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Abstract— Random projections have been successfully applied
to accelerate Nonnegative Matrix Factorization (NMF). However,
they are not suited to the case of missing entries in the matrix to
factorize, which occurs in many actual problems with large data
matrices. In this paper, we thus aim to solve this issue and we pro-
pose a novel framework to apply random projections in weighted
NMF, where the weight models the confidence in the data. We ex-
perimentally show the proposed framework to significantly speed-
up state-of-the-art NMF methods under some mild conditions.

1 Introduction
Nonnegative Matrix Factorization (NMF) attracted a lot of in-
terest from the scientific community since the pioneering work
in [1, 2]. Indeed, it usually provides more interpretable re-
sults than methods without any sign constraint (e.g., indepen-
dent component analysis) [3] and it was successfully applied
to many fields, e.g., audio signals [4], hyperspectral unmixing
[5], or environmental data processing [6]. NMF consists of es-
timating two n × p and p ×m nonnegative matrices G and F ,
respectively, from a n×m nonnegative matrix X such that [7]

X ' G · F. (1)

NMF usually consists of solving alternating subproblems, i.e.,

Ĝ = arg min
G≥0
||X −G · F ||F , and F̂ = arg min

F≥0
||X −G · F ||F , (2)

where ||·||F denotes the Frobenius norm. Weigthed NMF
(WNMF) adds a confidence measure wij associated to the data
point xij and consists of solving

W ◦X 'W ◦ (G · F ), (3)

whereW and ◦ denote the matrix of the above weightswij , and
the Hadamard product, respectively. WNMF was successfully
applied to, e.g., image [8] and audio processing [9], collabora-
tive filtering [10], chemical source separation [11], mobile sen-
sor calibration [12], or nonnegative matrix completion1 [15].

When min(n,m) � p is large, the computational time for
estimating G and F in Eq. (1) using classical NMF techniques
is prohibitive. To solve such an issue, several strategies were
proposed, e.g., distributed computations [16], partial update
through online optimization [17], the use of optimal solvers
[18] and/or of random projections [19, 20, 21, 22]. It should be
noticed that even if most of these strategies can be combined,
all of them cannot be used in WNMF. Indeed, to the best of the
authors’ knowledge, using random projections to speed up the
WNMF computations was never investigated. This paper ad-
dresses this issue, by proposing a novel framework which can
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1Please note that most low-rank matrix completion techniques find their
roots in [13, 14] and are thus not based on matrix factorization.

be applied to any NMF method as well as any matrix factoriza-
tion technique without sign constraint, e.g., [23] for low-rank
matrix completion.

2 Proposed method
As for NMF, WNMF iteratively and alternatingly updates G
and F . To that end, in the literature, two main strategies allow
to take into account the weight matrix W (both were tested in
[15]), i.e., (i) keepingW in the update rules [8] or (ii) removing
it within an Expectation-Maximization (EM) technique [10].
The latter assumes the entries of W to be between2 0 and 1.
In the E-step, the unknown entries of X are estimated by their
best estimates, derived from the product G · F , i.e.,

Xcomp = W ◦X + (1n,m −W ) ◦ (G · F ), (4)

where 1n,m is the n×m matrix of ones. The M-step then con-
sists of applying standard NMF update rules to Xcomp in order
to derive G and F . Once NMF converged to a given solution
[10] or after a given number MaxOutIter of iterations [15], Xcomp

is updated in another E-step using the last estimates ofG and F
in Eq. (4). In practice, the EM strategy is less sensitive to ini-
tialization but is slower than the direct optimization of Eq. (3)
with classical NMF solvers [10]. This last drawback was solved
in [15] by applying the Nesterov iterations [24], where the EM
extension of NeNMF [18] was found to be far more efficient
than its direct weighted extension.

At this stage, it should be noticed that the above EM strategy
replaces W ◦X in the WNMF problem by Xcomp, thus allow-
ing to directly applying any solver, e.g., Mulplicative Update
or Alternating Least Squares (ALS). Still, it needs to process
the whole matrices Xcomp, G and F , which might be computa-
tionally expensive in some large-scale problems. To solve this
issue, we propose to apply random projections toXcomp at each
E-step, so that the NMF iterations in the M-step are sped up.

Applied to unweighted NMF, random projections consist of
designing two compression matrices L and R to be left and
right multiplied to X , respectively. The resulting matrices—
denoted XL and XR, respectively—are far smaller than X and
allow to fasten the NMF computations. Among the proposed
strategies to design L and R, structured random projections—
denoted Randomized Power Iterations (RPIs) in [25]—are
well-suited to NMF. From a realization of a Gaussian ran-
dom matrix ΩL, L is computed as the QR decomposition of
(XXT )q · X · ΩL, where q is a given integer, e.g., q = 4 in
[20]. R is similarly obtained [20]. Please note that we found in
[22] that Randomized Subspace Iterations (RSIs)—a variant of
RPIs which is less sensitive to round-off errors [25]—provided
a slightly better NMF performance than RPIs. Moreover, as L
and R have no sign constraint, the matrices XL, GL, XR, and

2Such an assumption is not an issue, as it is possible to scale any non-null
matrix W so that its maximum value is 1.



FR can get negative entries. Since G and F remain nonnega-
tive, their associated update rules are instances of semi-NMF
[26]. Lastly, the NMF stopping criterion might be a target ap-
proximation error, a number of iterations, or a CPU time.

The overall structure of the proposed Randomized extension
of EM-W-NMF—denoted REM-W-NMF below—is presented
in Algorithm 1. The approach consists of a loop alternating E-
steps and M-steps. Each M-step consists of an NMF outer loop
which is run MaxOutIter times. Then each update of the matrices
G and F can be processed by, e.g., ALS (REM-W-NMF-ALS)
or a Nesterov inner loop3 (REM-W-NeNMF).

Algorithm 1 Proposed REM-W-NMF structure

Require: initial matrices G and F
repeat

{E-step}
Compute Xcomp as in (4)
Apply RPIs or RSIs to Xcomp to compute L and R.
Define Xcomp

L , L ·Xcomp and Xcomp
R , Xcomp ·R

{M-step}
for compt=1 to MaxOutIter do

Define FR , F ·R and solve min
G≥0
‖Xcomp

R −G · FR‖F

Define GL , L ·G and solve min
F≥0
‖Xcomp

L −GL · F‖F
end for

until a stopping criterion

3 Experiments and conclusion
To assess the performance of the proposed strategy, we repeat
15 times the following experiment: we randomly generate non-
negative factor matrices Gtheo and F theo, with n = m = 10000
and p = 5. Its product provides the whole observed data matrix
X theo that we randomly sample with a sampling rate varying
from 10 to 90% (with a step-size of 20%). We compare the
proposed REM-W-NMF strategy when compared to the orig-
inal EM-W-NMF one using ALS—that we found in prelimi-
nary tests to be much faster than alternating nonnegative least
squares [27]—and Nesterov optimal gradient [15]. For each
test, each method is initialized with the same random matrices
F and G and is run during4 60 s using Matlab R2018a on a
laptop with an Intel Core i7-4800MQ Quad Core processor and
32 GB RAM memory. For each method, we consider two per-
formance indices, i.e., the Relative Reconstruction Error (RRE)
which is defined as

RRE ,
∣∣∣∣X theo −G · F

∣∣∣∣2
F /
∣∣∣∣X theo

∣∣∣∣2
F , (5)

and which is useful for validating the matrix-completion ac-
curacy of the tested techniques, and the Signal-to-Interference
Ratio (SIR) which reads

SIR =

p∑
j=1

10 log10

(∣∣∣∣∣∣f̂ coll
j

∣∣∣∣∣∣2 / ∣∣∣∣∣∣f̂ orth
j

∣∣∣∣∣∣2) , (6)

where f̂ coll
j and f̂ orth

j are the collinear and orthogonal parts of an
estimated source vector f̂j to the associated theoretical vector
in F theo, respectively.

3This loop is run at most Maxiter times (or when a given bound in the gra-
dient computations is reached), as in unweighted NeNMF [18].

4While not being classical in the literature, limiting the computations to a
given available CPU time is a crucial constraint in practical applications.

We only use RSIs in these tests and we set q to q = 4. How-
ever, the number MaxOutIter of outer iterations is not fixed but is
set to 50 and 100, respectively, in order to investigate its effects
to the WNMF performance. Lastly, as for the vanilla NeNMF
and its weighted extensions, several parameters must be fixed
in the (R)EM-W-NeNMF methods. The following values were
chosen according to results in preliminary tests. The Nesterov
inner loop is stopped after at most MaxInIter = 500 updates or if
the gradient term is 1000 times below the one estimated at the
beginning of the inner loop.
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Figure 1: RRE (top) and SIR (bottom) versus the missing value proportion.
(left): 50 outer loop iterations per M-step. (right): 100 iterations.

The obtained results are gathered on Fig. 1. The upper and
lower plots show the obtained RREs and SIRs with respect to
the missing value proportion, respectively, when the number
of outer loops in the M-step is set to 50 (left) and 100 (right).
The plain and dashed curves show the median performance of
the vanilla EM-W-NMF and the proposed REM-W-NMF tech-
niques, respectively. These plots show the relevance of the pro-
posed methods, as except when the missing value proportion
is high—i.e., 90%—the RREs (respectively the SIRs) obtained
with the compressed methods are significantly lower (respec-
tively higher) than those obtained with the vanilla ones.

It should be noticed that, as the random projections are ap-
plied at each E-step, the computational time needed by the pro-
posed REM-W-NMF techniques at this stage (≈ 6.7 s in these
tests) is almost 3 times higher than for the original EM-W-NMF
methods that they extend (≈ 2.4 s in these tests). However,
the median CPU time for 1 outer loop in the M-step is 10 and
100 times faster for the Nesterov-based and the ALS-based ran-
domized extensions than for their corresponding vanilla meth-
ods, respectively. This implies that the proposed strategy does
not speed-up classical EM-W-NMF techniques if the number
of outer loops in the M-step is not high enough. This shows
that the random projection stage is the bottleneck of the pro-
posed strategy, which might be solved by using some specific
hardware dedicated to these computations [28].

In future work, we will aim to extend these techniques to an
informed framework in order to apply them to sensor calibra-
tion [12] or chemical source separation [11, 29]. We will also
aim to validate their performance on real datasets.
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