFLD patients may derive to Non-Alcoholic
Steatohepatitis (NASH), a more serious form of NAFLD, which represents the second cause
of liver transplants in the USA. While being crucial for patients and healthcare systems,
diagnosis of NASH is still an issue as the disease is essentially asymptomatic with low
specific syndromes. Properly detecting and staging the severity of NASH patients requires
a liver biopsy with the disadvantages of being invasive, costly, source of potential surgical
complications and affected with sampling and inter-observer variability. In addition, liver
biopsy can not be envisaged at a large scale, nor be repeated in time. At the time being,
although diagnosis of NASH based on noninvasive modalities is an active field of research,
no prediction procedure achieved consensus in the medical community (see e.g. Younossi
et al., 2018b).
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Mid-infrared spectroscopy provides a molecular fingerprint of biological sample, as for exam-
ple blood sera or urine, and may represent a promising approach to predict and understand
the physiological consequences of the disease. In this project we study a data set contain-
ing blood serum spectrum of 395 morbidly obese patients (Anty et al., 2010), including 66
patients diagnosed as NASH. Diagnosis has been established on the basis of liver biopsy
conducted within the Hepatology unit of the Nice University Hospital. From a statistical
perspective, our goal is to propose a statistical learning model to assign a score to a patient
spectrum.
Basically, mid-infrared spectra represent the absorbance of a biological sample discretely
measured on a given range of wavelength. Such data are complex to analyze as they rise
several statistical issues.

1. Dimension. Each individual spectrum comprises hundreds of measurement points and
more specifically, more variables than individuals in the sample. Hence the problem
lies in a high-dimensional framework.

2. Inner nature of the data. Mid-infrared spectrum contains the whole molecular
composition of a biological sample. However, not every molecular group is expected to
be associated with the disease. It is then required to use dedicated method to select
and identify wavelength associated with the disease progression.

3. Inter-individual variability. The studied population is heterogeneous and yields
high individual fluctuations. This may be attributed to external or metabolic factors
that are directly linked to the pathology development.

Taking account of subject-specific variability is a central point in our approach. It is now
commonly accepted that individual metabolisms may strongly differ depending on lifestyle,
feeding or global medical path. Compelling a cohort of patients to fit a rigid model ap-
pears then to be naive. A popular approach is to decompose the cohort onto few reference
profiles summarizing as much as possible metabolic behaviors. Usually referred as disease
trajectories in the literature (Ross and Dy, 2013), such reference profiles provide experts
and practitioners interpretable knowledge on patient conditions and valuable information to
predict the diagnosis.
In supervised learning, Generalized Linear Mixed-effects Models (GLMM) is a flexible set-
ting to structure variability across individuals through a grouping structure (Breslow and
Clayton, 1993). However, it requires the grouping structure to be known in advance which
is a difficult task as the NASH disease remains poorly known. Mixture models become then
the appropriate tool by modelling the unknown sub-population through a discrete latent
variable. As a model-based clustering approach, posterior cluster membership probabilities
are obtained for each individual based on its observations. Such approaches have been widely
studied in the regression context through the mixture of regression models paradigm (Grün
and Leisch, 2007; Khalili and Chen, 2007; Städler et al., 2010). In dedicated research works
the central idea is to model the conditional distribution of the response variable given the
predictors as a mixture distribution. The covariates are then treated as non-random vari-
ables and the heterogeneity is assume to be fully contained in the conditional distribution.
Such a modelling is often unrealistic for observational data as predictors can display signif-
icantly different behaviours depending on cluster. Most importantly, those models are not
appropriate in a prediction framework: as the response variable for a new observation is not
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observed, posterior cluster membership can not be computed. As a matter of fact, Grün and
Leisch (2007) examine model fitting strategies for finite mixture of generalized linear regres-
sion but do not discuss the prediction issue in this framework. Concurrently, the machine
learning community developed the mixture of experts models. Such models are dedicated
to prediction when dealing with heterogeneous regions in the input space. Based on the
principle of divide-and-conqueer, mixture of experts models aim at estimating the distribu-
tion of the response variable conditionally on the covariates as for mixture of regressions
but model the prior cluster size as functional mixing weigths depending on the covariates.
Classical mixing weights includes exponential weights with the softmax gating network or
more general ones (Yuksel et al., 2012). In this respect, mixture of experts models generalize
the mixture of regression framework but can not be considered as a proper mixture model.
Hence, although appealing from a prediction perspective, estimated model parameters have
no clear biological interpretation.
In this paper, we consider an in-between approach where the joint distribution of the predic-
tors and the response is defined as a mixture. Thus, our model has the advantage to exploit
grouping structure information carried out in the conditional distribution as well as in the
predictors. In addition, prediction of the response variable can be straightforwardly com-
puted as the posterior cluster membership probabilities do not depend on the unobserved
response for a new observation. For the NASH disease data, we are dealing with binary
response. Hence the model considered is a mixture of logistic regression models, where the
mixture is defined for the joint distribution, and the covariates are assumed to be Gaus-
sian. Inference is performed through the Expectation-Maximation (EM) algorithm which is
adapted to the latent variable setting.
As previously mentioned, spectrometry data carry out the whole molecular information
contained in a biological sample whereas only few wavelengths are expected to be informative
regarding to the prediction of the disease. The regression coefficient vector is thus expected
to be sparse and variable selection should be considered to achieve accurate parameter
estimation of our model. We choose to consider an L1-penalized likelihood approach to
simultaneously achieve variable selection and parameter estimation. Such approach can be
straightforwardly slot into the EM mechanism and benefit from theoretical guarantees in the
mixture of regression framework (Khalili and Chen, 2007; Städler et al., 2010). Similarly,
GLasso estimator is considered for the precision matrix of the predictors in the clusters.
Besides, this second penalization highlights dependence between covariates and reduces the
dimension.
Our method leads to the estimation of patient profiles and the estimated parameters allow
the interpretation of the molecular variables involved in the disease. Their interactions can
be represented with graphical models using the estimated precision matrices and has brought
valuable insights about the NASH disease for the experts we collaborate with.
The rest of the paper is organized as follows. First, the mixture of logistic regression model
is presented in Section 2, and the prediction step is described thereby. Then, parameter
estimation by maximum likelihood maximization is described in Section 3.1 and in Section
3.2, regularization is introduced to reduce the dimension and to allow interpretation. Model
selection is discussed in Section 3.3 to select the number of clusters. Details for the EM
algorithm are then provided in Section 4. Section 5 investigates the numerical performance in
a simulation study. An R Markdown file available at http://rpubs.com/morvan_ma/PMLR
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allows to replay some of the analysis on simulated data. Finally, Section 6 illustrates our
result on the data set concerning the NASH disease.

2. Model

2.1 Mixture of logistic regression model

Let (X, Y ) be two random variables , Y being a binary response in {0, 1} and X ∈ Rp a set
of p covariates. In a latent class framework, we assume that individuals are spread among
K unknown clusters of prior size (πk)k=1,...,K with 0 < πk and

∑K
k=1 πk = 1. We denote

by Z = (Z1, ..., ZK) the latent random variable, where Zk equals to 1 if the individual is in
cluster k and 0 otherwise. Considering that both covariates and the regression model depend
on the underlying unknown cluster structure, the mixture of regression model appears to be
an appropriate setting. The logistic model for the response Y in the mixture setting is then
defined as

Y |{X = x, Zk = 1} ∼ B
(
p(k)(x)

)
,

with x a realization of X and p(k)(x) = P(Y = 1|{X = x, Zk = 1}). The predictors are
related to the response variable Y using the logistic link function

logit
(
p(k)(x)

)
= xβk,

where logit : x 7→ log( x
1−x) and βk = (βk,1, . . . , βk,p) is the vector of regression coefficients in

the k-th cluster. Moreover, given that {Zk = 1}, the covariate X is modelled as a multivariate
Gaussian distribution such as

X|{Zk = 1} ∼ Np(µk,Σk),

with µk ∈ Rp and Σk respectively the mean and the covariance matrix of the predictors in
the k-th cluster.
Finally, the probability distribution of Y given X = x can be written as a finite mixture of
logistic regression model. As the response is binary (0 or 1), the probability distribution is
given by

P(Y = 1|X = x; ΦK) =

K∑
k=1

πkP(Y = 1|{X = x, Zk = 1;φk}) =

K∑
k=1

πkp
(k)(x),

where φk = (µk,Σk,βk) is the vector of parameters of the kth cluster and the whole
set of parameters to be estimated for the mixture model with K clusters is denoted by
ΦK = (π1, ..., πK ,φ1, ...,φK).

2.2 Prediction

Finite mixture of regression models, where the mixture relies on the conditional distribution,
are used to model a cluster structure within regression models, emphasize on parameters
and estimation. However, one of our goal is to predict the response variable Y (in the real
data set, disease or not), and one would adapt the model to do prediction. On the other
hand, mixture of experts models, introduced in Jacobs et al. (1991) and reviewed in Yuksel
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et al. (2012), deal with prediction, and our model can be compared to this class of models
for the prediction step. When considering mixture of experts models, one has to choose
a particular metric to weight the prediction. In our case, the mixture model introduced
in section 2.1 is determined by the multinomial distribution for the cluster variable Z,
inducing posterior probabilities as weights, as some particular cases of mixture of experts
using Gaussian parametric forms in the gate (Yuksel et al., 2012).
Formally, the prediction rule is the following,

E(Y0|X0 = x0) =
K∑
k=1

P(Y0 = 1, Z0 = k|X0 = x0)

=
K∑
k=1

P(Y0 = 1|Z0k = 1,X0 = x0)P(Z0k = 1|X0 = x0)(1)

As a matter of fact, the theoretical prediction rule does not depend on the unobserved
response variable y0, meaning that for prediction purpose, only the cluster membership
information contained in X is required. However, for the estimation step, the observed in-
formation (Xi, Yi) have been used to take into account the link between the predictors and
the response variable structuring the data into clusters. Hence, the estimated model param-
eter depends on posterior probability τik = P (Zik = 1|Xi = xi, Yi = yi) that implicitly
accounts for the grouping structure carried out by the conditional distribution. The esti-
mation of parameters detailed in Section 3 leads to an estimate for (1), to predict y0. Let
τ ′0k = P(Z0k = 1|X0 = x0), then

τ̂ ′0,k =
π̂kfX0(x0; µ̂k, Σ̂k)∑K
l=1 π̂lfX0(x0; µ̂l, Σ̂l)

,

and,

ŷ0 =
K∑
k=1

τ̂ ′0,k
exp(xt

0β̂k)

1 + exp(xt
0β̂k)

.

3. Estimation method

3.1 Parameters estimation by penalized maximum likelihood

Let {(yi,xi)i=1,...,n} be a sample of size n of realizations of the random variables (X, Y )
introduced previously. Parameters estimation is done via maximum likelihood estimation.
As many variables are considered in the real data set, we suppose that some of them are not
relevant. Therefore, feature selection is considered in order to highlight relevant variables
and get an interpretable model. Two types of parameters have to be estimated for each
cluster, the regression coefficients and the covariance matrices. A consistent estimation of a
full covariance matrix remains challenging even in a moderate dimension. Moreover, for our
application, some covariates are conditionally independent to the others, but there is a strong
structure of correlation between covariates, which is encoded in the Gaussian model with
covariance matrix Σ by the precision matrix Θ, corresponding to the inverse of the covariance
matrix: Θ = Σ−1. Thus, a Graphical Lasso penalization (as proposed by Friedman et al.
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(2008)) is used to constrain some values of the cluster specific precision matrices associated
to the covariates to be equal to zero. In a similar way, in our situation, we suppose that
only a subset of the covariates is relevant for the prediction of the response variable, and the
regression coefficients are expected to be sparse. Hence, a Lasso penalty (Tibshirani, 1994)
is used to constrain some elements of the vector βk to be exactly equal to zero. Therefore, an
`1-regularized estimation strategy is adopted to obtain sparse estimates of both the precision
matrices of the predictors Θ1, . . . ,ΘK and the regression coefficients β1, ...,βK . According
to the sample (yi,xi)i=1,...,n, the penalized likelihood problem we aim to solve is thus given
by, for λk ≥ 0, ρk ≥ 0, for all k = 1, . . . ,K,

(2) Φ̂
(λ,ρ)
K = arg max

ΦK

{
lnL(y1, . . . , yn,x1, . . . ,xn; ΦK)−

K∑
k=1

λk‖βk‖1 −
K∑
k=1

ρk‖Θk‖1

}
,

where ‖βk‖1 =
∑p

j=1 |βk,j |, Θk = Σ−1
k is the precision matrix in the kth cluster and ‖Θk‖1

denotes the sum of the absolute values of Θk. The quantities λk and ρk correspond to
regularization parameters driving the amount of shrinkage on the parameters βk and Θk for
every cluster k, k = 1, . . . ,K. A method to select them is described in Section 3.2.

3.2 Regularization parameters selection

The tuning parameters λ = (λ1, ..., λK) and ρ = (ρ1, ..., ρK) determine the amount of
regularization, and their choice is important in the penalized likelihood approach. Large
values of tuning parameters tend to select a simple model whose parameters estimates have
smaller variance, whereas small values of the tuning parameters lead to complex models, with
smaller bias. The choice of the optimal tuning parameters is based on a trade-off between
the bias and variance. There are 2K parameters to be tuned. Generalized Cross-validation
is a popular method for the tuning parameters selection in penalized likelihood approaches
(see for example Fan and Li, 2001; Khalili and Chen, 2007). The tuning parameters are
chosen one at a time by minimizing the Cross-Validation criterion over a set of possible
values. However, Cross-Validation methods are computationally heavy. Moreover, a study
by Wang et al. (2007) shows that Generalized Cross-validation may lead to the selection of
some irrelevant variables. Different studies (for example Wang et al., 2007; Jiang et al., 2018;
Lloyd-Jones et al., 2018; Khalili and Lin, 2013) suggest the use of the Bayesian Information
Criterion (BIC) for tuning parameters selection. The BIC (Schwarz, 1978) makes a trade-
off between the number of free parameters and the fit to the data (through the likelihood
function), and selects a sparse model fitting well the data. For a given number of clusters
K, for a parameter estimate Φ̂

(λ,ρ)
K , obtained with tuning parameters λ and ρ, the BIC is

defined as
BIC(λ,ρ) = −2 lnL(Φ̂

(λ,ρ)
K ) + ν(λ,ρ) ln(n),

with Φ̂
(λ,ρ)
K the maximizer of the penalized log-likelihood function and ν(λ,ρ) the number of

free parameters of the model, corresponding to the number of non-zero coefficients of the
model. In our setting, two different tuning vectors λ and ρ have to be chosen. An automatic
procedure is proposed to build a grid of possible tuning parameters for each cluster: first
a classification by MAP rule is derived after few iterations of the EM algorithm, and the
grids for λ and ρ are constructed for each cluster. Parameters are then estimated for each
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combination of the possible values of the two dimensions tuning parameters grid and finally,
the parameters minimizing the BIC are retained.

3.3 Selection of the number of clusters

The number of clusters K is a sensible parameter because it is linked with the heterogeneity
of the population. However, it is latent and has to be selected. The previous selection tools
are also used to select the number of clusters K. In the framework of mixture models the
BIC is commonly used to select the number of clusters K (Keribin, 2000). It is defined by

BICK = −2 lnL(
ˆ̂
Φ

(λ,ρ)
K ) + νK ln(n),

with ˆ̂
Φ

(λ,ρ)
K the maximum likelihood estimator restricted to the relevant variables and νK the

number of free parameters of the model estimated with K clusters. However, the BIC was
designed for non-structured data, and Biernacki et al. (2000) shows that in some mispecified
situations, it can lead to a wrong choice of K. For that reason, the ICL criterion was
developed (see Biernacki et al., 2000; McLachlan and Peel, 2000), and adds to the BIC
formulation an entropy term taking into account the concentration shape of the clusters.
For a model estimated with K clusters, it is defined as

ICLK = BICK − 2
n∑

i=1

K∑
k=1

τiklnτik

with τik the posterior probabilities estimated for i = 1, . . . , n and k = 1, . . . ,K. This criterion
is more adapted to the model-based clustering framework. In the case of well-separated
clusters, the entropy term is close to zero, and the ICL criterion value is close to the BIC
value. In case of non separated clusters, the entropy term is highly negative and the value
of ICLK increases. Thus, the ICL criterion favors models with well separated clusters.
Finally, for predictive purpose, the AIC is known to be more suitable (Shmueli, 2010). With
the previous notations, the AIC is defined as

AICK = −2 lnL(
ˆ̂
Φ

(λ,ρ)
K ) + 2νK .

The model is estimated for different possible values of K, and the model selected is the one
minimizing the chosen criterion value. In the sequel, the three criteria are compared.

4. EM algorithm

4.1 Formulae

An Expectation-Maximization (EM) algorithm is used to optimize (2). The EM algorithm
is an iterative algorithm used in incomplete-data problems to approximate maximum like-
lihood estimates, introduced in Dempster et al. (1977). In our model, the observed data
(yi,xi)i=1,...,n can be viewed as being incomplete, considering that the latent information of
cluster is missing, for all i = 1, . . . , n. We denote by (yi,xi, zi) the augmented or complete
data, with zi = (zi1, ..., ziK) referring to the unobserved data, where zik = 1 if observation i
belongs to cluster k, 0 otherwise. In the presence of clusters (non-observed), it is of common
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use to consider the likelihood of the complete data, which thanks to the Bayes’ Rule can be
decomposed into

lnL(y1, . . . , yn,x1, . . . ,xn, z1, . . . , zn; ΦK) = lnL(y1, . . . , yn|x1, . . . ,xn, z1, . . . , zn;β)

+ lnL(x1, . . . ,xn|z1, . . . , zn;µ,Θ)

+ lnL(z1, . . . , zn;π).

The ordinary EM algorithm consists in maximizing the conditional expectation of the com-
plete log-likelihood (conditionally on the observed data) given a current set of parameters
Φ∗K instead of maximizing the likelihood alone. In our situation, we consider the conditional
expectation of the penalized complete log-likelihood such as

arg max
ΦK

{
EΦ∗

K
[lnL(y1, . . . , yn,x1, . . . ,xn, z1, . . . , zn; ΦK)|x1, . . . ,xn, y1, . . . , yn]

−
K∑
k=1

λk‖βk‖1 −
K∑
k=1

ρk‖Θk‖1

}
.

Thus, the EM algorithm alternates between two steps, called E-step and M-step, until con-
vergence. We first describe those two steps in our context.
The E-step of the algorithm comes up to predict the non-observed latent class by their condi-
tional expectation for all individuals i = 1, . . . , n using posterior probabilities τik = P(Zik =

1|Xi = xi, Yi = yi;φ
[h]
k ) for all k = 1, . . . ,K, given the current parameters π[h]

k ,µ
[h]
k ,Σ

[h]
k ,β

[h]
k ,

at iteration [h]. For all i = 1, . . . , n and for all clusters k = 1, . . . ,K, there are given by

τ
[h+1]
ik =

π
[h]
k fX,Y

(
xi, yi;µ

[h]
k ,Σ

[h]
k ,β

[h]
k

)
∑K

`=1 π
[h]
` fX,Y

(
xi, yi;µ

[h]
` ,Σ

[h]
` ,β

[h]
k

) ,
where fX,Y (.) is the joint density function of (X, Y ). The joint density is computed thanks
to the relation fX,Y (.) = fY |X(.)fX(.) for which the distributions are known to be a binomial
distribution with parameter p(k)(x) for Y |X = x and a normal distribution with parameters
µk and Σk for X.
Thus, it is possible to compute the expected value of the penalized complete log-likelihood
Q(ΦK ,Φ

[h]
K ) given the observed data (yi,xi)i=1,...,n and Φ

[h]
K ,

Q(ΦK ,Φ
[h]
K ) =

n∑
i=1

K∑
k=1

τ
[h+1]
ik

(
lnπ[h]

k −
1

2

(
yix

t
iβ

[h]
k − xt

iβ
[h]
k − 1

)
+

1

2
ln|Θ[h]

k |

−1

2

(
xi − µ

[h]
k

)T
Θ

[h]
k

(
xi − µ

[h]
k

))
−

K∑
k=1

λk‖β
[h]
k ‖1 −

K∑
k=1

ρk‖Θ
[h]
k ‖1.

The M-step of the algorithm consists in maximizing the conditional expectation computed
in the E-step, with respect to the parameter Φ, to obtain Φ[h+1], according to

Φ
[h+1]
K = arg max

ΦK

{
Q(ΦK ,Φ

[h]
K )
}
.
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Then, the update of every parameter at iteration [h+ 1] is given by, for all k = 1, . . . ,K,

π̂
[h+1]
k =

1

n

n∑
i=1

τ
[h+1]
ik ,

µ̂
[h+1]
k =

[
n∑

i=1

τ
[h+1]
ik

]−1 n∑
i=1

τ
[h+1]
ik xi,

Θ̂
[h+1]
k = arg max

Θk

{
n∑

i=1

τ
[h+1]
ik

(
log det Θk −

1

2

(
xi − µ̂

[h+1]
k

)T
Θk

(
xi − µ̂

[h+1]
k

))
− ρk‖Θk‖1

}
,

β̂
[h+1]

k = arg max
βk

[
n∑

i=1

τ
[h+1]
ik

(
yix

T
i βk − ln

(
1 + exp(xT

i βk)
))]
− λk‖βk‖1.

4.2 Tuning the EM algorithm

The convergence of the EM algorithm to the optimal solution can highly depend on the
initial parameters. Thus, the algorithm has to start from sensible initial parameters in order
to avoid convergence to a local maximum of the likelihood function. Here, we adopt a
Search/Run/Select (S/R/S) strategy as developed in Biernacki et al. (2003):

• Find t initial positions of parameters: obtain a partition of the set of observations of the
explanatory variables (xi)i=1,...,n into K clusters with a k-means algorithm (Macqueen
(1967)). According to this clustering, compute the logistic regression estimators in each
cluster, for each of the t trials.
• Run a small fixed number of iterations of the EM algorithm at the t initial positions

previously found.
• Among these t possible starting values, select the one which maximizes the log-

likelihood to start the EM algorithm.

The E and M steps are repeated until the log-likelihood does not improve more than a
particular threshold or a maximum number of iterations is reached.

5. Experiments on simulated data

We perform simulations to evaluate the performance of the prediction through a penalized
mixture of regressions. Our objectives are (i) to evaluate the quality of the estimation of
parameters, (ii) to evaluate the prediction performance of our model and (iii) to evaluate the
interest of using our model in situations where non homogeneous data are collected, when
clusters modulate the prediction rule.

5.1 Competing methods and evaluation criteria

Strategies are compared over 30 replicated data sets for each case. The method is assessed
from two points of view: estimation and prediction.

To evaluate the estimators, we compare the performance in estimation of the proposed
method, denoted PMLR (Penalized Mixture of Logistic Regression) with the penalized lo-
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gistic regression, denoted PLR, and with a finite mixture of logistic regression models in-
troduced in Grün and Leisch (2007) and denoted MLR. Remark that the main difference
between this method and ours is the penalization, but also the clustering, which relies on
Y |X whereas ours relies on (X, Y ), allowing the prediction.
The number of clusters varies in the estimation step, and performance of selection procedure
is studied for the AIC, the BIC and the ICL criteria.
Bias and variance of every estimator µ̂, Σ̂, β̂ are computed.
The support of β and Θ are also compared with the true one, and summarized through
the relevant variable detection (RVD) and irrelevant variable elimination (IVE) 1 of the
regression coefficients. The RVD of an estimate β̂k = (β̂k,1, ..., β̂k,p) is defined as RVDk =
TPk/(TPk + FNk) with TPk the number of coefficients (βk,j)j=1,...,p correctly predicted as
non zero and FNk the number of coefficients (βk,j)j=1,...,p predicted zero while being non
zero. The IVE of an estimate β̂k = (β̂k,1, ..., β̂k,p) is defined as IV Ek = TNk/(TNk + FPk)
with TNk the number of coefficients (βk,j)j=1,...,p correctly predicted as zero and FPk the
number of coefficients (βk,j)j=1,...,p predicted non zero while being equal to zero. The RDV
is equal to 1 if all the relevant variables are retained in the model. The IVE is equal to 1 if
all the irrelevant variables are eliminated from the model.
Performance in clustering is studied through the Adjusted Rand Index (ARI) which measures
the similarity between two partitions (Hubert and Arabie, 1985). A value of ARI of 1 means
that the predicted partition is equal to the theoretical partition.

To evaluate the quality of prediction of the binary response, we compare our results with
PLR and logistic regression (denoted LR), for which we are able to do prediction.
We consider as a criterion the Area Under the Receiver Operating Characteristic curve (AU-
ROC). It measures the diagnostic ability of a binary classifier system at all discrimination
thresholds and is frequently used in medical diagnosis problems. To give more precise results,
we also add for few cases the full Receiver Operating Characteristic curve (ROC curve).
Remark that prediction performance is assessed for a fixed number of clusters K.

5.2 Simulation settings

Simulated data comes from a mixture with K = 3 clusters of proportions π = (0.3, 0.3, 0.4),
n = 250 or 500 observations, and p = 40 variables, with only 8 relevant variables (non-zero
coefficients). Four different cases are studied, described in details in Annex 9.1. In the first
two cases, non-zero coefficients concern the same variables in every cluster (same support),
but the concentration of the clusters and the balance between the two classes in each cluster
are different (easy case (1) and difficult case (2)). In the third and the fourth cases, non-zero
coefficients concern different variables according to the cluster (different supports). In Case
4 (difficult case), the clustering relies on Y |X whereas µ1 and µ3 are the same, where in
Case 3 (easy case), the clustering relies on Y |X and X.

5.3 Results and interpretation

Model Selection

1. These criteria correspond to the sensibility and specificity criteria in binary classifier evaluation, renamed
here to avoid confusion.
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Criterion AIC BIC ICL
Method PMLR MLR PMLR MLR PMLR MLR
Sample size n 250 500 250 500 250 500 250 500 250 500 250 500
Same support
Easy case (1) 3 3 1 1 2 2 1 1 2 2 1 1
Difficult case (2) 3 3 1 1 3 3 1 1 3 3 1 1
Different supports
Easy case (3) 3 3 1 2 3 2 1 1 3 2 1 1
Difficult case (4) 2 2 1 2 1 2 1 1 1 1 1 1

Table 1
Selected number of clusters. We compare our method PMLR with the mixture of logistic regression MLR.
For each method, we provide the number of clusters leading to the smallest value of the following criterion:

AIC, BIC and ICL, as a majority vote over the 30 repetitions for each of the 4 simulation cases. The
simulations are done for two sample sizes (n=250 and n=500). The true number of clusters, 3, is in bold.

The majority vote of the model selection according to the lowest criterion values is computed
over the repetition of each case for AIC, BIC and ICL, for the models estimated with 1 to 4
clusters. For each criterion and each case the number of clusters mostly selected is collected
in Table 1. For our method, the AIC leads to the selection of the right number of cluster
in almost all the cases, except for the case 4 where two clusters are very similar, and it
selects two clusters. The most important information for the clustering is carried by X and
in this case the two cluster-model is selected. ICL criterion and BIC lead to the selection
of wrong number of clusters for five out of the eight cases. However, these criteria lead to
a better model selection for our method than the classical mixture of regression method,
where the criteria lead to a one-cluster model selection in almost all cases. To conclude,
model selection is better done with our method with respect to those criteria, and we will
focus on AIC which has the best performance.

Performance in estimation

Method PMLR MLR
Sample size n 250 500 250 500
Same support - easy case (1) 0.89 0.91 0 0.01
Same support - difficult case (2) 1 1 0.01 0.01
Different supports - easy case (3) 0.96 0.97 0.01 0.01
Different supports - difficult case (4) 0.42 0.42 0 0.01

Table 2
Performance in clustering via ARI. We compare PMLR with the mixture of logistic regressions MLR. For
each method, for a number of clusters fixed to K = 3, we compute the Adjusted Rand Index: closest to 1,
better the clustering. It is done over the 30 repetitions for each of the 4 simulation cases. The simulation

are also done for two sample sizes, n=250 and n=500.

The quality of classification is checked with the Adjusted Rand Index (ARI), detailed in
Table 2. ARI values are higher for clustering obtained with our method than with a mixture
of logistic regressions done on the conditional variable, even for models with the wrong
number of clusters (K=2). Performance is similar for n = 250 and n = 500, meaning that
asymptotic is already achieved. The dataset has been generated according to PMLR in
which the joint distribution (X, Y ) in the mixture is considered. The information carried by
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X is used explicitly for the clustering. In MLR, only the conditionnal distribution is used
in the estimation task, so the clustering is driven by the relation between X and Y . Those
results show that, if the covariates are also structured into clusters, MLR will not have good
performance.

Figure 1: Performance in variable selection for β̂. We provide boxplots for the Relevant
Variable Detection (RVD) on the left and boxplots for the Irrelevant Variable Elimination
(IVE) on the right. We compare our method (PMLR) with the Penalized Logistic Regression
(PLR), which selects relevant variables in the regression matrix with an `1-penalty. Regu-
larization parameters are selected with the BIC. Every case introduced in the simulation
setting is described in abscissa.

In Figure 1, we illustrate the ability to find the relevant variables for all simulation cases. We
remark that it is higher with our method than with the penalized logistic regression. The
ability to eliminate the irrelevant variables is slightly lower with our method in the cases 1
and 2, and similar than the penalized logistic regression for cases 3 and 4. These results show
that our method keeps too many variables, but succeeds in selecting the relevant ones, unlike
penalized logistic regression that eliminates to many variables including important ones. In
medicine, it is particularly interesting to not delete relevant variables, as interpretation is of
great interest.
We also pay attention to the bias and variance of each estimator. Performance was good for
our method, better for higher sample size (as the maximum likelihood has good performance
asymptotically).

Performance in prediction
The prediction performance is shown in Figure 2. Our method leads clearly to the best
performance for cases 2 and 3. Case 1 is an easy case, every method is performing well.
For the case 4, the best performance is obtained with our method but the wrong number of
clusters is chosen due to the strong similarities between two clusters. We could also conclude
that our method has a small variability in AUROC among the 30 repetitions.

12



Figure 2: Prediction performance. We provide boxplots for Area Under the Receiver Oper-
ating Characteristic (AUROC) obtained for the 4 simulation cases for each method: Logistic
Regression (LR), Penalized Logistic Regression (PLR) and Penalized Mixture of Logistic
Regression with 3 clusters (PMLR-3). Simulations are repeated 30 times.

To illustrate those results, the ROC curves obtained for the 30 repetitions of the simulation
cases 2 and 3 for the competitive prediction methods PMLR (with 3 clusters), PLR and
LR are shown in Figure 3. For these cases, the ROC curves obtained with our prediction
method are above the ROC curves obtained with the two competitive methods, showing
better prediction performance in these cases with our method. Remark that PLR and LR
have very close curves, whereas their AUROC are different.

6. Application to the NASH data set

On biological applications, we usually face to individual effects changing the prediction rule.
We assume here that there exist homogeneous clusters of observations, relying on biological
or genetic similarities. Those similarities might be independent of the severity of the disease
that we want to diagnose. A better prediction of the disease is achieved considering this
cluster structure and more importantly, a better understanding of the disease evolution
process is given by our modeling. First, we describe in more details the data set. Then, we
describe the results by our procedure PMLR, from estimation, interpretation and biological
points of view.

6.1 The NASH data set

Non Alcoholic Steatohepatitis (NASH) is a disease affecting the liver, and characterized by a
fat deposit in the liver cells. In the long term, this disease results in important perturbations
of the patient’s metabolism. Currently, the diagnosis is obtained after a liver biopsy and an
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Figure 3: Prediction performance. We provide Receiver Operating Characteristic curves
(ROC) for each method: Penalized Mixture of Logistic Regression (PMLR) with 3 clusters,
Penalized Logistic Regression (PLR), Logistic Regression (LR). Plot on the left corresponds
to the case 2, whereas plot on the right corresponds to case 3. Simulations are replicated
over 30 data sets, and we plot a curve per data set to highlight the variance.

histological study of the sample, which is an invasive method. The method we propose is
based on spectrum measured on blood serum, then is non invasive and leads to a prediction
of the disease. Moreover, as the method is model-based, interpretation of the prediction
results is possible, leading to a better understanding from experts of the disease and its
evolution.
Experts suggest that different unknown patient typologies exist, and for each typology the
molecular signature to establish the diagnosis is different. The proposed model, based on
the existence of a discrete latent class (cluster), takes into account this feature of our data.
As we deal with high-dimensional data (large number of wavelengths in each spectrum),
experts suspect that among the information available, some variables are irrelevant for the
NASH diagnosis. One of the aim is to select the relevant variables to improve the diagnosis
and to allow a better interpretation of the data.
The data set we consider is the following. We observe 395 patients, including 66 NASH
patients (∼ 17%), coming from Nice hospital, in France. Clinical variables and spectrometric
measures on sera samples are available. The spectrometric curves represent a molecular
fingerprint of the sample and reflect the metabolic profile of each patient, affected by the
liver condition. Portions of the spectrometric curves are selected by experts for there ability
to describe metabolism variations that could be linked to the liver condition of the patients.
Spectral variables are used to construct the prediction model, whereas biological and clinical
variables only help for the interpretation.

6.2 Analyses and results

Model selection
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The data set is randomly split in a calibration set containing 4/5 of the individuals (316
individuals including 53 NASH patients) and a validation set containing the individuals left
(79 individuals including 13 NASH patients). These sets are randomly chosen but contain
the same proportion of NASH patients and no significant differences are observed between
clinical variables within the two sets. The model is estimated on the calibration set, for 1 to 3
clusters. The model selection criteria are evaluated for each model and represented in Table
3. The lowest AIC and BIC values are obtained for the model estimated with two clusters.
The lowest ICL value is obtained for the model estimated with one cluster, but with a slight
difference with the ICL value corresponding to the model with two clusters. Following the
conclusions detailed in Section 5.3 we select the model with 2 clusters according to the AIC
value.

K = 1 K = 2 K = 3
AIC -50180 -50459 -30957
BIC -49936 -49970 -30627
ICL -49936 -49901 -30365

Table 3
Model selection. Comparison of the model selection criteria AIC, BIC and ICL for models estimated by
PMLR on the calibration set of the NASH data set for 1 to 3 clusters. The bold values indicate the best

values of the criteria obtained.

Estimators and models
Graphical models obtained from the sparsely estimated precision matrices for each cluster
are represented in Figure 4. We observe different relationships between variables according to
the cluster. Considering only the relationship between the variables, we can see that for the
first cluster, there is a group of variables from X2 to X11 with a lot of links. For the second
cluster, we observe two groups of strongly linked variables: first with the variables X2, X3,
X4, X6, X7, X8, and second with the variables X1, X5, X12, X14, X17, X19. The links be-
tween variables are completely different according to the cluster. The node color represents
the coefficient value of the variable for the model applying to the considered cluster. For the
first cluster, we observe that a lot of regression coefficients are close or equal to zero. For
the second cluster, coefficients have more extreme values. The completely different variables
links and effects on the prediction for each cluster suggest different metabolic mechanisms
of the patients, depending on the cluster.

Statistical interpretation of the constructed model
The proportions of each cluster are 0.66, 0.34. The proportion of disease cases changes ac-
cording to the cluster: 19 % in cluster 1 and 12 % in cluster 2.
The performance obtained with PMLR1 and PLR are similar. Indeed, when considering only
1 cluster, PMLR1 consists in a penalized logistic regression.
In Table 4, we observe the highest AUROC values and good classification rate values for
the model estimated with two clusters, that shows the lowest AIC and BIC values. The
model selection with the AIC and BIC is consistent with the cross validation performance
obtained. Compared to competing method, the chosen model has the best performance with
the highest AUROC (0.75) and good classification rate values (0.76), and a high negative
predictive value indicating a good screening test. The repartition of the predicted scores
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Figure 4: Graphical models. The selected model has 2 clusters, the network related to the first
cluster is on the left and the network related to the second cluster is on the right. Precision
matrices are sparsely estimated, so the networks are sparse. Arrow colors correspond to the
sign of the partial correlation (green for positive correlation, red for negative correlation) and
the intensity of the edges correspond to the value of the correlation (stronger is the color,
stronger is the correlation). Node colors correspond to the value of the regression coefficient
for each variable for the model applying to the considered cluster. No color indicates a value
of zero for the regression coefficient.

PMLR-1 PMLR-2 PMLR-3 PLR LR
AUROC 0.64 0.75 0.68 0.64 0.67
Se 0.62 0.77 0.85 0.62 0.69
Sp 0.62 0.76 0.5 0.62 0.7
NPV 0.89 0.94 0.94 0.89 0.92
PPV 0.24 0.38 0.25 0.24 0.31
CR 0.62 0.76 0.56 0.62 0.7

Table 4
Comparison of the prediction performance obtained with different methods: our method with 1 to 3 clusters

(PMLR-1, PMLR-2, PMLR-3), penalized logistic regression (PLR) and logistic regression (LR). The
chosen model is represented in bold script. The quantities we use for the comparison are the following: Area
Under the Receiver Operating Characteristic (AUROC), sensibility (Se), specificity (Sp), negative predictive

value (NPV), positive predictive value (PPV), classification rate (CR).

according to the real class of the individuals from the validation set is represented by Figure
5.
The threshold from which a patient is label as a NASH patient is automatically chosen as
the threshold maximizing the sum of the sensibility and specificity. This threshold is repre-
sented in Figure 5 and allows a good separation between patients with NASH and patients
without NASH.

Biological interpretation of the constructed model
We characterize the clusters obtained with the selected model with the clinical variables
available in Table 5. Values correspond to the mean over individuals for each cluster. We
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Figure 5: Performance in prediction. We provide boxplots of the score in function of the
true class, for the Penalized Mixture of Logistic Regression (PMLR). The red dashed line
corresponds to the threshold automatically learned.

Cluster 1 Cluster 2 p-value Signif
Age 40 39 0.6
Sex 0.84 0.88 0.4
Weight 119 120 0.4
BMI 44 45 0.6
Height 164 164 0.7
AST 28 26 0.2
ALT 38 29 0.001 **
AST.ALT 0.88 1 6.10−4 **
GGT 47 34 10−3 **
Gluc 6.2 5.7 0.06
Insuline 24 21 0.2
HBA1C 6.1 5.7 0.01 *
chol 5.5 5.2 4.10−3 **
HDL 1.4 1.4 0.5
LDL 3.2 3.1 0.4
TG 2 1.4 4.10−7 **

Table 5
Characterization of the clusters obtained with the clinical variables. The model selected has two clusters.

Values correspond to the mean over individuals for each cluster. We compare the mean in each cluster with
a t-test, reporting the p-value and the significance. For the variable Sex, the women’s rate is precised, and a

Fisher test is used for the comparison.

compare the mean in each cluster with a t-test, reporting the p-value and the significance. We
observe that there is a significant difference between the two clusters for the variables ALT
(corresponding to the alanine transaminase), AST.ALT (ratio aspartate aminotransferase-
alanine transaminase), GGT (Gamma-glutamyltransferase), HBA1C (glycated hemoglobin),
chol (cholesterol) and TG (triglyceride). In the first cluster, the variables linked with diabete
(Gluc and HBA1C) have higher values as well as the variables indicating liver problems
(ALT, GGT). More generally, patients from the first cluster seems to have more severe
liver complication than patients from the second cluster according to the seric indicators.
Moreover, there is no significant difference between the two clusters for the morphological
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variables (weight, height, BMI), so that model allows to recognize the severity of the liver
injury even when patients are not different for morphological variables.
We also represent the distribution of the predicted scores according to the different stage of
histological variables. We can see in Figure 6 that the predicted score is a good indicator
of the histological caracteristics of the patient. Indeed, the score increase with the Steato-
sis, ballooning and inflammation stage, indicators used to establish the diagnosis. Fibrosis
doesn’t enter in the NASH definition and thus is not predicted by our model.

Figure 6: Boxplots of the repartition of the score predicted with the selected model according
to the stage of the histological variable considered. Top left: steatosis, top rigth: ballooning,
bottom left: inflammation, bottom right: fibrosis.

7. Conclusion

In this paper we have presented a predictive method that allows to build a model on data
structured in clusters, including non-relevant variables. This method provides interpretable
tools to help for a better understanding of the data, with similar or higher prediction perfor-
mance than competitive predictive models. This work was conducted on a real data problem
concerning the use of the spectrometric technology to develop a non-invasive diagnosis tool
to predict the NASH disease. We obtained encouraging results both in terms of prediction
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performance and in terms of interpretation, with clusters characterized by clinical variables
and a prediction score linked to histological variables. Moreover, it is common in medical
problems to face structured data with unknown patients profiles. Thus, our method could
be broader used to handle this kind of situations.
In this reported work, the analysis focused on a selection of wavenumbers performed by
experts, but an interesting direction for further research would be to consider the whole
spectra. Thus, we would like to adapt this method to handle functional data and perform
the selection of specific areas of the spectra. This would highlight the type of molecules
involved in the disease and offer the possibility to link the different areas of the spectra.
Moreover, the discriminant information allowing the best prediction could be held at the
same time by the intensity values of the spectra at particular wavenumbers and by the shape
of the spectra at specific areas of the spectra. A different projection scale could be considered
according to the area of the spectrum selected.
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9. Appendix

9.1 Parameters definition

We summarize the parameters chosen to simulate data in Table 6.
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k Same support - Easy case (1) Same support - Difficult case (2)
1 (−1, 1, 0.5, 1,032,−1,−1, 0.5, 0.2) (−2, 1, 0.5, 1,032,−1,−0.2, 0.5, 0.2)

β 2 (1, 0.5, 0.5,−1,032, 1,−0.2, 1,−0.5) (1,−0.5,−0.5,−1,032, 1,−0.2, 1,−0.5)
3 (−1, 0.5, 1,−1,032, 1, 1, 2,−1) (−2, 0.5,−2,−1,032, 1.5, 1, 2,−1)
1 (−120,120) (−220,120)

µ 2 140 140

3 (120,220) 340

1 diag(0.5) diag(2/3)
Σ 2 band(0.5, 0.2, 0.1, 0.1,036) band(1, 0.5, 0.1, 0.1,036)

3 band(0.8, 0.4, 0.1, 0.1,036) band(1, 0.4, 0.1, 0.1,036)
k Different supports - Easy case (3) Different supports - Difficult case (4)
1 (−2, 1, 0.5, 1,032,−1,−0.2, 0.5, 0.2) same as case 3

β 2 (04, 1,−0.5,−0.5,−1,016, 1,−0.2, 1,−0.5,04) same as case 3
3 (08,−2, 0.5,−2,−1, 1.5, 1, 2,−1,016) same as case 3
1 (−120,120) (120,220)

µ 2 140 140

3 (120,220) (120,220)
1 diag(0.5) diag(2/3)

Σ 2 band(0.8, 0.3, 0.1, 0.1,036) diag(2/3)
3 band(0.6, 0.3, 0.1, 0.1,036) band(1, 0.4, 0.1, 0.1,036)

Table 6
Summary of the parameters for the 4 cases. To define a model, β,µ and Σ have to be defined. As the

mixture model has 3 clusters, there are 3 different parameters in each case (the cluster is represented with
k). In Case 1 and Case 2, the relevant variables are the same within clusters. The differences are on the

concentration of the clusters and the balance between the two classes in each cluster. In Case 3 and Case 4,
the relevant variables are different within clusters. In Case 4, the clustering relies on Y |X whereas µ1 and
µ3 are the same, where in Case 3, the clustering relies on Y |X and X. For the covariance matrices Σ, we

have used diagonal matrices and banded matrices.
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