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Fault detection and identification via bounded-error parameter
estimation using distribution theory

Nathalie Verdière1 and Carine Jauberthie2

Abstract— In this paper, an improvement of the bounded-
error fault detection and identification method based on input-
output polynomials of ([2]) is proposed. It is based on integro-
differential polynomials used to estimate the fault values.
The standard input-output polynomials are obtained from
differential algebra elimination theory and can be used both
for diagnosability analysis and fault estimation. Unfortunately,
they may involve derivatives of high order whose estimation
is a hard problem when system outputs are uncertain. Dis-
tribution theory allows us to transform them into integro-
differential polynomials that involve lower order derivatives
of the model outputs. In this paper, this method, extended to
the set-membership (SM) framework, is used with the focus of
achieving fault detection and identification. The original method
and the new method are applied to a coupled water-tanks model
and compared. It is shown that the new method significantly
improves the fault detection and identification results.

I. INTRODUCTION

Fault detection and identification is at the core of any
monitoring system and guarantees availability and safety of
the monitored system. Among the methods that allow to
achieve these tasks and provide analytical redundancy, the
most obvious approach is to estimate the faults considered
as parameters of the model. A common case is when faults
can be considered as parameter deviations. Parameters can
indeed be considered as the representative features of the
system’s components health status. In this case, given the a
priori knowledge of the parameter nominal values, one can
then compare them with the estimated values and evaluate
the discrepancy. The advantage of this approach is that one
achieves at once the two tasks, fault detection and fault
identification, since the method returns the values of the
fault parameters ([2], [10]). In this paper, we focus on a
numerical method proposed in [8]. It is based on Analytical
Redundancy Relations (ARRs) obtained from differential
algebra tools ([1]) and the use of the distribution theory
so that new relations in the form of integro-differential
polynomials are obtained. Their main advantage is that the
orders of derivatives are lower than those involved in the
initial ARRs. In [8], it was proven that better results are
obtained for the estimation of parameters.
From classical and integro-differential polynomials, a nu-
merical procedure is implemented for detecting and esti-
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mating faults in nonlinear models. We adopt a bounded-
error estimation framework in order to take into account the
uncertainties attached to the measures and to guarantee the
fault estimation. Indeed, this insures that the set of all values
are consistent with the bounds specified for the measures.

In this paper, we take as a starting point the fault detection
and identification of multiple faults in two coupled water
tanks one above the other and modeled by:


ẋ1(t, p) = (a1 + f1)u(t)− (a2 + f2)

√
x1(t, p),

ẋ2(t, p) = (a3 + f3)
√
x1(t, p)− (a4 + f4)

√
x2(t, p),

y1(t, p) =
√
x1(t, p),

y2(t, p) =
√
x2(t, p),

(1)
where p = (ai)i=1,...,4, ai 6= 0, is the model parameter
vector, f = (f1, f2, f3, f4) the unknown additive fault vector
such that 0 < fi < 1. x = (x1, x2)T represents the state
vector and corresponds to the level in each tank, and u 6≡ 0
is the input vector. The water level in the tanks can vary
between 0 and 10.

The paper is organized as follows. In section II, the fault
estimation procedures based on the classical input-output
polynomials and then on the integro-differential polynomials
are described. Fault detection and identification is then
achieved on the water-tank model in section III. Finally
section IV concludes the paper.

II. FAULT DETECTION AND IDENTIFICATION
PROCEDURES

The fault detection and identification procedures proposed
in this paper make use of the ARRs found. From them, two
estimation methods are proposed in this section. The first
method uses directly the ARRs and, from the output systems,
estimates its coefficients and consequently the faults. How-
ever, ARRs obtained by elimination methods can contain
derivatives of high order which are difficult to estimate in
a bounded-error context even if some progresses have been
done [5]. The second method is based on a pre-treatment of
the ARRs consisting in using a distribution approach. More
precisely, the polynomials are multiplied by test functions
which are smooth functions and the new polynomials are
then integrated. This operation permits to report part of
the output derivatives on the known test functions whose
derivatives can be explicitly calculated. The coefficients of
the last polynomials are then estimated. Assuming that the
faults act by varying the parameter values and since it is
assumed that the nominal parameter values are known within



specified error bounds, its intersection with the estimated
value gives the state of the system: if the intersection is
empty, the system is considered faulty and an anomaly is
detected.

A. Preliminaries

We denote yk = y(tk) the measures done at the discrete
times (tk)1≤k≤M , and the associated intputs uk = u(tk).
From these measures, the input-output method consists in es-
timating the vector fault composed of the so-called parameter
blocks (θj(f, p))j=1,...,q using the polynomial R(y, u, f, p)
given by (2).
The measurement noise and uncertainties on parameters are
taken into account by assuming that the output y is disturbed
by a bounded additive noise η(t) ∈ [η(t)], the parameter
fault vector f (resp. p) belongs to F (resp. P ) where F
(resp. P ) is an interval vector. Consider Θj(F, P ) obtained
from θj(f, p) by substituting f and p by the sets F and P
respectively. Θj(F, P ) is a connected set for all connected
sets F and P since it only involves sum, difference and
product of connected sets.
For any matrix A, we denote (A)k (resp. [A]k) the kth line
of the matrix A (resp. the kth line of the interval matrix [A]).
Afterwards, we suppose that the family of functions ψi’s, for
i = 1, . . . ,M are infinitely differentiable functions equal to
zero outside the compact interval [ti − ε, ti + ε], ε > 0.
We assume too that the component functions of u, y, and x
verify the following assumption:
(H): they are C∞ in ]0, T [ and are equal to zero on ]−∞, 0[,
]T,+∞[. They coincide in ]0, T [ with functions which are
C∞ in [0, T [.

In that follows, an enclosure of
∫ b

a

f(s)ds in the set-

membership framework will be denoted by I[a,b](f) after-
wards.

B. Analytical Redundancy Relations (ARRs)

ARRs take the form of differential polynomials linking
system inputs, outputs and their derivatives that can be
obtained using elimination theory. They had already been
used to estimate parameters (or faults) when no initial guess
of their values were known [6] and for doing fault detection
[7]. According to [9], ARRs can take the following form:

R(y, u, f, p) = m0(y, u, p) +

q∑
j=1

θj(f, p)mj(y, u) = 0,

(2)
where (θj(f, p))1≤j≤qi are rational in p and f , θa 6= θb
(a 6= b), (mj(y, u))1≤j≤q are differential polynomials with
respect to y and u and m0 6= 0.

Example 1: Let come back to the example of the water-
tank. In order to use the Rosenfeld-Groebner algorithm
implemented in Maple 16, auxiliary variables z1(t, p) =√
x1(t, p) and z2(t, p) =

√
x2(t, p) are introduced and the

model, including the representation of the four faults, is

rewritten as:
ẋ1(t, p) = (a1 + f1)u(t)− (a2 + f2) z1(t, p),
ẋ2(t, p) = (a3 + f3) z1(t)− (a4 + f4) z2(t, p),
z1(t, p)2 = x1(t, p), z2(t, p)2 = x2(t, p),
y1(t, p) = z1(t, p), y2(t, p) = z2(t, p),

(3)

According to the Rosenfeld-Groebner algorithm, we obtain
two input-output relations:

R1(y, u, p) = −a1 u+ a2 y1 + 2 y1 ẏ1 − f1 u+ f2 y1,
R2(y, u, p) = a4 y2 − a3 y1 + 2 y2 ẏ2 − f3 y1 + f4 y2.

C. Estimation methods

Let us recall briefly the two methods (see [8] for more
details). The first method consists in using the property that
the ARRs (2) are linear with respect to the parameter blocks
θ1(f, p), . . . , θq(f, p) and consequently a linear system can
be formed.
The second method is based on the use of the distribution
theory. The ARRs (2) are multiplying by the test functions
ψi and the relations are then integrated so that integro-
differential polynomials are obtained. These new relations
are linear too with respect to the parameter blocks and a
new system is also deduced.

In the two cases, a system of the form Ãθ = b̃ is obtained.
Considering a bounded error disturbed output, this system
can be interpreted in the set-membership framework and used
to estimate the unknown interval vector (Θj(F, P ))1≤j≤q . It
consists in solving the following system

[Ã][θ] = [b̃] (4)

Solving system (4) can be cast using the SIVIA algorithm
(Set Inversion Via Interval Analysis) [3] for which it is
necessary to give initial intervals. The problem that is solved
here is to find [x] such that 0 ∈ [A][x] − [b]. We will
use the forward-backward propagation to contract the initial
parameter box.

Example 2: Method based on input-output polynomials:
we denote y

(1)
1,p(tk) (resp. y(1)2,p(tk)) the estimate of ẏ1(tk)

(resp. ẏ2(tk)). From R1 defined at Example 1, the first
system which has to be solved is [A1][θ] = [b1] where
[A1]k = ([−u(tk)], [ y1(tk)]) and [b1]k = [a1 u(tk) −
a2 y1(tk)− 2 y1(tk) y

(1)
1,p(tk)].

The second system is composed of the matrix
interval [A2] and the vector interval [b2] such
that [A2]i = ([−y1(ti)], [y2(ti)]) and [b2]i =
[−a4 y2(tk) + a3 y1(tk)− 2y2(ti) y2,p(ti)].

Method based on integro-differential polynomials: Simi-
larly, the two systems to be solved are [Aψ1 ][θ] = [bψ1 ] and
[Aψ2 ][θ] = [bψ2 ] such that

[Aψ1 ]i = ([−I[ti−ε,ti+ε](uψi)], [I[ti−ε,ti+ε](y1 ψi)]),

[bψ1 ]i = [I[ti−ε,ti+ε](a1 u− a2 y1 + y21ψ̇i)].

and

[Aψ2 ]i = ([−I[ti−ε,ti+ε](y1 ψi)], [I[ti−ε,ti+ε](y2 ψi)]),

[bψ2 ]i = [I[ti−ε,ti+ε](−a4 y2 + a3 y1 + y22ψ̇i)].



III. APPLICATION

The test functions ψi, i = 1, . . . ,M are bell-shaped func-
tions centered at ti. They are constructed from the test func-

tion: ψ(t) =

{
e

ε2

t2−ε2 if | t |< ε
0 if | t |≥ ε

whose support is equal

to [−ε, ε] and for which, translations and dilatations permit
to define test functions on any interval. In the numerical
application, we took test functions whose supports are strictly
included in the time interval [0, T ]. This assumption implies,
in particular, simplifications when we used integration by
parts.

In that follows, an enclosure of
∫ b

a

f(s)ds in the set-

membership framework is obtained by the interval extension
of the trapezoidal classical method and it is denoted I[a,b](f)
afterwards. The enclosures of the derivatives are obtained by
using HOSM differentiators [4], [5]. The parameters of the
HOSM differentiators are given by λ0 = 3, λ1 = 0.2 and
λ2 = 0.1.

A. Numerical results

For the simulation tests in Matlab, we choose constant
parameter values given by a1 = a2 = a3 = a4 = 0.03. The
interval bounds for η(t) are given by [−0.1 0.1].
The outputs are simulated on the time interval [0, 20] at the
discrete times (ti)i=1,...,M such that the sampling period
is equal to 0.1. The faulty chosen scenario is given by the
faults f = (0.2; 0.05; 0.1; 0.1) occurring at t = 5s. For each
fault, the initial intervals are given by f0 = [0 5] and the
bisection threshold for the algorithm SIVIA is 0.025.
For the two methods, the bounded-error fault estimation
sets have an empty intersection with [−ε, ε], ε = 0.025 as
soon as t > 5s.

For the first method, the fault estimation method was
applied on the time interval [5, 20] and the computational
time is 24.0036 seconds.

For the second one, the support length of the test functions
being equal to 2.9, the estimation procedure is done as soon
as their supports are included in [5; 20] which corresponds
to t > 6.5s and the computational time is 16.41 seconds.

In Tables 1 and 2, we give the percentage of eliminated
initial fault box compared to the domains S (solution and
undetermined boxes) and S (solution boxes only) respectively
for the two methods. The eliminated percentage %f is

calculated by %f = 1 − w([f ])

w([f0])
where w([α]) means the

width of the interval [α].
In both Tables 1 and 2, the eliminated percentage of initial

fault box is higher using the second method. Interestingly, the
computational time is also smaller using the second method
(divided by 1.5).

IV. CONCLUSION

This paper proposes a fault detection and estimation
method based on integro-differential polynomials obtained
via the use of the distribution theory. This method provides

Fault %fmethod1 %fmethod2

f1 82.00 96.00
f2 85.00 92.00
f3 80.00 90.00
f4 72.00 94.00

TABLE I
ELIMINATED PERCENTAGE OF INITIAL FAULT BOX FOR THE TWO

METHODS (UNDETERMINED AND SOLUTION BOXES).

Fault %fmethod1 %fmethod2

f1 92.10 96.20
f2 90.10 95.20
f3 91.60 93.10
f4 87.20 93.90

TABLE II
ELIMINATED PERCENTAGE OF INITIAL FAULT BOX FOR THE TWO

METHODS (SOLUTION BOXES).

very good results in the case of the water-tank problem
contrary to the classical input-output polynomials. The expla-
nation for the improved results is that the integro-differential
polynomials contain derivatives of smaller order. Further-
more, integration permits to annihilate part of the uncertainty.
A first perspective of this work will be to applied this method
on a more complex system for which the classical method
fails. A second one is to better understand the role of test
functions in this method and how can we choose them with
respect to the noise.
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