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Abstract—Random projections belong to the major techniques
to process big data and have been successfully applied to
Nonnegative Matrix Factorization (NMF). However, they cannot
be applied in the case of missing entries in the matrix to factorize,
which occurs in many actual problems with large data matrices.
In this paper, we thus aim to solve this issue and we propose
a novel framework to apply random projections in weighted
NMF, where the weight models the confidence in the data (or the
absence of confidence in the case of missing data). We experi-
mentally show the proposed framework to significantly speed-up
state-of-the-art NMF methods under some mild conditions. In
particular, the proposed strategy is particularly efficient when
combined with Nesterov gradient or alternating least squares.

Index Terms—Nonnegative matrix factorization, missing data,
random projections, low-rank matrix completion, blind source
separation, big data

I. INTRODUCTION

Modern latent variable analysis methods—e.g., sparse ap-
proximation, robust principal component analysis, dictionary
learning—have been massively investigated for more than
two decades and were successfully applied to signal, im-
age, or video processing, and to machine learning. Among
these techniques, Nonnegative Matrix Factorization (NMF)
attracted a lot of interest from the scientific community since
the pioneering work in [1], [2]. Indeed, it usually provides
more interpretable results than methods without any sign
constraint (e.g., independent component analysis) [3] and it
was successfully applied to many fields, e.g., audio signals [4],
hyperspectral unmixing [5], or environmental data processing
[6]. NMF consists of estimating two n X p and p X m
nonnegative matrices G and F', respectively, from a n x m
nonnegative matrix X such that [7]

X ~G-F (1)

NMF usually consists of solving alternating subproblems, i.e.,
7= in||X -G-F 2

G =argmin||X — G- Fl|£, @)

F= in||[X -G F 3

argr;gr&“ G- Fllx, (3)

where ||-||- denotes the Frobenius norm. Weigthed NMF
(WNMF) adds a confidence measure w;; associated to the
data point x;; and consists of solving

min |[|[WoX —-Wo(G-F 4
min | (G- F)l7, @
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where W and o denote the matrix of the above weights
w;j, and the Hadamard product, respectively. WNMF was
successfully applied to, e.g., image [8] and audio processing
[9], collaborative filtering [10], chemical source separation
[11], mobile sensor calibration [12], or nonnegative matrix
completion! [15].

When min(n, m) > p is large, the computational time for
estimating G and F' in Eq. (1) using classical NMF techniques
is prohibitive. To solve such an issue, several strategies were
proposed, e.g., distributed computations [16], partial update
through online optimization [17], the use of optimal solvers
[18] and/or of random projections [19]-[22]. It should be
noticed that even if most of these strategies can be combined,
all of them cannot be used in WNMF. Indeed, to the best of
the authors’ knowledge, using random projections to speed up
the WNMF computations was never investigated. This paper
addresses this issue, by proposing a novel framework which
can be applied to any NMF method as well as any matrix
factorization technique without sign constraint, e.g., [23] for
low-rank matrix completion.

The remainder of the paper reads as follows. We recall the
principles of compressed NMF in Sect. II. Section III intro-
duces our proposed compressed and weighted NMF method
whose performance is investigated in Sect. IV. Lastly, we
conclude and discuss about future directions in Sect. V.

II. NMF wiTH RANDOM PROJECTIONS

We now briefly recall the principles of NMF using random
projections. Random projections became a popular tool for
lage-scale machine learning and signal processing—see, e.g.,
[24], [25] for comprehensive reviews—and are built on the
Johnson-Lindenstrauss lemma [26]. The latter states that some
points which lie in a high dimensional Euclidian space can
be projected into a low-dimensional one with a negligible
pairwise distance error.

Applied to NMF, random projections consist of designing
two compression matrices L and R to be left and right
multiplied to X, respectively. The resulting matrices—denoted
X1 and Xg, respectively—are far smaller than X and allow
to fasten the NMF computations, as shown in Algorithm 1.
Please note that as L and R have no sign constraint, the
matrices X1, G, Xg, and Fr can get negative entries. Since

IPlease note that most low-rank matrix completion techniques find their
roots in [13], [14] and are thus not based on matrix factorization.



Algorithm 1 Compressed NMF strategy

Algorithm 3 RSIs for NMF [22]

Require: initial matrices G and F’, compression matrices L

and R.

Define X;, 2 L-X and Xp = X - R

repeat
Define FRr 2 F - R
Update G as in (2) by replacing X and F' by X and
Fr, respectively
Define G, £ L -G
Update F' as in (3) by replacing X and G by X and
G, respectively

until a stopping criterion

G and F remain nonnegative, their associated update rules
in Algorithm 1 are instances of semi-NMF [27]. Lastly, the
NMF stopping criterion might be a target approximation error,
a number of iterations, or a reached CPU time.

Algorithm 2 RPIs for NMF [20]

Require: a target rank v (with p < v < min(n,m)) and an
integer ¢ (e.g., ¢ = 4 in [20])

Draw Gaussian random matrices 2;, € R™*" and Qp €
Ran

Define B, = (XX7T)?-X-Qp and Br 2 Qr-X-(XTX)4
Derive L € R*™ and R € R™*" by QR decompositions
of By, and Bp, respectively.

Several designs for L and R have been investigated in
the literature. Indeed, the authors in [19] proposed to use
Gaussian realizations as tentative compression matrices, thus
following the proof of the Johnson-Lindenstrauss lemma. The
authors in [20]-[22] found instead that deriving compression
matrices L and R which exhibit orthonormal columns and
rows, respectively, provided a much higher enhancement. For
that purpose, Randomized Power Iterations (RPIs) were used
in [20], [21] while we used a Randomized Subspace Iteration
method (RSI) in [22]. Both the RPI and RSI techniques are
provided in Algorithms 2 and 3, respectively. In practice, the
computation of (X X7)? and (X7 X)? in RPIs are done in a
loop, in the same way as proposed in RSIs, except that there
is no intermediate QR decomposition in the RPI algorithm.
As a consequence, both randomized methods are equivalent
in theory but RSIs are less sensitive to round-off errors [24].

III. PROPOSED METHOD

In this section, we propose a WNMF strategy with random
projections. As for NMF, WNMF is iteratively performed
by alternatingly updating G and F. To that end, in the
literature, two main strategies allow to take into account the
weight matrix W (both were tested in [15]), i.e., (i) keeping
W in the update rules [8] or (ii) removing it within an
Expectation-Maximization (EM) technique [10]. The Ilatter
assumes the entries of W to be between? 0 and 1. Denoting

2Such an assumption is not an issue, as it is possible to scale any non-null
matrix W so that its maximum value is 1.

Require: a target rank v (with p < v < min(n,m)) and an
integer ¢q (e.g., ¢ = 4)
Draw Gaussian random matrices Q; € R™*" and Qpr €
RVX'IL
Form X(LO) £ X.Qp and ng) L20r X
Compute their respective orthonormal bases Q(LO) and Qg),
by QR decomposition of X(LO)
for k=1 to q do
Define )~((Lk) 2 xT. Qgﬁl) and 5(%“) = Q%ﬁl) -XT
Derive their respective orthonormal bases Q(Lk) and Qg)
Compute X' 2 X . Q" and X 2 o). x
Derive their respective orthonormal bases Q(Lk) and Q%C)
end for

Derive L £ Q(L‘I) and R 2 Qg), respectively.

and XS;?), respectively

W £ (1,n — W)—where 1,,,, is the n x m matrix of
ones—X,, the matrix with unknown entries, and (¢ — 1)
the current iteration, the EM strategy aims to maximize
E[logP(W o X, W o X,|G - F),W o X|(G - F){*=V] [10].
In the E-step, the unknown entries of X are estimated as:

XM — W oX +Wo (G- F)t 1, (5)

The M-step then consists of applying standard NMF update
rules to X°™ in order to derive G and F. Once NMF
converged to a given solution [10] or after a given number
Maxgyqeer Of iterations [15], X°™P is updated in another E-
step using the last estimates of G and F' in Eq. (§). In
practice, the EM strategy is less sensitive to initialization but
is slower than the direct optimization of Eq. (4) with classical
NMF solvers [10]. This last drawback was solved in [15]
by applying the Nesterov iterations [28] to NMF (NeNMF).
Indeed, the direct weighted extension of NeNMF—denoted
W-NeNMF—was found not to be efficient in [15] because of
some Hadamard products involving the weight matrix which
drastically slow down the method. On the contrary, the EM
version of W-NeNMF—denoted EM-W-NeNMF—is far more
efficient, except when the proportion of missing entries in X is
large, i.e., 90% in [15]. Indeed, in that case, the estimation of
Xeomp in Eq. (5) is not accurate, thus propagating inaccuracies
in the estimation of G and F' along iterations.

At this stage, it should be noticed that the above EM
strategy replaces W o X in the WNMF problem by X°¢°™P,
thus allowing to directly applying any solver, e.g., Mulplicative
Update (MU), Alternating Least Squares (ALS), Projected
Gradient (PG), or the Nesterov optimal gradient. Still, it needs
to process the whole matrices X“™, G and F, which might
be computationally expensive in some large-scale problems.
To solve this issue, we propose to apply random projections
to X" —using either RPIs or RSIs (see Algorithms 2 or
3)—at each E-step, so that the NMF iterations in the M-step
are sped up. However, please note that contrary to unweighted
NMEF, the matrices L and R are not computed once but after
each estimation of X°™ in the E-step. As a consequence,



the computational time earned during the M-step might be
counterbalanced by the time needed to compress the matrices
in the E-step. This issue is investigated in the next section.

The overall structure of the proposed Randomized extension
of EM-W-NMF—denoted REM-W-NMF below—is presented
in Algorithm 4. The approach consists of a loop alternating
E-steps and M-steps. Each M-step consists of an NMF outer
loop which is run Maxgyger times. Then each update of the
matrices G and F' can be processed by, e.g., MU (REM-W-
NMF-MU), ALS (REM-W-NMF-ALS), PG (REM-W-NMF-
PG) or a Nesterov inner loop3 (REM-W-NeNMF). Let us stress
again that, to the best of the authors’ knowledge, this strategy
is the very first one to apply random projections to weighted
matrix factorization.

Algorithm 4 Proposed REM-W-NMF structure
Require: initial matrices G and F'
repeat
{E-step}
Compute X" as in (5)
Apply RSIs or RPIs to X°™ to compute L and R.
Define X;"™ £ L - X and X" £ X . R
{M-step}
for compt=1 to Maxoyqr do
Define Fr = F - R and solve min [ XR™ —G-Frl|r

Define G;, £ L -G and solve I}l;% |X7™ —GpL-F|#

end for
until a stopping criterion

IV. EXPERIMENTAL VALIDATION

To assess the performance of the proposed strategy, we
propose an experiment which is investigated with both a
nonnegative matrix completion point of view—as in [15]—
and a Blind Source Separation (BSS) one. Indeed, while the
former focuses on the estimation of the missing entries of X
from G and F, BSS investigates the quality of estimation of
each matrix factor. The latter is challenging as a good low-
rank approximation of X does not necessarily implies good
estimates of G and F.

For that purpose, we repeat 15 times the following ex-
periment: we randomly generate nonnegative factor matrices
Gteo and F™e° with n = m = 10000 and p = 5. Its
product provides the whole observed data matrix X" that we
randomly sample with a sampling rate varying from 10 to 90%
(with a step-size of 20%). We compare the proposed REM-W-
NMF strategy when compared to the original EM-W-NMF one
using MU [10], ALS—that we found in preliminary tests to be
much faster than alternating nonnegative least squares [29]—
PG, and Nesterov optimal gradient [15]. For each test, each
method is initialized with the same random matrices F' and GG
and is run during* 60 s using Matlab R2018a on a laptop with

3This loop is run at most Maxje, times (or when a given bound in the
gradient computations is reached), as in unweighted NeNMF [18].

4While not being classical in the literature, limiting the computations to a
given available CPU time is a crucial constraint in practical applications.

an Intel Core 17-4800MQ Quad Core processor and 32 GB
RAM memory. For a given solver, the fastest approach will run
more iterations and should thus provide a better enhancement.
For each method, we consider two performance indices, i.e.,
one classically used in matrix completion and one related
to BSS. We thus consider the Relative Reconstruction Error
(RRE) which is computed with respect to X" i.e.,

RRE 2 |[X G F[L /X% ©

and which is useful for validating the matrix-completion accu-
racy of the tested techniques. We also consider the Signal-to-
Interference Ratio (SIR) which compares the estimated matrix
factor F' with F°, up to permutation and scale ambiguities.
In practice, the SIR is computed over each row of F' and
is averaged in order to provide a mean SIR (in dB) per
experiment. It should be noticed that estimating the SIR is time
demanding when the value p of the rank of X becomes large,
because of the above permutation ambiguities. Moreover, and
as discussed in the conclusion, we aim to extend the proposed
REM-W-NMF strategy to mobile sensor calibration [12], [30]
where the rank of X is known’ and even smaller than in
these experiments—i.e., p = 2 in [12] and p = 3 in [30]—
hence the very small value of p which is tested in this
paper. We found RSIs and RPIs to provide an almost similar
performance, although the former sometimes yields a slightly
better enhancement. As a consequence, we only use RSIs in
these tests and we set q to ¢ = 4 (see Algorithm 3). However,
the number Maxoyger Of Outer iterations is not fixed but is set
to 1, 20, and 50, respectively, in order to investigate its effects
to the NMF performance. Lastly, as for the vanilla NeNMF
and its weighted extensions, several parameters must be fixed
in the (R)EM-W-NeNMF methods. The following values were
chosen according to results in preliminary tests. The Nesterov
inner loop is stopped after at most Maxer = 500 updates or
if the gradient term is 1000 times below the one estimated at
the beginning of the inner loop.

TABLE 1
MEDIAN CPU TIME REACHED WITH THE DIFFERENT TESTED SOLVERS.

‘ Method [[ 1 E-step (in s) [ 1 outer loop in the M-step (in s) |
REM-W-NeNMF 6.7359 0.0366
EM-W-NeNMF 2.3894 0.3275
REM-W-NMF-ALS 6.7039 0.0025
EM-W-NMEF-ALS 2.4462 0.2778
REM-W-NMF-MU 6.6546 0.0043
EM-W-NMF-MU 2.3932 0.2773
REM-W-NMF-PG 6.4367 0.0718
EM-W-NMEF-PG 2.4802 1.3917

Table I summarizes the computational cost needed at each
stage of both the Vanilla EM-W-NMF and our proposed
REM-W-NMF strategies, computed over all the tests when
Maxouer = 50. One can notice that the median time needed
in the E-step of all the randomized methods is almost 3 times

50Otherwise, a nuclear norm penalization [31] can easily be added to Eq. (4)
to extend the proposed methods.



higher than those obtained with the Vanilla techniques. This
shows that the bottleneck of our proposed framework is the
repetitive use of random projections when the matrix X™P is
re-estimated. However and as expected, performing one outer
loop in REM-W-NMF is 9 to 110 times faster than one in
EM-W-NMF. This implies that the higher Maxoyer, the more
benefits there are to apply random projections. However, in
practice, a trade-off must be found and an appropriate choice
of NMF outer loops in the M-steps must be set. From Table I,
one should notice that both tested gradient-based approaches
get less benefits from the random projections, from a CPU
time point of view. This might be due to the optimal step
search in PG or to the number of Nesterov iterations which
might vary up to a maximum number of iterations [15], [18].

Figure 1 shows the median RREs and SIRs obtained by
the tested methods, with respect to the missing value pro-
portion and the number of iterations in the outer loop. The
plain lines show the performance of the vanilla EM-W-NMF
techniques while the dashed ones show those reached by
our proposed randomized extensions. Let us first investigate
the RRE enhancement. When Maxouqer = 1, the RREs
provided by the REM-W-NMF techniques are higher than
those provided by the vanilla ones. This is due to the fact
that only 1 outer iteration is performed at each M-step, which
implies—according to Table I—that all the REM-W-NMF run
less iterations than their EM-W-NMF versions. Still, both
randomized gradient-based approaches provide almost similar
median RREs than their vanilla versions, when 50% (or less)
of the data are missing. When Maxgyqer = 20 and except
for the MU-based methods, all the REM-W-NMF techniques
outperform their EM-W-NMF variants. However, it should
be noticed that the enhancement provided by randomization
is quite moderate, except for the PG-based approach. When
Maxouger = 90, all the randomized techniques outperform
their vanilla variants. In particular, both the REM-W-NMF-
ALS and REM-W-NeNMF significantly outperfom all the
tested methods: depending on the proportion of missing values
in X, their RRE is 10 to 1000 lower than the already low
one obtained by their vanilla versions. These results show
the interest of the proposed strategy. However, it should be
noticed that when the missing value proportion is 90%, the
RREs obtained when Maxoygqer = 20 or 50 are much higher
than when it is set to 1. This is probably due to the fact that
the completed matrix X" is far from the theoretical one
in early iterations, so that the estimation of F' and G in the
M-step does not get any significant benefits from increasing
the number of M-step iterations. Lastly, we repeat the above
experiment in a noisy scenario, which is not shown in the paper
for space considerations. The obtained RREs are consistent
with the above ones—reached in a noiseless case—except that
all the RREs are higher in the former than in the latter, because
of the additive noise.

The bottom plots in Fig. 1 show the obtained SIRs in the
same conditions. Firstly, they do not monotonically vary with
the missing value proportion. While one might expect to get
better estimates of F' when more entries in X are available,

this is not always the case. This behaviour is especially visible
when Maxoygeer 15 €qual to 20 or 50, for a significant number
of tested methods. This might be due to the fact that NMF is
NP-hard and that a unique solution is not guaranteed in the
general case® [3]. This might lower the median performance of
the tested methods. As for the RREs, the achieved performance
is low when Maxoyger 18 set to 1. As expected, the vanilla EM-
W-NMF methods outperform their randomized extensions. It
should be noticed that in that case, the best performance is
achieved with PG or ALS. However, the NMF performance
achieved by both the vanilla technique using MU (respectively,
Nesterov iterations) and and its randomized extension are al-
most similar (but low). When Maxgumer = 20, while the RREs
provided by randomized techniques were already significantly
lower than with vanilla techniques, such a behaviour is not
obvious when we are interested in SIRs. Indeed, except when
used with the Nesterov gradient, the random projections do not
provide any noticeable separation enhancement and the highest
SIRs are still obtained with the vanilla EM-W-NMF-ALS ap-
proach. When Maxoyer 1S set to 50, the performance reached
by both the randomized and the vanilla techniques using MU
or PG are quite similar. On the contrary, the other tested
randomized methods clearly outperform their vanilla variants.
These results show the relevance of the proposed technique.
However, while the REM-W-NeNMF and the REM-W-NMF-
ALS provided similar RREs, the latter provides much higher
SIRs than the former. The ALS-based techniques thus provide
the best low-rank matrix completion (with the Nesterov-based
methods) and the best separation enhancement.

V. CONCLUSION

In this paper, we proposed a novel framework to combine
random projection and weighted matrix factorization. It is
based on an EM scheme and applies random projections
at each E-step, on the completed version of the partially
observed matrix. Provided there are enough outer iterations in
the M-step, the proposed strategy allows to outperform non-
randomized state-of-the-art EM techniques, especially for low-
rank matrix completion. However, we noticed that the compu-
tation of the projection matrices in the E-step is the bottleneck
of the proposed strategy (which can be counterbalanced by the
reduced cost of the NMF updates in the M-step). Such an issue
might be solved by using some specific hardware providing
optical random projections [32]. In future work, we aim to
apply the proposed strategy to informed and structured NMF
techniques applied to mobile sensor calibration [12], [30].
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