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Abstract

Conway's field No of surreal numbers comes both with a natural total order and
an additional “simplicity relation” which is also a partial order. Considering No as
a doubly ordered structure for these two orderings, an isomorphic copy of No into
itself is called a surreal substructure. It turns out that many natural subclasses of No
are actually of this type. In this paper, we study various constructions that give rise
to surreal substructures and analyze important examples in greater detail.

1 Introduction

1.1 Surreal numbers

The class No of surreal numbers was discovered by Conway and studied in his well-
known monograph On Numbers and Games [11]. Conway's original definition is some-
what informal and goes at follows:

“If L and R are any two sets of (surreal) numbers, and no member of L is >
any member of R, then there is a (surreal) number {L|R}. All (surreal)
numbers are constructed in this way.”

The magic of surreal numbers lies in the fact that many traditional operations on integers
and real numbers can be defined in a very simple way on surreal numbers. Yet, the class
No turns out to admit a surprisingly rich algebraic structure under these operations. For
instance, the sum of two surreal numbers x = {x; |xg} and y = {y1|yr} is defined recur-
sively by

x+y = {xp+y,x+yLIxr+y,x+Yyr}. (1.1)

In section 3 below, we recall similar definitions for subtraction and multiplication. Despite
the fact that the basic arithmetic operations can be defined in such an “effortless” way,
Conway showed that No actually forms a real-closed field that contains R. Strictly
speaking, some care is required here, since the surreal numbers No form a proper class.
In particular, it contains all ordinal numbers a = {a; | @}. We refer to appendix B for ways
to deal with this kind of set-theoretic issues.
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One convenient way to rigourously introduce surreal numbers x is to regard them as
“sign sequences” x = (x[B])p<a € {—1,+1}" indexed by the elements B <« of an ordinal
number a = {(x), called the length of x: see section 2.1 below for details. Every ordinal a
itself is represented as & = (a[8]) p<o With a[] =1 for all f <a. The number 1/2 is repre-
sented by the sign sequence +1,—1 of length 2. The ordering < on No corresponds to the
lexicographical ordering on sign sequences, modulo zero padding when comparing two
surreal numbers of different lengths. The sign sequence representation also induces the
important notion of simplicity: given x,iy € No, we say that x is simpler as y, and write xCy,
if the sign sequence of x is a truncation of the sign sequence of y. The simplicity relation
is denoted by <; in some previous works [8, 27, 3].

The sign sequence representation was introduced and studied systematically in Gon-
shor's book [21]. As we will see in section 3, it also allows for a natural extension of
ordinal arithmetic to the surreal numbers. In order to avoid confusion, we will systemat-
ically use the notations &+ B and « x B for ordinal sums and products and &” for ordinal
exponentiation. For instance, in No, we have w+1=w+1=14+w# 1+ w=w. Given
an ordinal &, it is also natural to define the set No(«) of all surreal numbers x of length
{(x) <a. It turns out that No(«) is a real-closed subfield of No if and only if « is an
e-number, i.e. w* =w [12, Proposition 4.7 and Corollary 4.9].

1.2 Exponentiation, derivation, and hyperseries

Quite some work has been dedicated to the extension of basic calculus to the surreal num-
bers and to the study of various operations in terms of sign sequences. In his book [21],
Gonshor shows how to extend the real exponential function to No. This exponential
function actually admits the same first order properties as the usual exponential func-
tion: the class No is elementarily equivalent to R as an exponential field. In fact, they are
even elementarily equivalent as real exponential ordered fields equipped with restricted
analytic functions [12, Theorem 2.1]. Here we recall that a restricted real analytic func-
tion is a power series f € R[[x]] at the origin that converges on a small closed ball [—7, 7]
with #>0. Then it can be shown that the definition of f(x) extends to surreal numbers x
with —r<x<r.

Another important question concerns the possibility to define a natural derivation o
on the surreal numbers, which is non-trivial in the sense that dw =1. Such a deriva-
tion was first constructed by Berarducci and Mantova [8], while making use of earlier
work by van der Hoeven and his student Schmeling [35]. It was shown in [3] that this
“Italian” derivation dgy has “similarly good properties” as the exponential function in
the sense that No is elementary equivalent to the field of transseries as an H-field. Here
transseries are a generalization of formal power series. They form an ordered exponen-
tial field T that comes with a derivation. The notion of an H-field captures the algebraic
properties of this field T as well as those of so-called Hardy fields. We refer to [1] for
more details.

The above results on the exponential function and the Italian derivation dgy on No
rely on yet another representation of surreal numbers as generalized power series x =
> meMo Xm M with real coefficients and monomials m € Mo such that m is simpler than
any other 0 <x € No with the same valuation as m: see section 2.3 for details. Indeed,
ordinary power series and Laurent series in w™! can be regarded as functions in w, so
they come with a natural derivation. More generally, the exponential function on No



INTRODUCTION 3

makes it possible to interpret any transseries in w as a surreal number, which makes it
again possible to derive such surreal numbers in a natural way.

Unfortunately, not all surreal numbers are transseries in w. For instance, the surreal
number {w,e“’,eew, ...|D} is larger than any transseries in w. In order to be able to intepret
all surreal numbers as functions in w, two ingredients are missing: on the one hand, we
need to introduce ordinal “iterators” E, of the exponential function that grow faster than
finite iterates. For instance, we have E (w) = {w, ¥, e, .| @}. On the other hand, we
need to be able to represent so-called nested transseries such as

V@ + B (12)
The present paper is part of an ongoing project to represent any surreal number as a gen-
eralized “hyperseries” in w, which takes these observations into account. This project
was first mentioned in [26] and further detailed in [2]. For progress on the “series side”,
we refer to [23, 35, 26, 13]. The derivation dgy cannot be compatible with a composi-
tion law on No [9, Theorem 8.4]. More specifically, it was noted in [2] that the Italian
derivation fails to satisfy dgm(E (X)) = (dpm X) E,(x) for all x. Ultimately, the ability to
represent surreal numbers as hyperseries evaluated at w should lead to compatible def-
initions of a derivation and a composition on No.

1.3 Surreal substructures

In the course of the above project to construct an isomorphism between No and a suit-
able class of hyperseries, one frequently encounters subclasses S of No that are naturally
parameterized by No itself. For instance, Conway's generalized ordinal exponentiation
x €No— w* Mo is bijective, which leads to a natural parameterization of the class Mo
of monomials by No (see Theorems 5.2 and 5.11). Similarly, nested expressions such
as (1.2) do not give rise to a single surreal number, but rather to a class Ne of surreal
numbers that is naturally parameterized by No (see Theorem 8.8). Yet another example
is the class La=[),, o {(expo Yloexp)(m):meMo, m> R} of log-atomic surreal numbers
that occurs crucially in the construction of derivations on No [8, Section 5.2].

In these three examples, the parameterizations turn out to be more than mere bijec-
tive maps: they actually preserve both the ordering < and the simplicity relation C. This
leads to the definition of a surreal substructure of No as being an isomorphic copy of
(No, <, C) inside itself. Surreal substructures such as Mo, Ne, and La behave similarly as
the surreal numbers themselves No in many regards. In our project, we have started to
exploit this property for the definition and study of new functions on No such as hyper-
logarithms and nested transseries.

The main goal of the present paper is to develop the basic theory of surreal substruc-
tures for its own sake and as a new tool to study surreal numbers. We hope to convey
the sense that surreal substructures are at the same time very general and very rigid
subclasses of No and that several problems regarding the enriched structure of No (high-
lighted in particular in the work of Gonshor [21], Lemire [28, 29, 30], Ehrlich [16, 15, 17],
Kuhlmann-Matusinski [27], Berarducci-Mantova [8], and Aschenbrenner-van den
Dries—van der Hoeven [3]) crucially involve surreal substructures. Even for very basic
subclasses of No, such as No” = {x € No:x >0}, we suggest that it deserves our atten-
tion when they form surreal substructures.
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A substantial part of our paper (namely, sections 4, 5, and 6) is therefore devoted to
basic but fundamental results. Some of these general facts were known and rediscovered
in different contexts [31, 16]. However, they mainly appeared as auxiliary tools in these
works. In this paper, we aim at covering the most noteworthy facts in a self-contained
and organized way. In the course of our exposition, we identify which properties of
surreal substructures are systematic and which ones are proper to specific structures. We
also include a wide range of examples. This effort culminates in the last two sections 7
and 8, where we present the examples that motivated our paper and that are important
for our program to construct an isomorphism between No and the class of hyperseries.
We refer to [5] for some first applications in this direction. In Appendix A, we also com-
piled a small atlas for the most prominent examples of surreal substructures.

1.4 Summary of our contributions

Let us briefly outline the structure of the paper. In section 2, we recall the three main rep-
resentations of surreal numbers. In section 3, we recall the definitions of basic arithmetic
operations on surreal numbers. We also show how to extend the ordinal sum + and the
ordinal product x to No.

In section 4, we introduce surreal substructures, our main object of study, as isomor-
phic copies of (No, <, C) inside itself. Any surreal substructure S comes with a defining
isomorphism Zg: (No,<,C) — (S, <, ) thatis unique and that we consider as a parameter-
ization of the elements in S by No. Defining isomorphisms Eg and Et can be composed to
form the defining isomorphism Zy= Zg o Z1 of a new surreal structure U=S <T that we
call the imbrication of T inside S. More generally, we will often switch between the study
of surreal substructures and that of their parameterizations. A consequent part of sec-
tion 4.1 is a reformulation of notions and arguments found in [31, 16, 17]; see Remark 4.8.

In section 5, we investigate the existence of fixed points for the defining isomorphism Eg
of a given surreal substructure S. More precisely, we give conditions on S under which
the class Fixs of such fixed points is itself a surreal substructure. Determining the class
Fixg allows us in some cases to compare the defining isomorphisms of two surreal sub-
structures. This task leads us to study surreal substructures S which are closed under
non-empty, set-sized suprema in (No,C) of chains in (S,C). Such a surreal substruc-
ture S is said No-closed, and has the following properties:

e Corollary 5.14: for an No-closed surreal substructure S, the class Fixg is a surreal
substructure, and it coincides with [,y Z3(No), where &g denotes the n-fold
composition of Eg with itself. A similar result was first proved by Lurie [31, The-
orem 8.2]; see Remark 5.15.

e Proposition 5.18: for an No-closed surreal substructure S, there is a decreasing
sequence (S™*),econ Of surreal substructures such that for ordinals «, 8, we have

1) SY=Noand S =8,
b) S%(M—,B) —S<a Sxﬁ’
C) S{(m&ﬁ) — (S—<zx)—<ﬁ,

d) S%ﬂc: ﬂ

<o ST if 0<ais limit,
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In fact any well-ordered sequence of No-closed surreal substructures can be similarly
“imbricated”, and thus No-closed surreal substructures can be seen as words in a rich
language that captures at the same time the notions of fixed points, imbrications and
intersections of surreal substructures. One direct application is a new proof of a theorem
by Lemire [29]; see Remark 5.17.

In section 6, we study subclasses Smpy; whose elements are the simplest represen-
tatives of members in a convex partition IT of a surreal substructure S. Under a set-
theoretic condition on IT, we prove that this class forms a surreal substructure of S (The-
orem 6.7) whose parameterization admits a short recursive definition. A weaker version
of this theorem was first proved by Lurie [31]; see Remark 6.8. A particularly important
special case is when the convex partition is induced by a group action (see section 6.3).
We also introduce the notion of a sharp convex partition IT of a surreal substructure S
which makes Smpyy closed within S (Theorem 6.14).

Our final sections 7 and 8 concern the application of our results to some prominent
examples of specific surreal substructures. This includes the structure No, of purely
infinite surreal numbers of [21], the structure Mo of monomials of [11], the structure La
of log-atomic numbers of [8], the structure K of x-numbers of [27], and various structures
of nested monomials, including Ne. Our results about nested monomials in section 8 are
analogous to Lemire's work on continued exponential expressions [30], when replacing
ordinal exponentiation by traditional exponentiation. The appendix A contains a short
overview of the surreal substructures encountered in this paper.

1.5 Notations

We will systematically use a bold type face to denote classes such as No that may
not be sets. Given a partially ordered class (X, <x) and subclasses A, B of X, we write
A<xBif a<xb foralla€ A and b€ B. This holds in particular whenever A= or B= 0.
For elements xy, ..., X, Y1, ..., Y, of X, we write xy, ..., x,, <xB and A <xyi, ...,y instead
of {x1,...,xm} <xB and A <x{y1,...,yn}. Given more than two subclasses Aj, ..., A, of X,
we also write A; <x--<xAj, whenever A;<xA, for all i <j.

If x € X, we let X>* denote the class of elements y € X with y > x. In the special case
when (X, e, -, <x) is an ordered monoid, we simply write X~ = X~° and X<=X<*.

We use similar notations for non-strict orders <x.

2 Different presentations of surreal numbers

Surreal numbers can be represented in three main ways: as sign sequences, as general-
ized Dedekind cuts, and as generalized power series over R. In this section, we briefly
recall how this works, and review the specific advantages of each representation. We
refer to [11, 21, 16, 15, 32] for more details.

2.1 Surreal numbers as sign sequences

The sign sequence representation is most convenient for the rigourous development of
the basic theory of surreal numbers. It was introduced by Gonshor [21, page 3] and we
will actually use it to formally define surreal numbers as follows:
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Definition 2.1. A surreal number is a map x:{(x) — {—1,1};a— x[a], where {(x) €On is an
ordinal number. We call {(x) the length of x and the map x: {(x) — {—1,1} the sign sequence
of x. We write No for the class of surreal numbers.

It follows from this definition that No is a proper class. Given a surreal number
x €No, it is convenient to extend its sign sequence with zeros to a map On — {-1,0,1}
and still denote this extension by x. In other words, we take x[a] =0 forall « > £(x). Given
x € No and « € On, we also introduce its restriction y=x1a€No to a as being the zero
padded restriction of the map x to a: we set y[f] =x[B] for B <a and y[f]=0 for B >ua.

The first main relation on No is its ordering <. We define it to be the restriction of the
lexicographical ordering on the set of all maps from On to {—1,0,1}. More precisely,
given distinct elements x,y € No, there exists a smallest ordinal « with x[a] #y[a]. Then
we define x <y if and only if x[a] <y[a].

The second main relation on No is the simplicity relation C: given numbers x,y € No,
we say that x is simpler than y, and write xCy, if x=y1¢(x). We write x- ={a€No:aC x}
for the set of surreal numbers that are strictly simpler than x. The partially ordered class
(No,C) is well-founded, and (x,C) is well-ordered with order type ot(x,C) = {(x).

Every linearly ordered—and thus well-ordered—subset X of (No,C) has a supremum
s=supc X in (No,C): for any x € X and a < {(x), one has s[a] =x[a]; for any « € On with
a > {(x) all x€ X, one has s[a] =0. We will only consider suprema in (No,C) and never
in (No,<). Numbers x that are equal to supc x¢ are called limit numbers; other numbers
are called successor numbers. Limit numbers are exactly the numbers whose length is
a limit ordinal.

2.2 Surreal numbers as simplest elements in cuts

If L, R are sets of surreal numbers satisfying L <R, then there is a simplest surreal number,
written {L|R}, which satisfies L <{L|R} <R [21, Theorem 2.1]. We call {} the Conway
bracket. Notice that {L|R} is the simplest such number in the strong sense that for all
x€No with L <x <R, we have {L|R} Cx. The converse implication Vx&No,{L|R}Cx =
L <x <R may fail: see Remark 4.21 below.

Now consider two more sets L', R’ of surreal numbers with L' <R’. If L has no strict
upper bound in L" and R has no strict lower bound in R’, then we say that (L, R) is cofinal
with respect to (L', R"). We say that (L,R) and (L’,R") are mutually cofinal if they are
cofinal with respect to one another, in which case it follows that {L|R} ={L'|R’}. These
definitions naturally extend to pairs (L,R) of classes with L <R. Note however that {L|R}
is not necessarily defined for such classes. Indeed, there may be no number x with L <
x<R (e.g. forL=No and R=0).

We call a pair (L,R) of sets with L <R a cut representation of {L|R}. Such repre-
sentations are not unique; in particular, we may replace (L, R) by any mutually cofinal
pair (L',R"). For every surreal number x, we denote

x; = {aeNo:a<x,aCx}
xg = {aeNo:a>x,alCx},
which are sets of surreal numbers. We call x;, and xg the sets of left and right options for x.

By [21, Theorem 2.8], one has x = {x | xg} and the pair (x1,xg) is called the canonical
representation of x.
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This identity x = {x | xg} is the fundamental intuition behind Conway's definition of
surreal numbers precisely as the simplest numbers lying in the “cut” defined by sets
L <R of simpler and previously defined surreal numbers. Of course, this is a highly
recursive representation that implicitly relies on transfinite induction.

Conway's cut representation is attractive because it allows for the recursive definition
of functions using by well-founded induction on (No, C) or its powers. For instance,
there is a unique bivariate function f such that for all x, y € No, we have

fe,n={fLy, fo,yn) | f(xry), f(x,yr)}. (2.1)

Here we understand that f(xr,y), f(x,yr) denotes the set {f(x',y):x" €x} U {f(x,y"):
y' €yy} and similarly for f (xg,y), f (x,yr). This recursive definition is justified by the fact
that the elements of the sets x1 x {y}, {x} xyr, xr X {y}, and {x} x yR are all strictly simpler
than (x,y) for the product order on (No,C) x (No,C). This precise equation is actually
the one that Conway used to define the addition + = f on No. We will recall similar
definitions of a few other arithmetic operations in section 3 below.

2.3 Surreal numbers as well-based series

Let C be a field and let 91 be a totally ordered multiplicative group for the ordering <.
A subset G C1 is said to be well-based if it is well-ordered for the opposite ordering of <
(i.e. there are no infinite chains m; <my < --- in 9M). A well-based series in 9 and over C is
amap f:91— C whose support supp f:={meM: f(m) £0} is a well-based subset of M.
Such a series is usually written as f =} . fmm, where f, = f(m) and the set of all
such series is denoted by C[[2t]]. Elements in C and 9t are respectively called coefficients
and monomials. We call 9 the monomial group. The support of any non-zero element
f eC[[9]] admits a largest element for <, which is called the dominant monomial of f
and denoted by ;.

It was shown by Hahn [22] that C[[9t]] forms a field for the natural sum and the
usual Cauchy convolution product

f4g= ) (fatgwm,  fg= ) ( > fngm) m,
meMm meM \ow=m

In C[[1]], there is also a natural notion of infinite sums: if I is a set and ( f;);c is a family

of well-based series in C[[9M]], then we say that it is summable if | J,.; supp f; is well-

based and {i€I: fi, # 0} is finite for every m € M. In that case, we define the sum

f =21 i€ CLIM]] of this family by

f=y (Zﬁ,m) m.
meM \iel

Consider a second monomial group 9t and a map ¢:C[[9]] — C[[91]]. We say that
@ is strongly linear if it is C-linear and for every summable family (f;)ic; in C[[901]], the
family (¢(fi))ier is summable in C[[9]]) with (3 .., fi) = > ;c; ¢(fi). By [25, Proposi-
tion 10], in order to show that a linear map ¢ is strongly linear, it suffices to prove that
the above condition holds for families of scalar multiples of monomials. So ¢ is strongly
linear if and only if for all f € C[[9]], the family (fn@(m))mesupp s is summable, with

q)(f) = Z fmq)(m)-

mesupp f
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Since the support of any f € C[[91]] is well-based, the order type ot(f) =ot(supp f)
of supp f for the opposite order of X is an ordinal. Now consider an e-number A. We
recall that this means that @ =\, where " stands for Cantor's A-th ordinal power of w.
It is known [20, Corollary 6.4] that the series f € C[[t]] with ot(f) <A form a subfield
CL[9M]]x of CL[IM]].

The ordering on No induces a natural valuation v on No whose residue field is R.
The Archimedean class of a non-zero surreal number x is the class A, of all y € No with
the same valuation as x. One of the discoveries of Conway was that A, N No~ admits a
simplest element that we will denote by 0. Let Mo:= {0,:x € No7} be the class of all 0,
that we may obtain in this way. Conway also constructed an order preserving bijection
w:No — Mo; x — w” that extends Cantor's ordinal exponentiation.

Through this w-map and the so-called Conway normal form [11, Chapter 5], it
turns out that the field No is naturally isomorphic to a field of well-based series
R[[Mo]]on, for which Mo becomes the monomial group. For this series representation,
any number x €No has a set-sized support supp x. The Conway normal form of x coin-
cides with its expression as a series x = Z meMo Xm M. For x,y € No we sometimes write
x 4y instead of x 4+ y in order to indicate that we have supp y < supp x, and thus that
x is a truncation of x +y as a series.

3 Arithmetic on surreal numbers

In the sequel of this paper, by “number”, we will always mean “surreal number”.

3.1 Surreal arithmetic

We already explained the usefulness of Conway's cut representation for the recursive
definition of functions on No and mentioned the addition (2.1) as an example. In fact,
one may define all basic ring operations in a similar way:

0={I} (3.1)
1= {0} (32)
—x = {—xr|—xz} (3.3)
x+y = {xp+y,x+yLIxr+Y,x+ YR} (3.4)

xy = {X'y+xy —x"y x"y+xy” —x"y" I y+xy” —x"y" 2" y+xy —x"y"}
(x'exy, x"€xr ¥y EyL ¥y EYR). (3.5)

One major discovery of Conway was that the surreal numbers No actually form a real
closed field for these operations and the ordering <. As an ordered field, it naturally
contains the dyadic numbers, which are the numbers with finite length, and the real
numbers, which are the numbers of length ¢(r) < w whose sign sequence does not end
with infinitely many consecutive identical signs.

The class On of ordinals is also naturally embedded into (No, <) by identifying an
ordinal a with the constant sequence of length « with a[] =1 for all f <a. Thus, in No,
expressions such as

wh+1

T W1 _Z/w/ 1 —w2 PRTR
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make sense and are amenable to various computations and comparisons. See [11,
Chapter 1] for more details on the field operations on No. See [21, Chapters 1, 2 and 3]
for more details on those operation in the framework of sign sequences and on the cor-
respondence between cuts and sign sequences.

Using hints from Kruskal, Gonshor also defined an exponential function on No, which
we denote by exp [21, Page 145]. This function extends the usual exponential function
on R. In fact, it turns out that No is an elementary extension of R as an ordered expo-
nential field [12, Corollary 5.5]. In other words, the usual exponential function and its
extended version to No satisfy the same first order properties over R.

In order to define exp x for x € No using a recursive equation, one needs to find an
appropriate characterization of the cut formed by exp x inside the field generated by
x, xc, and exp xc. In exponential fields, the natural inequalities satisfied by such cuts
involve truncated Taylor series expansions. Given n € N and 2 € No, let

2
[1n=)
k<n
If x€No and x’ €x; is such that exp(x”) is already defined, then for n € N, we should
have
exp(x) =exp(x")exp(x —x") >exp(x") [x —x'],

and one expects that such inequalities give sharp approximations of exp x. Following this
line of thought, Gonshor defined

expx = {0, [x—x'Iyexpx’, [x—x""Tons1expx”’ - , —
[x—x"]ong1” [X —x]N

(XIEXL, x"ExR). (36)

expx”’ exp x’ }

The reciprocal of exp, defined on No~, is denoted log. This also leads to a natural pow-
ering operation: given x € No~ and y € No, we define x’ =exp(ylog(x)). Givenr€ R, we
have w"=w", but for more general elements x € No, one does not necessarily have w” = w".
(see [6] for more details).

3.2 Extending ordinal arithmetic

We write On”~ and Ony;p, for the classes of non-zero and limit ordinal numbers, respec-
tively. The class of ordinal numbers is equipped with two distinct sets of operations:
Cantor's (non-commutative) ordinal arithmetic and Hessenberg's (commutative) arith-
metic. For ordinals «, 8, we will denote their ordinal sum, product, and exponentiation by
a4+ B, ax B and &P, Their Hessenberg sum and product coincide with their sum and pro-
duct when seen as surreal numbers [21, Theorems 4.5 and 4.6]; accordingly, we denote
them by « + B and a . We assume that the reader is familiar with elementary compu-
tations in ordinal arithmetic. In this section, we define operations on surreal numbers
which extend ordinal arithmetic.

For numbers x,y, we let x + y denote the number, called the concatenation sum of x
and y, whose sign sequence is the concatenation of that of y at the end of that of x. So
x +y is the number of length ¢(x + y) = £(x) + {(y), which satisfies

(x+y)[a] = x[a] (< l(x))
(x+y[lx)+p1 = ylp] B<LUy))
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It is easy to check that this extends the definition of ordinal sums. Moreover, the concate-
nation sum is associative and satisfies supc (x +y-) =x+y whenever x € No and y€No
is a limit number.

We let x xy denote the number of length ¢(x) x {(y), called the concatenation product
of x and y, whose sign sequence is defined by

(xxy)[l(x) xa+B] = ylalx[pB] (a<ly),B<l(x)).

Here we consider y[«] x[f] as a product in {—1, +1}. Informally speaking, given x € No
and « € On, the number x x a is the a-fold right-concatenation of x with itself, whereas
a x x is the number obtained from x by replacing each sign a times by itself. We note
that x extends Cantor's ordinal product.

The operations + and x will be useful in what follows for the construction of simple
yet interesting examples of surreal substructures. The remainder of this section is devoted
to the collection of basic properties of these operations. The proofs can be skipped at
a first reading, but we included them here for completeness and because we could not
find them in the literature. We refer to [11, First Part] for a different extension of the
ordinal product to the class of games (which properly contains No).

Lemma 3.1. For x,y,z € No, we have
a) xx(yxz)=(xxy)Xz.
b) xx1=xand xx(—1)=—x.
c) xx(y+z)=(xxy)+ (xxz).
d) xxy=supc (xxyc) if y is limit.

Proof. a) Both x % (yxz) and (xxy) xz have length £(x) x {(y) x {(z). Let a < {(yxz) and
0<{(x). Write a ={(y) x B+ where B < {(z) and y< {(y). Then

(yxz) [a]x[d]

z[Blyly1x[4]

= z[B] (xxy)[€(x) x ¥+ 6]

= ((xxy) xz)[L(x)xL(y)x B+ £(x) Xy + 6]
= ((xxy)xz)[{(x)xa+d].

(xx (yxz))[€(x)xa+d]

b) The numbers x x1 and x x (—1) have length ¢(x) x1={(x). For B < {(x), we have

(xx1)[B]=1[0]x[B]=x[B] and (xx (=1))[B]=(=1)[0]x[B]=—x[p].
¢) The number xx (y + z) has length

{(x)xl(y +2)

)% (L(y) +£(2))

= {(x)xl(y) + £(x)x€(z)
= l(xxy) + {(xxz)
0((xxy) + (xxz2)).

Let < {(x) and a<{(y+2z). If a <{(y), then

(axxy+z) @) xa+p) = (y+z)[a]x[B]

ylalx[B]

(xxy)[£(x)xa+ p]

((xxy) + (xxz))[L(x)xa+ B].
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Otherwise, there is 7 < {(z) such that « = {(y) + 77 and then
xx(y+z)[l(x)xa+B] = (y+z)[a]x[B]
= z[n]x[B]
= (xxz)[{(x)xn+ ]
= ((xxy)+ (xx2))[{(x)xa+ B].

d) The previous identities imply in particular that x x y is linearly ordered by sim-
plicity, which means that the supremum supc (xxy) is well defined in (No,C). Assume
yis limit. If y =0, then we have x xy =0=supg x x0-. Assume y#0. Notice that we have
{(y) =supc {(yc), so

{(xxy) =Ll(x) xsupc (yc) =supc (£(x) x €(yr)) =supc €(xxyr).
Let B<{(x) and a < {(y). Since y is a limit number, there is u €y such that « < £(u). Then

(xxy)[l(x) xa+ Bl =ylalx[Bl=ula]x[B]= (xxu)[{(x)xa+ B]. O

Remark 3.2. The previous lemma can be regarded as an alternative way to define the
concatenation product. Yet another way is through the equation
Vx>0,Vy, xxy = {xxyr+xp,xXyr+ (—xr) |Xx XYL+ xr, X X YR+ (—x1)}. (3.7)
Likewise, the contatenation sum has the following equation [ 15, Proposition 2]:
Vx, Yy, x+y = {xp,x+yLlx+yr xr}. (3.8)
Note that these two equations are not uniform in the sense of Definition 4.29 below.

Proposition 3.3. Let x,y,z € No.
a) Ifx#0, thenyCzif and only if xxyCx x z.
b) If 0<x, theny<zifand only if xxy <xxz.
Proof. a) If yCz, then for 2 €No with z=y +a, Lemma 3.1(c) implies that
xXYC (xxy) + (xxa)=xxz.

Conversely, if x xy C x x z, then since x # 0, we may compute, for a < {(y), the sign
ylalx[0] = (xxy)[€(x) xa] = (xxz)[{(x) xa] =z[a] x[0]. We deduce that y[a] =z[«], so
yCz.

b) If y <z, then given the maximal common initial segment u of y and z, we have
(xxu)C (xxy), (xxz), with (xxu)=~€(x) x €(u). Thus (xxy)[€(x) x(u)]=y[€(u)]x[0] =
y[€(u)] is strictly smaller than z[¢(u)]=z[{(u)]x[0] = (x xz)[{(x) x £(u)], which means
that x x y <xxz. Since the order < is linear, this suffices to prove the result. O

4 Surreal substructures

4.1 Surreal substructures and their parameterizations

Let X be a subclass of No and let R = (X)ies be a family of ordering relations on No.
Then we say that a function f: X — No is KR-increasing if f is increasing for each <; with
i€l If f is also injective, then we say that it is strictly R-increasing. If we have x <;y =
fx)Lif (y) for all x,yeX and i €I, then we call f an R-embedding of (X, (Xi)ier) into
(No, (Xy)ien). We simply say that f is an embedding if f is a (<, C)-embedding.
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Definition 4.1. A surreal substructure is the image of an embedding of No into itself.

Example 4.2. Given a € No, the map x+ a + x is an embedding of (No, <, C) into itself.
If >0, then so is the map x — a x x, by Proposition 3.3. Consequently:

e ForaeNo, the map x+— a -+ x gives rise to the surreal substructure a + No of num-
bers whose sign sequences begin with the sign sequence of a.

e For 0 <a&No, the map x+a xx induces the surreal substructure 2 x No of num-
bers whose sign sequences are (possibly empty or transfinite) concatenations of
the sign sequences of 2 and —a.

Example 4.3. Let ¢ be an embedding of No into itself with image S. Then the map
:x — —@(—x) defines another embedding of No into itself with image —S ={—x:x€
S}. In other words, if S is a surreal substructure, then so is —S.

We claim that any strictly (<, C)-increasing map f:No — No is automatically an
embedding. We first need a lemma.

Lemma 4.4. If x,y,z are numbers such that xCy and x L z, then we have x < z if and only if
y<z, and z<xif and only if z<y.

Proof. Since x I z, we have x <z if and only if there is 1, < {(x) with x1#,=2z 1%, and
x[17x] <z[11x]. Now xCy so y £z and likewise y <z holds if and only if there is 7, < {(y)
with y 17, =z1n, and y[#,] <z[n,]. Notice that y 17, =217, and y Jx £ z imply that
11y < {(x). In both cases, since x Cy, we have x[7,] =y[7.] and x[7,] =y[7,]. Therefore
the existence of 77, yields that of 17, =77, and vice versa. The other equivalence follows by
symmetry. a

Lemma 4.5. Assume that X is a convex subclass of (No, <). Then every strictly (<, C)-
increasing function ¢:X — No is an embedding (X, <,C) — (No, <, 0).

Proof. Since (No, <) is a linear order, the function ¢ is automatically an embedding for <,
so we need only prove that it is an embedding for C. Assume for contradiction that there
are elements x <y of X such that x Zy and ¢(x) CE ¢(y). Let z be the C-maximal common
initial segment of x and y. We have x <z <y, so z€ X. Since ¢ is strictly (<, E)-increasing,
we have ¢(x) < @(z) < @(y) and ¢(x) IZ ¢(z), which given our assumption ¢(x) C ¢(y)
contradicts the previous lemma. Hence ¢(x) Z ¢(y), which concludes the proof. O

Since a surreal substructure S is an isomorphic copy of No into itself, it should induce
a natural Conway bracket {}s on S. This actually leads to an equivalent definition of
surreal substructures. Let us investigate this in more detail.

Let S be an arbitrary subclass of No. We say that S is rooted if it admits a simplest
element, called its root, and which we denote by S°. Given subclasses L <R of S, we let
(L|R)g denote the class of elements x €S such that L<x <R. If (L|R)g is rooted, then
we let {L|R}s denote its root. If L=L and R=R are sets, then we call (L|R)g the cutin S
defined by L and R. If for any subsets L <R of S the class (L|R)s is rooted, then we say
that S admits an induced Conway bracket.



SURREAL SUBSTRUCTURES 13

Proposition 4.6. Let S admit an induced Conway bracket. Then the map Eg:No— S defined by
VxENo,Zgx={Eg x| =g Xr}s

is an isomorphism (No,<,C) — (S, <, D).

Proof. We first justify that &g is well defined. Let x €No be such that Eg is well-defined
and strictly <-increasing on x, with values in S. We have Eg x; < Eg xg where those sets
arein S so Eg x is a well-defined element of (Eg x| Zgs xr)s, and Eg is strictly <-increasing
on {x} Uxz Uxg. By induction, Zg is a strictly increasing map No— S. Let y € No with
xCy, so that x; <y <xg. By definition, the number Eg x is the simplest element u €S with
Sgx<u<Zgxg. Since Egy €S and Egx < Egy < Egy, it follows that EgxC Egy. We
deduce from Lemma 4.5 that Eg is an embedding of (No, <, C) into itself.

We now prove that S = Eg No by induction on y €S for C. Let y €S be such that
ycNSis asubset of EgNo. Let EsL'=L=y; NS and R=ygNS=Eg R’ where since Zg
is strictly <-increasing and thus injective, the sets L', R" are uniquely determined and
satisfy L'<R’. Since S admits an induced Conway bracket, the cut (L|R)s is rooted and
contains i, so {L|R}sCy. Since {L|R}s & LUR, we necessarily have y={L|R}s=EZg{L'|R"}.
By induction, we conclude that S = Eg No. O

Proposition 4.7. Let S be a subclass of No. Then S is a surreal substructure if and only if it
admits an induced Conway bracket.

Proof. Assume that S admits an induced Conway bracket. By the previous proposition,
S is the range of the strictly (<, C)-increasing function Eg:No — No, whence S is a sur-
real substructure. Conversely, consider an embedding ¢ of No into itself with image S.
Let L <R be subsets of S and define (L',R’) = (971 (L), "}(R)). The function ¢ is strictly
<-increasing so L' <R’, and we may consider the number x={L’|R"}. Now lety € (L|R)s.
We have ¢7'(y) € (L'|R"), so xC ¢~ (y). Since ¢ is C-increasing, this implies ¢(x) C v,
which proves that ¢(x) ={L|R}s, so S admits an induced Conway bracket. O

Remark 4.8. More generally, one may discard the existence condition for the Conway
bracket and consider subclasses X of No that satisfy the following condition:

IN. For all subsets L, R of X with L <R, the class (L|R)x is either empty or rooted.

A subclass XC No satisfies IN if and only if there is a (unique) C-initial subclass Is of No
and a (unique) isomorphism (Is,<,C) — (S, <,C). This is in particular the case for the
classes Smpy; described in Section 6 below. For more details on this more general kind
of subclasses, we refer to [16].

In this paper, we focus on surreal substructures. The characterizations given in Propo-
sition 4.7 and Proposition 4.13 are known results. The second one was first proved (for
more general types of ordinal sequences) by Lurie [31, Theorem 8.3], and both of them
were proved by Ehrlich [16, Theorems 1 and 4].

Proposition 4.9. Let S be a surreal substructure. The function Zg is the unique surjective
strictly (<, C)-increasing function No — S.
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Proof. Let ¢ be a strictly (<, C)-increasing function No — S with image S. By Lemma 4.5,
it is an embedding. Given x € No such that ¢ and Eg coincide on xr, the numbers ¢(x)
and Zg x of S are both the simplest element of (Es x7|Zs xr)s and are thus equal. It
follows by induction that ¢ = Eg. i

Lemma 4.10. Let S be a surreal substructure. For x € No, we have {(x) < l(Eg x).

Proof. By Proposition 4.6, the map Eg realizes an embedding of (x,C) into ((Egx), D),
so the order type £(x) of the former is smaller than that of the latter, namely {(Egx). O

Given a surreal substructure S, we call Eg the defining surreal isomorphism of parame-
trization of S. The above uniqueness property is fundamental; it allows us in particular to
perform constructions on surreal substructures via their defining surreal isomorphisms
and vice versa.

4.2 Cut representations

Let S be a surreal substructure. Given an element x €S and subsets L, R of S with L<R,
we say that (L,R) is a cut representation of x in S if x={L|R}s. We refer to elements in L
and R as left and right options of the representation. For x €S, we write

(x3,xR) == (xz NS, xrN'S)

and call this pair the canonical representation of x in S. We also write x2 for the set xc NS.

A C-final substructure of S is a rooted final segment T of S for C (and thereby neces-
sarily a substructure). It is easy to see that this is the case if and only if T is rooted and T
is the class ST of elements x €S such that T*C x.

Proposition 4.11. Let S be a surreal substructure and let (L,R) and (L',R") be cut representa-
tions in S. For x € S, we have

a) {LIR}s<{L'|R"}s ifand only if {L|R}s<R"and L<{L'|R'}s.

b) (x7,xR) is a cut representation of x in S with respect to which any other cut representation
of x in S is cofinal.

¢) ST= (7 1xR)s.

Proof. The assertions a) and b) are true when S =No by [21, Theorems 2.5 and 2.9]. By
Proposition 4.6, the function Zg is an isomorphism (No, <,C) — (S, <, L), satisfying the
relation VaeNo, (Egar, Egagr) = ((Eg a)f, (Eg a)lsg), soa) and b) hold in general. We have
S22 (x7 |xR)s, since x = (x| x%) 8. Conversely, for y€S=* and x’ €x2, we have x'Cy and
y[l(xH]1=x[l(x")]€{-1,1}, so y—x" and x — x" have the same sign. We conclude that
x? <y < xR, which completes the proof of c). a

4.3 Imbrications

Let S, T be two surreal substructures. Then there is a unique (<, C)-isomorphism 29:=

EtE51:S— T that we call the surreal isomorphism between S and T. The composition
EgoEris also an embedding, so its image S <T:=Eg T is again a surreal substructure that
we call the imbrication of T into S. We say that T is a left factor (resp. right factor) of S if
there is a surreal substructure U such that S =T <U (resp. S=U~T).



SURREAL SUBSTRUCTURES 15

magnitude

a
C ~
c

< b
v
simplicity length

X

Figure 4.1. The class of positive surreal numbers as a tree. For clarity, only a few numbers up to the
length w? are represented. Negative numbers are obtained through symmetry w.r.t. the y-axis.

By the associativity of the composition of functions, the imbrication of surreal sub-
structures is associative. Right factors are determined by the two other substructures.
More precisely, since Zt is injective, the relation S=T<U=E1 U yields U=Et 1(S). The
same does not hold for left factors:

(14+No) 4+ (w+No)=No~< (w+No) =w+No.

Proposition 4.12. If S, T are surreal substructures, then T is a left factor of S if and only if
SCT.

Proof. f S=T~<U,thenS=E1SCT. Assumethat SCTand let U= Efl(S). Wehave U=
(2711S) Eg No where Z7'1S and Eg, are respectively embeddings (S, <,C) — (No, <,C)
and (No,<,C) — (S, <, C) so (EF11S) Eg is an embedding (No,<<,C) — (No, <, D).
Hence U is a surreal substructure with &1 U =S, which means that T<U=S. O

4.4 Surreal substructures as trees

Through the identification No~ {—1,1 }<O0n the class of surreal numbers can naturally be
represented by a full binary tree of uniform depth On, as illustrated in Figure 4.1.

For each ordinal a, we let No(«) denote the subtree of No of nodes of depth <, that
is, the set of numbers x with ¢(x) <a. This can be represented as the subtree obtained by
cropping the picture at depth a. In order to characterize surreal substructures in tree-
theoretic terms, we need to investigate chains for C: given a subclass X C No, a C-chain
in X is a linearly ordered (and thus well-ordered) subset C of (X,C). If a C-chain C
in (X,C) admits a supremum in (X, ), we denote it supx c C. Note that the empty set
has a supremum in (X, C) if and only if X has a root, in which case supxc @ =X*. We
say that y € X is the left successor of x € X if y <x and z Jy for every z<x in X. Right
successors are defined similarly.
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Proposition 4.13. Let S be a class of surreal numbers. Then the following assertions are equiv-
alent:

a) S is a surreal substructure.

b) Every element of S has a left and a right successor in S and every C-chain in S has
a supremum in (S,C).

Proof. Let S be a surreal substructure. In No, any element x clearly admits a left suc-
cessor {x1|x} and a right successor {x|xg}, and every C-chain clearly admits a supremum.
Since these properties are preserved by the isomorphism Eg, we deduce b).

Assume now that b) holds. We derive a) by inductively defining an isomorphism
E:(No,C, <) — (S,C, ). Applying b) to the empty chain, we note that the supremum
of @ in (S,C) is the minimum of S for C. So S is rooted and we may define E0=S". Let
0 <« be an ordinal such that Z is defined and strictly (<, C)-increasing on No(«). We
distinguish two cases:

e If wis limit, then let x be a surreal number with length a. Thus x is a limit number
and Ex is a C-chain in S. We define Ex =supy c Exc.

e Assume now that « is successor, let x be a number with length &, and write x =
u+ o where 0 €{—1,1}. Let u_1 and u; be the left and right successors of Zu. Then
we define Ex =u,.

In both cases, this defines = on No(a +1) and the extension is clearly strictly C-increasing
and strictly <-increasing on every set xc:={x} Uxc for x&No(a+1).

It remains to be shown that & is strictly <-increasing on No(a +1). Given a <b in
No(a +1), let ce No(«) be their C-maximal common initial segment. We either have
a<c<band thus Ea<Ec<Eb, ora<c<b and thus Ea<ZEc<Eb. So E is strictly
<-increasing on No(a +1).

By induction, the function E is defined and (<, E)-increasing on No =, o, No(a).
Note that (S, C) is well-founded since (No, C) is well-founded and S C No. By induction
over y €S, let us show that y lies in the range of Z. If y is the left or right successor of
an element v €S, then the induction hypothesis implies the existence of some u € No
with v=2u, and we get y=Z(u+1). Otherwise, we have y=supc yg =Esupc C where
C={xeNo:ExCy}. We conclude that & is an isomorphism. O

Example 4.14. Consider the class Inc defined by Egpc0:=1, Efne (U +0) = (Epc ) + 0 +1,
for all ueNo and o € {—1,1} and Eyc supe C = (supg Ene C) + 1 for every non-empty
C-chain C without maximum in (No, C). It is easy to check that we have {(Enc x) > #(x)
for every surreal number x.

Example 4.15. Let S =No~ \ {1}. Then (S,C) is isomorphic to (No,C), but S is not
a surreal structure. In other words, the condition b) cannot be replaced by the weaker
condition that (S,C) and (No,C) be isomorphic.

The characterization b) gives us some freedom in constructing a surreal substruc-
ture: one only has to provide a mechanism for chosing left and right successors of
already constructed elements, as well as least upper bounds for already constructed
branches (i.e. C-chains). Intuitively speaking, this corresponds to a way to “draw” S
as a full binary tree inside the binary tree that represents No: see Figure 4.2.
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Figure 4.2. The (sub)tree representation of the surreal substructure Inc (purple) from Example 4.14
within No (grey). The labels have the form Ep, x (x). For instance Epnc(—2) ="/6.

4.5 Convex subclasses
If XCY are subclasses of No, recall that X is convex in Y if
Vx,zeX,VyeY,(x<y<z=yeX),
and X is C-convex in Y if
Vx,zeX,VyeY,(xCyCz=yeX).

We simply say that X is convex (resp. C-convex) if it is convex (resp. C-convex) in No.
We let Hully(X) denote the convex hull of X in Y, that is, for every number y, we have
y € Hully(X) if and only if y €Y and there are elements x,z of X such that x <y <z. The
convex hull of Xin Y is the smallest convex subclass of Y containing X.

Lemma 4.16. Assume that S is a surreal substructure. Then every non-empty convex subclass
of S is rooted.

Proof. In view of Propositions 4.6 and 4.7, it suffices to prove the lemma for S=No. Let C
be a non-empty convex subclass of No. Assume for contradiction that u,v € C are two
simplest elements with u <v. Let a be the smallest ordinal such that u[a] <v[a]. Since
ulZvand viZ u, we must have u[a] =—1 and v[a] =1. Now consider the number w whose
sign sequence is #1a =v{a. Then u <w <v, whence w € C, but also wC u; a contradic-
tion. O

Lemma 4.17. If Cis a non-empty final segment of No, then C* is the smallest ordinal in C.

Proof. Given x € C, we have x < ¢(x) €C, so C contains an ordinal. Let : denote the
smallest ordinal in C. Given another ordinal # <, we have 7 & C by minimality of «.
Since C is a final segment of No, it follows that 77 < C. For any x € C, we deduce that x lies
in the cut (11| @), whence (= {1 | @} C x. This shows that :=C?°. O

Proposition 4.18. Let S be a surreal substructure.

a) A convex subclass C of S is a surreal substructure if and only if it has no cofinal or
coinitial subset.



18 SECTION 4

b) Forsubsets L<Rof S, the cut (L|R)g is a surreal substructure.
c) If TCSisa surreal substructure, then Hullg(T) is a surreal substructure.

d) If Tisasurreal substructure, (LIR)s is a cut in S and f: T — S is strictly monotonic and
surjective, then f ~L((L|R)s) is a surreal substructure.

e) The intersection of any set-sized decreasing family of surreal substructures that are convex
in S is a surreal substructure.

Proof. a) Assume that C has no cofinal or coinitial subset and let L <R be subsets of C.

e Ifboth L and R are empty, then L <c <R for any c € C. Notice that C+# 0, since ( is
not cofinal in C.

e IfL=0and R+, then there exists an x € C with x <R, since R is not coinitial in C.
Lety={x|R}sand reR. Thenx<y<r,soyeC,and y& (L|R)c.

e Similarly, if L# @ and R=0, then {L|y}s€ (L|R)c for some y>L in C.
e IfL#@ and R+#®, then {L|R}s € C, by convexity.

In each of the above cases, we have shown that (L|R)c is a non-empty convex subclass
of S. By Lemma 4.16, it is rooted. By Proposition 4.7, it follows that C is a surreal sub-
structure. Conversely, if C is a surreal substructure, then given a subset X of C, we have

Co{D|X}c<X<{X|D}cEC,

so X is neither cofinal nor coinitial in C.
b) This is a direct consequence of the previous point: the cut (L|R)g is by definition
a convex subclass of S, and given a subset X of (L|R)s we have

(LIR)s 2{L| X}s < X<{X|R}s€ (LIR)s.

By Proposition 4.7, it follows that (L|R)sg is a surreal substructure.

¢) Since T is a surreal substructure, it has no cofinal or coinitial subset. It follows that
the same holds for Hullg(T), which is thus a surreal substructure.

d) We have f‘l((LIR)s) = (f_l(L) If_l(R))T is f is increasing and f‘l((LIR)s) =
(f_l(R) |f_1(L))T if f is decreasing. In both cases, f_l((L |R)g) is a cut in T, hence a
surreal substructure by c).

e) Let (I, <) be a linearly ordered set and let (C;);e; be decreasing for C. Its inter-
section C:= ﬂie ; Ci is convex. Let X be a subset of C. For i€, we have X C C; whence
li<X<r;wherel;=(0|X)g, and ;= (X|0)¢, Writing [={l;:i€l|X}sand r={X|r;:iEl}s,
we have [ < X <r. Moreover, for i€ I, we have [;<I<r<r;so l,r € C; by convexity. This
proves that [, € C and consequently that X is neither cofinal nor coinitial in C. Therefore
C is a surreal substucture by a). i

Example 4.19. Cuts (L|R)s where L <R are subsets of S include C-final substructures of S
and non-empty open intervals of S, which are therefore convex surreal substructures.
Note that non-empty convex classes of No which are open in the order topology may
fail to be surreal substructures. One counterexample is the class No<:=Hull(Z) of finite
surreal numbers, since it admits the cofinal subset N.

Example 4.20. Here are some further examples and counterexamples of convex surreal
substructures that we will consider later on.

e The class No~:= ({0} | @) of strictly positive surreal numbers is a convex surreal
substructure, and it is in fact the C-final substructure No=! of No.
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e Likewise, the class No™ ™ := (N | @) = No=% of positive infinite surreal numbers is
a convex surreal substructure.

e Theclass No<:=(R<°|R>) of infinitesimals forms a surreal substructure which can
be split as the union of {0} and the two C-final substructures Nog_“’_l, No2« ™.

e Although every interval (—n—1,n+1) for n €N is a convex surreal substructure,
their increasing union No* is not a surreal substructure.

Remark 4.21. For subsets L <R of S, the cut (L|R)s may fail to be a C-final substructure
of S. In fact, by Proposition 4.11(c), it is a C-final substructure of S if and only if the
canonical representation of {L|R}g in S is cofinal with respect to (L,R), in which case we
have (L|R)g= SR,

Any convex subclass C of S is a generalized cut C= (L|R)g in S where L is the class
of strict lower bounds of C in S and R is the class of its strict upper bounds. However,
those classes may not always be replaced by sets. In fact, the class Cis a cut C=(L|R)sg
with subsets L <R of S if and only if such sets can be found that are mutually cofinal
with (L, R). The existence thus amounts to cof(L, <), cof(B, >) € On since cofinality is
invariant under mutual cofinality (see the end of Appendix B for notes about cofinal
well-ordered subsets).

Example 4.22. Recall that ¥/, = w+ (—w). Let x, =%/, xa for each « € On and consider the
class C={y&No:Ya€On,y>x,}. Then Cis a convex surreal substructure of No. Indeed,
the sequence (V,)scon With y,=w+ (“/, % (—a)) is strictly decreasing and coinitial in C.
This shows that C does not admit a coinitial subset. As a non-empty final segment of No,
the class C also admits no cofinal subset. Proposition 4.18 thus implies that C is a surreal
substructure. We have cof({x,:4 € On}, <) =0n, so C is not a cut in No.

4.6 Cut equations

We already noted that the Conway bracket allows for elegant recursive definitions of
functions on No. Let us now study such definitions in more detail and examine how they
generalize to arbitrary surreal substructures.

Definition 4.23. Let S, T be surreal substructures. Let A, p be functions defined for cut represen-
tations in S and such that A(L,R),p(L,R) are subsets of T whenever (L,R) is a cut representation
in S. We say that a function F:S — T has cut equation {A|p}r if for all x €S, we have

AP, xR) < p(xf,xR) and
Fx) = AGE,xR) [p(xf, x))T.

We say that the cut equation is extensive if it satisfies
Vx,y €S, (xCy=> (A(xE,xR) CAWL,¥R) A p(af, xR) Syl yR)).

Note. We will see in the proof of Proposition 4.27 below that extensive cut equations
preserve simplicity.

Example 4.24. A simple example of a cut equation is (3.3): Vx € No, —x = {—xg| —xr}.
Here we have S =T =No and we can take A(xr,xg) = —xg and p(xr,xg) := —xr. Note that
this cut equation is extensive.
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Taking S=No and T=No~, A(x1,xg) =x; N"No~ and p(x1, xg) =xgr N No~, we obtain
the function F with F(x) =0 for all x<0 and F(x) =x for all x> 0.
See Example 4.32 below for more examples.

Remark 4.25. Our notion of cut equation is not restrictive on the function, since any func-
tion F: S — T has cut equation (A, p) with A(L,R): =F({L IR}s)f and o(L,R):=F({L]| R}s)R.
Thus it should not be confused with the notions of recursive definition in [19] and genetic
definition in [34].

Example 4.26. Given sets A, P of functions S — T, cut equations of the form (A, p) with
AR, aR) = {G():CENlext)
p(xf,xlsq) = {P(r): l/JEP,rEXISQ}
are extensive. We will write {A(x%, x?) Ip(xf’, )}t = {AD) |P(x})}t in this case. Note
that it is common to consider well-defined cut equations of the form
F(x) = {AGD) [P(R)} T,
where F itself belongs to A and P.

Proposition 4.27. Let S, T be surreal substructures. Let F:S — T be strictly <-increasing with
extensive cut equation {A|p}t. Then F(S) is a surreal substructure, and we have F = E§<s).

Proof. We claim that F is C-increasing. Indeed, let x,iy €S with x Cy. We have xf <
y< x§, so xP C yf and x§ lesg. We deduce by extensivity of (A, p) that AP, x8) g}t(yf,
yﬁ) and p(xf, xﬁ) Qp(yf, yE), and thus )L(xf, xﬁ) <Fy) < p(xf, xls<). This implies that
F(x) CF(y). Thus F is strictly (<, C)-increasing. So the composition F o Zg:No — F(S)
is strictly (<, C)-increasing. The function Eg: (No, <, C) — (S, <, C) is an embedding
by Proposition 4.6, so F embeds S into T. In particular, F(S) is a surreal substructure.
By Proposition 4.9, we conclude that F = Eg(s). O

As an application, we get the following well-known result (see [8, Proposition 4.22]).

Proposition 4.28. Let ¢ be a number, and let No~<*"PP? denote the class of numbers x with
x <supp ¢. Then No™*"PP? and ¢ + No~*"PP? are surreal substructures with

Vx&No, E¢+NO<SL‘PF"/’ X=¢+ HiNo<suppe X.
Proof. We have No“*"PP? = (- R~ supp ¢ | R” supp ¢). By Proposition 4.18(b), this is a

surreal substructure. Recall that for x & No, we have ¢ +x={¢p+x, ¢+ x| @+ xg, ¢r+x}.
If x€No“*"PP? then we have ¢ +x < ¢ 4 No~*"PP? < g + x s0 we may write

PHx {@+ X119+ XR} 4 No<supPe

_ N0<suppg0 N0<supp¢
= {p+x1 | @+ xR }“No<supp¢.

Seen as a cut equation in x, this is an extensive cut equation, so by Proposition 4.27, we
see that ¢ + No“*"PP? is a surreal substructure and that x — ¢ + x realizes the isomor-
phism No“*"PP? — ¢ 4 No~<*"PP?. O

Definition 4.29. Let F be a function S — T with cut equation (A, p). We say that (A, p) is
uniform at x €S if we have

AL,R) < p(L,R) and
F(x) = {AL,R)|p(L,R)}
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whenever (L,R) is a cut representation of x in S. We say that (A, p) is uniform if it is uniform
at every x €S.

Example 4.30. Let a € No. The following cut equation for the function y— a+y:No —
1+ No obtained from (3.8)

VxeNo,a+y={ar,a+yLla+yrar},
is uniform. On the contrary, the following cut equation for x — x + 1 is not uniform:
VxeNo,x+1={x,x.|xg}.
Indeed, we have 0={@|1} and 0+ 1=1, but {0,811} ={0[1} =1%,.

Example 4.31. Let b€ No~. By (3.7), the function y+— b x y:No — b x No has the fol-
lowing cut equation

VyeNo,bxy={bxyr+b,bxyr+ (=br) Ibxyr+br,bxyr+ (—br)},
which is uniform. On the contrary, the cut equation for x — x x /; is not uniform:
VxeNo,xx1p={xr,x+ (—=xg) |xg, x + (—x1)}.

Indeed, if we were to apply this cut equation to the cut presentation ({2}, @) of 1, then
we would have 1/, as a left option and 1+ (=) </, as a right option, which cannot be.

Example 4.32. Most common definitions of unary functions No — No have known simple
cut equations, and many of them are uniform, in particular throughout the work of H.
Gonshor in [21]. For instance, the classical cut equations (3.3) and (3.6) for the func-
tions x — —x and x+— exp x are uniform, so for x € No and for any cut representation
(Ly,Ry) of x in No, we have

—x = {=Ry|—=Ly}, and
expr exp !
[x—rlon+1” [I=x]n

expx = {O, [x—IInexpl, [x—r]oni1€XPT } (IeLy, rER,).

Example 4.33. We will also need an extension of the notion of uniform cut equation to
functions f:No xNo — No. Specifically, by [21, Theorem 3.2], the classical cut equa-
tion (3.4) for the sum of two numbers x, y is uniform in the sense that, given cut represen-
tations (L, Ry) and (Ly, Ry) of x,y in No, we have

x+y={Ly+y,x+Lylx+Ry,R,+y}. (4.1)

Similarily for the multiplication, we have
x+y: {x/y+xy/ _x/y/’x//y+xy//_x//y//|x/y+xy//_x/y//’x//y+xy/_x//yl},
where x’, x”, y" and y"' range in Ly, R,, L, and R, respectively.

Uniform cut equations have the interesting property that they can be composed.

Lemma 4.34. Let So,S1,S; be surreal substructures. Let F1:So— Sq and F:S1— S; be func-
tions with uniform cut equations
Fq
F>

{AMlp1ts,
{A2lp2}s,.
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Then Fyo Fy has the uniform cut equation (A1, 012) where for every cut representation (L,R) in
So, we have A12(L,R) =A2(A1(L,R), p1(L,R)) and p12(L,R) = p2(A1(L,R), p1(L,R)).

Proof. Let x €Sy, let (L, R) be a cut representation of x in Sp. By uniformity of the cut
equation of F; at x, we have

F1(x) ={A1(L,R) |p1(L,R)}s,.
By uniformity of the cut equation of F; at F1(x), we have
Fr(F1(x)) = {A2(A(L,R), 01(L,R)) | p2(A1(L,R), p1(L,R))},

whence the result. O

Recall that a class XC No is cofinal (resp. coinitial) with respect to a class Y CNo if every
element of Y has an upper bound (resp. lower bound) in X. If XCY, then we simply say
that X is cofinal (resp. coinitial) in Y.

Lemma 4.35. When S, T are surreal substructures, the cut equation ESx = (B3 xP | BS xR 1 is
uniform and extensive.

Proof. Let us first prove uniformity in the case when S =No. Let L <R be sets of surreal
numbers and let x={L|R}. Since Zt is strictly increasing and ranges in T, the number
y={EZ1L|E1R}Tis well defined and E1 L < E1x < E71 R, which yields yC Etx. Moreover,
the set L is cofinal in x; whereas R is coinitial in xg, so Etx; <y <Ztxr. Hence ErxCy
and Et x =y, which shows that the cut equation Etx={Zt x| Z1 xg}T is uniform.

Now consider the general case and let &g A =L <R =Eg B be subsets of S. Setting
z:={A|B} and x:={L|R}s, we have x = Eg z by uniformity of the cut equation for Zg.
Furthermore,

{ERLIZ}R}r = {E1A|E7B)r
= Zrz,
by uniformity of the cut equation for Z1. Hence (ESLIES R}r=E1E5' x =23z, which
proves that 28 ={E§L|E% R}t is uniform. This cut equation has the form 28z=
{AzD) |P(z8)}t where A=P={E$} are sets of functions, so it is extensive. O

The above proposition shows that surreal isomorphisms satisfy natural extensive cut
equations. Inversily, Proposition 4.27 shows that extensive cut equations give rise to sur-
real isomorphisms. As an application, if we admit that the operation

VxeNo, @ :={0,N @w*t|27N @*r}y

is well defined, then we see that it defines a surreal isomorphism. This is the parame-
trization of the class Mo of monomials, that is, Conway's w-map. This cut equation is also
uniform (see [21, corollary of Theorem 5.2]), and we can for instance compute, for every
number x, the number

W~ w{o,Nwmz*Nw"R}
. DXL A . =N xR
= {0, N, NN 27N g2 @)

{N,wwaLle*waR}'
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Whenever they exist, this shows the usefulness of extensive cut equations. Unfortu-
nately, many common surreal functions such as the exponential do not admit extensive
cut equations. The next proposition describes a more general type of cut equation that
is sometimes useful.

Proposition 4.36. Let S, T be surreal substructures. Let A\ be a function from S to the class of
subsets of T such that for x,y € S with x <y, the set A(y) is cofinal with respect to A(x). For
x €S, let A[x] denote the class of elements u of S such that A(x) and A(u) are mutually cofinal.
Let {A|p}t be an extensive cut equation on S. Let F:S — T be strictly increasing with cut
equation

Vx €S, F(x) = {A(), A}, xR) | p(x, xR) b1
Then F induces an embedding (A[x],<,C) — (T, <, C) for each element x of S.

Proof. Let x&S. If u,we A[x] and v € S satisfies u <v < w, then A(v) is cofinal with
respect to A(u) and hence to A(x), and A(x) is cofinal with respect to A(w) and hence
to A(v), so ve A[x]. Therefore A[x] is a non-empty convex subclass of S. Note that for
ue Afx], we have

F(u) = {A),Auf,uR) |p(uf, up)}r.
For numbers u,v lying in A[x] with uC v, we have

A(x) UAE, uR) CA(X) UA(vE,vR) <F(v) < p(vf,vR) D p(uf, ug),

which implies that F(u) C F(v). Since A[x] is a non-empty convex subclass of S and
Es:No — S is increasing and bijective, the class C:=Eg L A[x]) is a non-empty convex
subclass of No on which F o Hg is strictly (<, C)-increasing. By Lemma 4.5, the func-
tion F o Zg induces an embedding (C,<,C) — (T, <, L) and thus F induces an embedding
(Alx],<,B) — (T, <, ). O

Example 4.37. A typical example is the following cut equation of [8, Theorem 3.8(1) ] for
the exponential function on the class Mo” := {m €Mo: R <m} of infinite monomials:

VmeMo,expm= (mV, (exp mMoyN| (exp mNo)Ny.

Here we have A(m) =m" and A[m]={neMo”:3p,q€ N,m”<n< mP}.

5 Fixed points

After introducing the w-map as a way to parameterize the class Mo of monomials,
Conway remarks that for any ordinal «, the number w”" coincides with Cantor's a-th
ordinal power of w. He then goes on with the definition of generalized e-numbers as sur-
real numbers a such that w” =a. It turns out that the class of generalized e-numbers can be
parameterized as well and actually forms a surreal substructure: see Conway's informal
discussion [11, p 34-35] and Gonshor's formal proof [21, Theorem 9.1 and Corollary 9.2].
Gonshor gives further conditions for the class of fixed points of a surreal function to
be a surreal substructure [21, Theorem 9.4].

In this section, we consider the more general problem of deciding, given a surreal sub-
structure S, whether &g admits fixed points, and possibly a whole surreal substructure
of fixed points. A related fixed point theorem was obtained by Lurie [31, Theorem 8.2]
in a somewhat different context.
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5.1 Fixed points and iterations of defining isomorphisms

For operators (0: X — Y where Y C X are subclasses of No and n € N, it will be convenient
to write ()" for the n-fold composition of () with itself. In particular, O%=idy.

Definition 5.1. Let S be a surreal substructure. We say that a number x is S-fixed if Zgx=x.
We let Fixg denote the class of S-fixed numbers. Notice that Fixg is a subclass of S.

If U, V,W are surreal substructures with U=V <W, then for every number x, we have
Eyx2Eyxif and only if Ew x > x, and Eyx JEvy x if and only if Ewx Jx. In particular,
the parametrizations of U and V coincide exactly on Fixw.

Proposition 5.2. If S is a surreal substructure, then Fixg =) Z§No.

neN

Proof. Let $°“ =", . E5 No. For €N, we have Fixs = Zg Fixs C Z5 No, so Fixs CS™“.
Assume for contradiction that Fixs is a proper subclass of S*“, and consider x € S*“\ Fixg
with minimal length. For n € N7, let x, € No with x = E§ x,,. For all n € N~, we have
x, €S, so by our minimality assumption and Lemma 4.10, we have Vi €N, €(x) = {(x,,).

Recall that x is not S-fixed, so xg # x1. By symmetry, we may assume without loss
of generality that xo < x;, which implies that x, <x,41 for all n€N. For n €N, let u, be
the CE-maximal element of S with u, C x,, x,.1. This element is well-defined since S is
a surreal substructure and x,, x,+1 € S. The number Eg' u, is C-maximal in No with
Es 'ty Cxy41, Xn42, Whence 1,41 C Eg’ ity, 50 Eg thy41C Uy

Since ¢(x,) = {(x,+1) and x,,,1 # x,, we have x,,[Z x,, 11 and x,,.1Z x,,. We deduce that
Uy C Xy, Xp41 and that x, <u, <x,41. In particular, we have x,.1= E§1 X, < Es_l Uy, SO
U, <E35'u,, so u, is not S-fixed, and we have ¢(u,) < £(x,) = £(x).

Since Hg 1,41 C u, for each n €N, Lemma 4.10 implies ¢(ug) > ¢(u1) = ---. The latter
decreasing sequence of ordinals is necessarily stationary; let 1o € N be such that ¢(u,) =
{(uy,) for alln>np. By Lemma 4.10, it follows that Eg 1,41 =u,, for all n >ny, whence u,,,&
S™“\ Fixs. But £(u,,) < {(x), which contradicts the minimality of ¢(x). This absurdity
completes our proof. O
Example 5.3. Here are some examples of structures of fixed points where [, _ EsNois
a surreal substructure:

neN

e If S is the C-final substructure a + No = NoZ%, then for any surreal number x,
the sign sequence of Zgx =a + x is obtained through concatenation of the sign
sequences of 4 and x. Thus S-fixed numbers are numbers whose sign sequences
start with w copies of the sign sequence of 4, that is Fixy,a. = No2*<.

e Consider S=axNo where 4 is a strictly positive number. Let ap=1 and a,=a xa,
for ne N. We claim that Fixs =a,,x No where a,=supc {a,:n €N}.

Indeed, since 1C a; and a x - is a surreal isomorphism, we have a, C a,1 for
every n €N, so a,, is well defined. We have a xa,=supcaxay=supcani+i=ae-
For every number x=a,,%xx’ where x' €No, we haveaxx = (axa,) xx'=a,xx"=x,
s0 4, % No C Fixs. Conversely if x € Fix;ino, then a xxC x so {(a) x £(x) < {(x), so
{(x) is equal to {(a)“ x a for some ordinal a. For n €N, {(a,) = {(a)", so {(a,) =
supnen {(a,) =1¢ (@)“. Let x” denote the number of length a defined at the level of
sign sequences by

VB <, x'[Bl=x[£(a)“xB].
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We claim that x =a,,% x’. Indeed, for f<a and y< ¢ (@)%, there is n € N such that
y<{(a)", and we have

(@, xx")[(@)“xB+7]

x'[Blaulv]

x[£(a)“ % Blan[]
(a,xx)[£(@)" % (£@)“ % B) + 7]
(@nxx)[(£(@)“% B) +7]
x[L@)“%B+7].

Thus a,, x x" =x, so Fixs =a,, x No.

We let No.. denote the surreal substructure Fix,:no = w X No which is the class
of surreal numbers, whose sign sequence contains no consecutive distinct signs.
Elements in f € No, are called purely infinite numbers, since their supports supp f
as series f =)'y fmm contains only infinitely large monomials: see Proposi-
tion 7.4 below.

e Asmentioned at the beginning of this section, if S =Mo is the class of monomials,
then Eg is the w-map x — w?, and its fixed points are called generalized e-num-
bers. For x € No, the number Efiy,,, X is usually denoted ¢,, and the e-map x— &,
extends the parametrization of e-numbers in On. We refer to [21, Chapter 9] for
a detailed study.

e IfS=1+ Mo~ (where Mo<=MonNNo~), then for x €No, we have
Esx=1+@D¥,

Consider the function ®:x — 1+ @' 2 No — No. For all yENo~ and reR,
we have r+y=r+y by [21, Theorem 5.12]. Recall that ~/,=(—1) + 1. Thus for
x&€1+No<, we have

x=3hHh=(x-1)=Yo=((-D+D+x-1D=-D+A+(x-1))=(-1) +x.

So Eg and ® coincide on 1+ No~. Since S and the class of fixed points of ® are
contained in 1+ No~, we deduce that Fixg is the class of fixed points of ®.
Now, informally speaking, we would like to consider the expression

-1 L
1@ ke 2

as a notation for “the” fixed point of ®. However, this expression is inherently
ambiguous, since Fixg actually contains many elements. The map Efixs can be
regarded as a notation to provide an unambiguous expression for each fixed
point x, using a single surreal parameter u with x = Efixs(#). In a similar manner,
one may regard the notation ¢, as a way to disambiguate

ww

e If S is the interval (—w, w), then we can see that &g fixes No< pointwise and
replaces the initial segment w (resp. —w) in the sign sequence of a positive (resp.
negative) infinite number with w—1 (resp. 1 — w). Since ¥, =w+ (—w), we deduce
that the defining isomorphism Zg fixes No<, No= “2, and No="2 pointwise. One
can check that the class

Fixs = No2 “2UNo~SuNo="2

is a surreal substructure.
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In general, the class Fixg may not be a surreal substructure. For instance, the class Inc
defined in Example-4.14 satisfies Vx € No, {(Enc X) > {(x), and consequently has no fixed
point. This raises the question of finding a condition on S that will ensure Fixg to be a sur-
real substructure. One obvious first idea is to investigate when decreasing intersections
of surreal substructures are surreal substructures.

5.2 Closed subclasses

We introduce a notion of closed subclasses X of an ambient surreal substructure S D X.
In the case when X is a surreal substructure, we characterize its closedness in terms of its
defining surreal isomorphism.

Definition 5.4. Let S be a surreal substructure. Let X be a subclass of S. We say that X is
S-closed, if the supremum in (S,C) of any non-empty C-chain in X lies in X.

Example 5.5.

e The intervals (—w—1,w+1),(0,7) and (0, w*>+ 1) are No-closed convex sur-
real substructures. The interval (—w, w) is a surreal substructure which is not
No-closed, since supc N=wé (—w, w).

e The structure No, introduced in Example 5.3 is a non-convex No-closed surreal
substructure since having no different consecutive signs in one's sign sequence is
preserved by taking suprema in No.

o Likewise, the structure 2 x No is No-closed.

e [IfTisasurreal substructure defined by the tree construction (see Proposition 4.13),
then it is No-closed if and only if for each non-empty C-chain X in T, the element
Ersupc X of T is defined as supc E1 X. In particular, the surreal substructure Inc
from Example 4.14 is not No-closed.

e The class | |,co, No2*~! is No-closed but has a proper class of C-minimal ele-
ments {« —1:4 € Onyip,} (in particular, it has no root).

The term “closed” suggests the existence of a topology. Indeed, we have:

Proposition 5.6. Let S be a surreal substructure. Arbitrary intersections and finite unions of
S-closed subclasses of S are S-closed.

Proof. Itis clear that @ and S are S-closed. Let X| be the intersection of a (possibly proper
class-sized) non-empty family (X;);c1 of S-closed subclasses of S. Let C be a non-empty
C-chain in X;. We have supg - C€X; for all i €I, whence sups - CeXjand Xj is S-closed.

Let Xj, X, be S-closed subclasses of S and let C be a non-empty C-chain in X; U Xy.
If C admits a C-maximum, then supg C=max C € X; UX,. Otherwise, let i € {1,2} be
such that CNX; is C-cofinal in C. Then sups,c C=supsc CNX;EX; C X1 UXy, so X; UXp
is S-closed. O

Lemma 5.7. If S is a surreal substructure and T is a T-final substructure of S, then T is S-
closed.

Proof. The class T is C-final in S, thus suprema of non-empty C-chains in Tliein T. O

It will sometimes be useful to comprehend closure in terms of projections.
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Proposition 5.8. Let S be a surreal substructure. A rooted subclass X of S is S-closed if and only
if every element x of S7X° has a C-maximal initial segment px(x) lying in X.

Proof. Assume that X is S-closed. Consider x € S with X°*C x. Then the set of initial
segments of x lying in X is non-empty and closed under taking suprema in S. Conse-
quently, x indeed admits a C-maximal initial segment p&(x) in X. Inversely, assume that
1% is well defined on $2X" and let C be a non-empty C-chain in X. If C has a C-max-
imum, then sups c C=maxg C€X. Otherwise, ux(sups,c C) 7 sups c C, so ux(sups c C) =
sups,c C € X. This shows that X is S-closed. a

Definition 5.9. If XCS is rooted and S-closed, then we define % to be the function SZX° —» X
that sends each element x of S=X° to the C-maximal initial segment of x that lies in X. It is by
definition surjective, C-increasing, and satisfies the relation ux o u% = ux. We call it the topo-
logical projection STX°' — X.

Since y)s( is C-increasing when it exists, its fibers are C-convex in SX,

Lemma 5.10. Let T CS be surreal substructures and let XC'T be rooted. If Xis T-closed and T
is S-closed, then X is S-closed, and we have %= uxo u on s3X".

Proof. Let x&€ S=X". Since T* CTDOX, we have T*C X*, whence x & SZT°. The class T is
S-closed so x has a maximal initial segment z7(x) lying in T. Now X* is an initial segment
of x lying in T, whence X* C j3(x). We may thus consider the maximal initial segment
;&(y%(x)) of y%(x) that lies in X. If z& X is simpler than x, then zC y%(x), since z€ T.
Similarly, zC ;&(y%(x)), since z € X. This proves that ;&( y%(x)) is the maximal initial
segment of x lying in X. |

We will mostly consider closures of surreal substructures in other ones. In this situ-
ation, closure can be regarded as a property of the defining surreal isomorphism:

Lemma 5.11. If TCS are surreal substructures, then T is S-closed if and only if for any non-
empty C-chain X of No, we have Etsupc X =sups c &1 X.

Proof. Assume that the relation holds. Let Y be a non-empty C-chain in T and con-
sider the set X =E1 L(Y)y. Since Bt is an C-embedding, the set X is a non-empty C-chain
in No, whence Etsupc X=supt,c Z1 X=supr,c Y (see Proposition 4.13). Our assump-
tion on Et gives Etsupg X =supsc Et X =sups,c Y, so supsc Y =suptc Y €T, and
T is S-closed. Conversely, assume T is S-closed. Let X C No be a non-empty C-chain.
Since Et is C-increasing, the set Zt X is a non-empty C-chain in T, so supsc E1 X €T,
whence sups c E1 X =suprt,c &1 X = E1supc X, which is the desired equality. O

Lemma 5.12. Let U, V, W be surreal substructures.
a) If VCU, then V is U-closed if and only if Ev sends No-closed subclasses of No onto
U-closed subclasses of U.
b) If Vand W are No-closed, then so is V~<W.
c) If Vand V~<W are No-closed, then so is W.

Proof. a) Assume V is U-closed and X is a closed subclass of No. Let Y be a non-empty
C-chain in vy X. The set Ey! (Y) isa non-empty C-chain in X so its supremum lies in X,
and Eyv X3 Ey supc VY = supy,c &v 2yHY) = supy,c Y, so Ey X is U-closed. Con-
versely, if Ey sends closed classes of surreal numbers onto U-closed subclasses of U, then
in particular V=_Ey No is U-closed.
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b) This is a direct consequence of a).

c) Assume that V<W and V are No-closed. Let X be a non-empty C-chain in No.
Then Ey Ew supc X =supc Ey Ew X = Ey supc Ew X, and since Ey is injective, we get
Ew supc X =supc Ew X, so W is No-closed. O

We now come to the main interest of the notion of closure.

Proposition 5.13. Let 0 <a be a limit ordinal. Let S be a surreal substructure and let (Sg)p<a
be a decreasing sequence of S-closed surreal substructures of S. Then its intersection (g, Sp is
an S-closed surreal substructure.

Proof. We use the characterization of surreal substructures given in Proposition 4.13. By
Proposition 5.6, the class S, :=" B<a Sg is S-closed. In particular, the class S, has suprema
of non-empty E-chains. We also have supc s, @ =Sg =supc s {Sg: B <a} which lies in S,
by the S-closure of each structure Sg for p <a, so the empty C-chain has a supremum
as well.

Let us now treat the case of left and right successors. Given u €S, let ug_1 <u and
up,1>u be the left and right successors of u in Sg, for each ordinal g <a. For <7y <a, we
have u,, _1€Sgand u,, _1<u,soug_1Cu, 1 by the definition of left successors. Similarly,
we get ug 1Cu, 1. Thus the sets {ug _1:f<a} and {ug1:f<a} are C-chains whose suprema
u_q,u1in Ssatisfy u_1 <u<uy. ForveS, withu<vand f<a, we haveu,v€Sgsoug1Co,
whence 17 Cv. This means that u; is the right successor of 1 in S,. Likewise, 1_; is the
left successor of u in S,. We conclude that S, is a surreal subtructure. O

Corollary 5.14. If the surreal substructure S is No-closed, then Fixs is an No-closed surreal
substructure.

Proof. This is a direct consequence of Lemma 5.12, Proposition 5.13 and Proposition 5.2. O

Remark 5.15. Corollary 5.14 is similar to [31, Theorem 8.2]. Lurie's result is more gen-
eral, but when applied to an No-closed surreal substructure S, it only concludes that Fixs
is a “good tree”. Good trees need not be surreal substructures. For instance,

No2"21JNoZ 2{0} uNo=2"21u NoZ2

is a good tree, but not a surreal substructure, since 0 has two right successors and two
left successors.

5.3 Transfinite right-imbrications of surreal substructures

The class of No-closed surreal substructures being closed under decreasing intersections,
we are now in a position to define a notion of transfinite right-imbrications of No-closed
surreal substructures.

Theorem 5.16. Let a be an ordinal. Let U= (Ug) g, be a sequence of No-closed surreal substruc-
tures. We define a sequence (—(., . g U7)p<a of No-closed surreal substructures by the following
rules:

o (yepr1Uy=(—(,pUy) < Upif p<a,
o _<’)/<‘B U7: ﬂ'B’<’B _<7<’5’ Ufy lf 0 <ﬂ <ais limit.



FIXED POINTS 29

Then each class —(, g Uy for p<ais an No-closed surreal substructure, and if p+6<a, then
we have

—( U, = «U, < — U, (5.1)

7<p+é T<pB BLy<p+o

Proof. We first need to prove that the definition is warranted. We do this by transfinite
induction, while proving at the same time that the sequence (—(, . pUy)p<a is decreasing,
and that each term is an No-closed surreal substructure. Let § <a be such that these
assumptions hold strictly below B. If ="+ 1 is a successor ordinal, then ~(y< g Uy
and Ug are No-closed surreal substructures, whence —(, pUyi= (—(7 <p’ U,) <Ug is well
defined and No-closed (by Lemma 5.12). The surreal substructure _<7 <«p'Uyisa left
factor of —(,_gU,, which implies that —(, s U, C —(, 4 U,. If B is limit, the intersec-
tion that defines —(, _ Uy is an No-closed surreal substructure by Proposition 5.13, and
(< ' Uy)pr<p is clearly decreasing.

We prove the identity (5.1) by induction on f+ 4. Let ¢ be an ordinal such that (5.1)
holds for any sequence U and 8,6 with B+ 5<c. Let B,6 besuchthat B+ d=0. If 5=7+1
for some ordinal 7, then

r<p+é y<B+n+1

= —( U, < Ugyy
Y<p+n

= —(U, < —( U, < Upy
r<p p<r<pn

= —< U, < —( U,
r<p p<y<ptitl

= —< U, < —( U,
r<p p<y<pté

If ¢ is limit, then we have
U, =[] <Yy
Y<p+é < y<B+y
=[] (‘(Uv <~ UV)
n<é \r<p B<Y<p+

= ﬂ3—<y<ﬁUv( — Uv)

n<sé B<y<ptn

= ‘E—<7<5Uv(ﬂ ~ UV)

17<é BLy<B+y

= E_<7<5U'y( —< U/)/)
BLy<p+o

= _< U, < _< U,
r<p BLy<p+o

(The injectivity of &_ allowed us to move it through intersections). O

7<pUr
Example 5.17. In [11, p 34-35], Conway informally discussed continued exponential
expressions of the form

up+w
X=ug+w"E¥
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He outlined an approach for proving that the class of numbers that can be expressed
in this way is order isomorphic to No. Conway's ideas were rigorously worked out by
Lemire [28, 29, 30]. He first proved the following result in the case when ug=u;=---=0:
given (z;)ienE€{-1, 1}, let E, be the class of numbers x such that there exists a sequence
(X))ieN E No" with i

x=zow
for all i€ N. Then E; is order isomorphic to No. Moreover, writing ¢.:No — E; for the
isomorphism, ¢, has fixed points of any order « € On, and the class E7 of such fixed
points is also order isomorphic to No. This result follows from Theorem 5.16 by taking
Uyari=ziMo for alla €On and i< w. Then EZ = —< Up for all « € On.

‘B <(U] +a
A similar result was proved by Lemire for more general continued exponential expres-

sions [29, Theorem 4]. This result is more involved and presents similarities with our
results about nested expansions in section 8 below.

Proposition 5.18. Let S be an No-closed surreal substructure. For each ordinal w, let

S = —(S.
B<a
Each S™* is an No-closed surreal substructure, and for a, B € On, we have:
S @Hh) — g g=p, (5.2)
S%(ﬂ(*ﬁ) — (S%ﬂ()%ﬁ‘ (5.3)

Proof. Most of this is a direct consequence of Theorem 5.16; we only need to prove the
identity (5.3). Let 77 € On be such that this identity holds for ax B <. Let a, 8 be ordinal
numbers with a x = 7r. Corollary 5.14 justifies that the same construction can be applied
to the structure S™*. If =7+ 1 for 7 € On, then we have
(S—<zx)—<ﬁ — (S—<zx)—<17_< g«

— S«(m’qy) <S<«

— S—<(zx>’<;7+a)

— S%(uc*ﬁ)l

where we used (5.2) as well as the inductive hypothesis. If § is limit, then
(S{D{){ﬁ — n (S{D{){}]
n<p

— ﬂ S—<(a>'<;7)

n<p

(] s
y<axp
— S%(ﬂ()‘(ﬁ). I:‘

Note that for n €N, the structure S*" is the n-fold imbrication of S into itself, and we
have Eg«n= (2g)". For « € On, we have §<(@*® = Fixg", by Proposition 5.2 and the iden-
tity (5.3). Thus transfinite right-imbrications of S with itself allow us to define higher
order fixed points of Eg as being elements of the S with 0 <« € On. As we have seen,
imbrication is left-distributive on decreasing intersections that form a surreal substruc-
ture. It is not right-distributive in general. For instance if S is a proper No-closed surreal
substructure of No, then $““<S is a proper subclass of $““=(, . (8§ <S).
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Example 5.19. We will see in section 7.2 that the class Nos* coincides with w* x No.

Example 5.20. The class Mo~ “ of fixed points of the w-map was studied before in [11,
21, 31]; numbers in Mo~ “ are called generalized e-numbers. It also comes up in the study
of the exponential function and the length of sign sequences [12, 27]. The class Mo<“"
corresponds to a higher order fixed points of the w-map and we expect it to play a similar
role as Mo~ for the study of the a-th hyperexponential function.

6 Convex partitions

Throughout this section, S stands for a surreal substructure.

6.1 Convex partitions

Definition 6.1. Let IT be a partition of S into convex subclasses. We say that 11 is a convex
partition of S. For x €S we let II[x] denote the member of II containing x and recall that this
class is rooted (by Lemma 4.16). We say that x €S is II-simple if x =TI[x]°, and we let Smpy
denote the class of I1-simple elements of S. For x,y € S we write:

x=ny if I[x]=II[y],
x<ny if I[x]<II[y],
x<ny if I[x]=II[y] or II[x] <II[y].

Remark 6.2. Convex partitions are sometime called condensations |33, Definition 4.1].

We can obtain S as Smpy;, through the discrete partition Ilgisc with Tgisc[x] = {x}
forall xeS. Let rrrp(x) :=II[x]* €S for all x€S. The map 7;: S — Smpy; is a surjective,
increasing projection. We refer to it as the Il-simple projection.

For the remainder of this subsection, let ITbe a convex partition of S. A quasi-order (or
preorder) is a binary relation that is reflexive and transitive. The following lemma states
basic facts on partitions of a linear order into convex subclasses.

Lemma 6.3. The relation <y is a linear quasi-order and restricts to a linear order on Smpyy. For
x,y €S, we have x <ny if and only if mp(x) < tn(y).

Proof. It is well known that the partition II corresponds to the equivalence relation =g
on S. The transitivity and irreflexivity of <p follow from that of < on subclasses of No.
That its restriction to Smpy; is a linear order is a direct consequence of the definition
of Smpy; and the equivalence stated above, which we now prove. If IT has only one
member, then the result is trivial. Else let x,y € S with x <yy. We have rrp(x) e II[x] <
I[y] 2 m(y) so mn(x) < tn(y). Conversely, assume that 7rp(x) < 7rp(y). Then I[x] #
II[y] which since IT is a partition implies that IT[x] N II[y] = @. For x" €II[x], there may
be no element z of I1[y] such that z <x for this would imply z<x <t (y) whence x eI1[y]
by convexity of this class: a contradiction. We thus have II[x] <II[y], that is, x <pry. By
definition of 7y, the relation x =y implies that 7r(x) = 7 (y), whereas 7t (x) = i (y)
implies that IT[x]NII[y] # @, so II[x] =II[y], so x =ny. O
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For any subclass X of S, we let II[X] denote the class | J, oy IT[x].

Lemma 6.4. Let A,B be subclasses of S. Then the following statements are equivalent:
a) A<II[B].
b) II[A]<B.
¢) TI[A]<II[B].

Proof. All inequalities are vacuously true if A= or B={@. Assume that A and B are non-
empty and leta € A and b€ B. Assume for contradiction that A <II[B], but II[A] <II[B].
Then there exist a4’ €I1[a] and b’ €I1[b] witha<b’<a’. By convexity of I1[a], this yields
b’ €Il1[a], whence a €I1[b]. This contradiction shows that A <II[B]=II[A] <II[B]. The
inverse implication clearly holds. The equivalence II[A] <B < II[A] <II[B] holds for
similar reasons. O

Lemma 6.5. For x €S, the three following statements are equivalent:
a) x is IT-simple.
b) There is a cut representation (L,R) of x in S such that II[L] <x <II[R].
¢) MxP]<x<II[xg].

Proof. Since (xf, xlsg) is a cut representation of x in S, the assertion c) implies b).

Conversely, if (L,R) is a cut representation of x in S with II[L] < x <II[R], then we
have L <II[x] <R by the previous lemma. By Proposition 4.11(b), the cut representation
(L,R) is cofinal with respect to (xP,xR), so xP <II[x] <x§. Hence I[xP] <x<II[x3], again
by Lemma 6.4. This shows that b) implies c).

Assume now that x is II-simple and let us prove c). For u e xf, we have uC x, so
u & I[x], whence u #px. We do not have Il[x] <II[u] since x < u, so Lemma 6.3 yields
IT[u] <II[x], and in particular IT[u] <x. This proves that II[xf] < x, and similar argu-
ments yield x < II[x3].

Assume finally that c) holds and let us prove a). We have II[x]*C x so II[x]* €
xf U{x}u xlsg. Now the class II[TI[x]°*] =II[x] is neither strictly greater nor strictly lower
than x, so our assumption imposes II[x]* =x. We conclude that x is IT-simple. a

An order < on a set S is said to be dense if for any a,b& S with a <b, there existsace S
witha<c<b.

Proposition 6.6. Assume that Smpyy is dense. Then I is the unique convex partition of S such
that Smpyy is the class of II-simple elements of S.

Proof. For a € Smpy,, let A, denote the class of elements x of S such that no II-simple ele-
ment lies strictly between a and x. The definition of the family (Ap)scsmp,, only depends
on the class Smpy;, and not specifically on II. For a € Smpy;, we have II[a] CA,.
Conversely, let x € A;, and assume for contradiction that x lies outside of II[a], say
a<nx. Thena<pm(x) and, Smpy; being dense, there exists a II-simple element b between
a and m(x). But a <;pb <pmn(x) implies a < b < x, which contradicts the assumption
that there is no simple element between a and x. We conclude that Il[a] = A,;, which
entails in particular that the partition IT is uniquely determined by Smpy;. O
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If Smpy; is dense, then we call IT the defining partition of Smpy;. Notice that this is in
particular the case when Smpy; is a surreal substructure. We next consider a set-theoretic
condition under which Smpy; is always a surreal substructure.

We say that II is thin if each member of IT has a cofinal and coinitial subset. For
instance, the convex partition IT of No where

I[x]:={yeNo:IneN, —-n<x—-y<n},

is thin. Indeed each class II[x] for x € No admits the cofinal and coinitial subset x + Z.
See Example 6.15 below for more (counter)examples of thin convex partitions. If IT is
thin, then we may pick a distinguished family (II[x]),es such that each Il[x] for x€S
is a cofinal and coinitial subset of II[x], with II[x] =1I[y] < x =ny. We write I1[X] =
U,ex I1[x] for any subclass X of S.

Theorem 6.7. If I1is thin, then Smpy is a surreal substructure. If (L,R) is a cut representation
in Smpyy, then we have

{LI1R}smpy, = {II[L]|IT[R]}s.

Proof. Let L <R be subsets of Smpp. For /€L and r € R, we have II[I] <II[r] by
Lemma 6.3. Therefore I1[l] <II[r] holds as well, which means that x:= {II[L]|II[R]}g
is well defined. Given /€L and I’ €I1[I], there exists an ["" €I1[I] with I"' >1’, since I1[!]
is cofinal in II[/]. It follows that I’ <I"" <x, whence II[I] < x. A similar reasoning shows
that x <II[r] for any r € R. By Lemma 6.5, it follows that x is II-simple. Let y € (L|R)s be
IT-simple. Given /€L and r €R, the II-simplicity of [, r, and y implies that II[]] <y <II[r],
and in particular that IT[/] <y <II[r]. We deduce that xCy, so x={L|R}smp,- By Propo-
sition 4.7, we conclude that the class Smpy; is a surreal substructure. |

Remark 6.8. The above theorem can be regarded as a strengthening of [31, Theorem 8.4]
in a different framework. Indeed, Lurie's result is restricted to the case when S=No and
requires the additional assumption that

Va,b,c€S, ((aCbEcAIl[a] =II[c]) = (II[a] =II[b] =1I[c])).

This condition is equivalent to the condition that IT be sharp in our terminology (see
below); it fails for the partition IT of No>> such that

VaeNo~~, II[a]:={beNo>”:In€N,log,(b) <log,(a)},

which is the defining convex partition of the set La of log-atomic numbers. Indeed, we
w1
have wC w“C w® ,where w¥=A;>II[Aq] =II[w], but

—1 2

= exp(wz) =exp2(2log, w) e[ w].

wﬁd

w

Still, La is a surreal substructure and even an No-closed one.

When I1 is thin, the structure Smpy; is in addition cofinal and coinitial in S, since for
x €S, we have Smp 2 {@|I1[x]}s <x<{I1[x]|D}s € Smpy;. By the previous proposition,
we may say that Smpy; is thin if its defining partition ITis thin. If ITis not thin, then Smpp
may fail to be a surreal substructure, but one can prove that there exists a unique C-initial
subclass I of No and a unique isomorphism between Smpy; and 1.
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For instance, we can obtain the ring Oz:=Nos + Z of omnific integers of [11, Chapter 5]
as Smpy where for each number z € Oz, we set Ilo,[z] := [z,z +1). This is not a sur-
real substructure since the cut (0|1) o, is empty. Nevertheless, Oz is C-initial in No. Note
that different partitions may yield the same class Oz (for instance replacing I1o,[0] and
I1o,[1] with [0,15) and [/, 2) respectively and leaving the other classes unchanged),
in contrast to the case of dense partitions from Proposition 6.6. The partition II, in
Example 6.15 below is not thin and yet Smpyy, is a surreal substructure.

Proposition 6.9. Assume that 11 is thin. Then we have the following uniform cut equation
for Esmp,, and x € No:

E“Smpn X = {H[ESmpH xr] H[E‘Smpn XRrl}s.

Proof. The cut equation follows from Theorem 6.7 and the relation
EJSmpH X = {ESmpH XL E:Smpn xR}SmpH-

Now towards uniformity, consider a cut representation (L, R) of a number y. We have
Esmpy L <11 Esmpy R so the number {I1[Egmp,, L] TI[Esmp,, R1}s is well defined. Since
(L,R) is cofinal with respect to (yr,yr) and Esmp,, is strictly increasing, the number
{H[E‘Smpn L]| I_I[E‘Smpn R]}s lies in the cut (H[E'Smpn yL] | H[E‘Smpn yR])S/ SO ESmpH Yy c
{IT[Esmp,; L] I TI[Esmp,, R1}s. Conversely, we have L <y <R, 50 Egmp,; L < Esmp, ¥ <
Esmpy R. Since Egmp, LU {Esmp;, ¥} U Esmpy R € Smpypy, we have II[Egmp,, L] < Egmp,, ¥ <
[I[Esmp, R], whence {I1[Esmp, L] I TI[Esmp, R]}s E Esmp, - We conclude that Egmp,, iy =
{H[ESmpn L] |H[ESmpn R]}S O

Corollary 6.10. If I1is thin and S is a final segment of No, then Egmp,, preserves ordinals.

Proof. If y is an ordinal, then (II[Egmp, pL] | @)s is a non-empty final segment of S and
thus of No, so by Lemma 4.17, its simplest element Egmp,, # is an ordinal. O

For convex partitions I, II" of S, we write ITZIT" if we have II[x] CII'[x] for every
x €S, and say that ITis finer than I1". If I1 LI1’, then Smp; C Smpy;.

Recall that a directed set is a partial order (J, <) such that for all j,j' €], there exists
aj’eJwithj,j'<j".

Proposition 6.11. Let S be a surreal substructure. Let (], <) be a non-empty directed set. If
(I1));e; is a Z-increasing family of thin convex partitions of S, then the intersection () jey Smpry,
is a surreal substructure with defining thin partition Il given by

VxeS, Ijx] = U II;[x].
jel

Proof. Given x €S, the class ITj[x] := | e I1;[x] is a non-empty convex subclass of S
and (J,.g ITj[x] =S. Let x,y €S be such that II;[x] NII;[y] # @ and let i € ]. Since ] is
directed, there exists a j>i in | such that IL;[x] N IT;[y] # @, whence IL[x] =II;[y]. In
particular, IT;[x] CII;[y] and II,[y] CII;[x]. Since this is true for any i € J, it follows that
IT;[x] =I1;[y], so I1; defines a convex partition of S.

For x €S, we have H][xf] <x< H][xlsa] if and only if Hj[xf] <x< H]'[XISQ] holds for
all je], so Lemma 6.5 implies ;c; Smpy; = Smpyy. Now for x €S, the set U]E] [T x is
cofinal and coinitial in ITj[x], so I} is thin. Theorem 6.7 therefore implies that the class
[;e; Smpyy, is a surreal substructure. O
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Proposition 6.12. Assume that S is a final segment of No and that 11 £ 11" are thin convex
partitions of S. Then for A € On, we have Egmp, A < Esmp,,, A, and in particular A < Egmp, A

Proof. We prove the first inequality by induction on A € On. Assuming that the inequality
holds strictly below A, we have

ESmpnA = {H[ESmpnALN@}S
ESmpr/\ = {H/[ESmpnf/\L“@}S-

For y €Ar, we have Egmp,, 7 < Esmpy, ¥ < Esmpy, A Where Egmp,, A € Smpyy € Smpyy,
50 I[Esmp,, 7] < Esmp,, A, Wwhence in particular I1[Egmp,; AL] < Esmp,, A- By Proposi-
tion 4.11(a), we have Egmp, A < Esmp,,, A, whence the result by induction.

The second inequality is a consequence of the first one in the case when II is the
discrete partition of S, which is Z-minimal and for which Egmp, = EZs. Since S is a final
segment of No, Proposition 4.17 gives Zg 0 =min (SN On) > 0. Moreover, for all A €On
with A >0, we have EgA ={EgAL|P}s={EgsAL| B}, which yields Eg A >A by induction. O

6.2 Sharp convex partitions

We have encountered two different types of projections for surreal substructures. Given
an S-closed rooted subclass X of a surreal substructure S, the topological projection sends
every element x € STX’ to the C-maximal initial segment u%(x) of x lying in X. Given
a convex partition IT of the surreal substructure S, the II-simple projection sends x €S
to the unique Il-simple element 7ry(x) lying in IT[x]. It is natural to ask whether both
types of projections relate to each other.

Given a surreal substructure S and an S-closed rooted subclass X with X®*=S°, the
topological projection y := y% is defined everywhere on S. For each x € S, we define
Mx[x] := y‘l({ u(x)}). It is easy to see that Mx defines a partition of S into non-empty
rooted C-convex subclasses, and that X is the class of roots Mx[x]®* where x ranges in
S. The members of Mx are not necessarily <-convex in S. For instance, one can prove
that the structure S =Mo”~ + No< is a No”"~-closed surreal substructure, with No~”~ =
Hull(S), for which Mg[w] contains w and w+ 1 but not w+ w ™.

Conversely, given a convex partition IT of S, the class Smpg may not be S-closed, and
when it is, it may be that ygmp s and 7y disagree. In some interesting cases, the projec-
tions ygmpn and 7ty do coincide, and (Smpy;, C, <) has additional properties, as we shall
see NOw.

Definition 6.13. Let S be a surreal substructure. We say that a convex partition I of S is
sharp, if the canonical representation in S of every II-simple element x is cofinal with respect to
(II[x, N Smpp], I[xg N Smpy]).

Assume that IT is thin and sharp. Then each element x € Smpy; admits the cut rep-
resentation (H[xfmpn],H[xgmp“]) in S. By Proposition 4.11(b), this cut respresentation
is mutually cofinal with (xf,xﬁ). In view of Remark 4.21, we thus see that the sharpness
is equivalent to the fact that the cut (H[xfmpn] IH[xISQmP“])S coincides with the C-final
substructure S=* of S for every x € Smpy;. This corresponds to the notion of simple rep-
resentation of [8, Definition 2.2]. We say that Smpy is sharp in S if its defining partition
is sharp.

The main interest of sharpness lies in the following equivalences:
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Theorem 6.14. Let I be a convex partition of the surreal substructure S such that Smpyy is
a surreal substructure. The following statements are equivalent:

a) Il is sharp.
b) Smpyyis S-closed and = ygmpn.
c) 7 is C-increasing.

d) Smpy is S-closed and ygmpn is <-increasing.

Proof. Assume that II is sharp. Let us prove b), c) and d). Note that S* is II-simple,
whence S* = (Smpp;)®. We know that ygmpn when it exists is C-increasing, and that 7y
is <-increasing, so we need only prove that Smpy; is S-closed and y%mpn =71

Let a,b e Smpy; be such that aC b. We claim that b is simpler than no element of IT[a].
By symmetry, we may assume without loss of generality that a <b. Since a €b;, and I1
is sharp, the set b{ is cofinal with respect to II[a]. Assume for contradiction that we
have bC x for some x €II[a]. Let y €Il[a] be such that x <y and yCb. Then yC x. By
Lemma 6.3, we also have b>1II[a], whence y <b. It follows that x[{(y)] =b[{(y)]1 =1,
whence y < x: a contradiction.

Since a =II[a]°®, our claim implies that a is the maximal initial segment of any ele-
ment of I[a] = ' ({a}) lying in Smpy, i.e. that ygmpn is defined on Il[a] and coincides
with 77y on this class. Since the classes II[a] cover S, we see that ygmpn is defined on S,
and 7t = ygmpn. By Proposition 5.8, the structure Smpy; is S-closed.

We next prove that 4) is a consequence of b). Assume for contradiction that Smpy
is S-closed with 7t = pismp,, and that IT is not sharp. We treat the case when there are
a,b € Smpy; such that a € by but b} has a strict upper bound a’’ in II[a]. Then by <a'' <bg,
sobCa'',and bC ygmpn(a”). In particular, 7tp(a’) =aC ygmpn(a”), whence 7 # ygmpnz
a contradiction. The other case is similar.

Assume next that 77y is C-increasing. For x €S and 2 € Smpy; such that aC x, we have
a=rmn(a) Cmr(x), so rrp(x) is the C-maximal IT-simple initial segment of x. This means
that Smpy; is S-closed with topological projection 7. So c) implies b).

Assume Smpy; is S-closed and ygmpn is <-increasing. It follows that each fiber
( y%mpn) 1 y%mpn(x) }) of ygmpn where x €S is convex for <. As we have seen in the intro-
duction of this section, we can construe Smpy as Smpy,; where for x €S, we have M[x] =
ygmpn_l({ygmpn(x)}). By Proposition 6.6, we have ygmpn = 7tm = 7Ty, SO d) implies b).
This concludes the proof. a

Example 6.15. Convex partitions of a surreal substructure may or may not be sharp:
o LetIT, denote the partition of No where for x € No, we have
1. [x]=Hull(x + Z).

This is actually the defining partition of the class Nos. = w x No = (2 x No)*“ of

purely infinite surreal numbers, which is sharp, since for x € Noy, we have x; =

N N
x>+ N and xg=xg > —N.

e Let IT; denote the partition of No where for x € No, we have
Iy [x] =Hull(x + Z ¥ ).

This is a thin convex partition of No whose class of Il,-simple elements con-
. . H—N L1 .o—N | . . ey 1:
tains > . However, the number w“  =supc @?  is not IT;-simple since it lies

in IT;[0]. Thus Smpy;, is not No-closed; a fortiori Il is not sharp.
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e Let C denote the class Hull('/, x No). This is a surreal substructure by Proposi-
tion 4.18. Let IT, denote the convex partition of C where fora e 1/, x No, we have

II[a] =No2+ " | {a} UNoZ 2 C C.

One can check that each Il,[a] is a convex subclass of C and that for x € C, we
have o[ p(x)] = p~ ({1(x)}), where y is the topological projection C — 1/, x No.
By Theorem 6.14, IT; is sharp, but not thin.

We end this subsection with two further properties of sharpness.

Proposition 6.16. Let (], <) be a non-empty directed set. Let (I1;);cj be a £-increasing family of
thin convex partitions of a surreal substructure S. If every Il with j € | is sharp, then the defining
thin partition Iy of ) ey Smpp, (defined in Proposition 6.11) is sharp.

Proof. We know by Proposition 6.11 that I is a thin convex partition of S with Smpy =

ﬂjE] SmpH]_. Let x € Smpyy. For lex?™Pm;and a e IT;[1], there is j € ] such that a € IT;[/]

where x € Smpnl, and [ € xP™P1;, Since IT; is sharp, there exists an x'e xf witha<x’, so xf

is cofinal with respect to IT;[xP™Pn]. Likewise x§ is coinitial with respect to IT;[x¥™P1], so
p ] P ]

IT; is sharp. a

Proposition 6.17. Let F be a surreal substructure of No that is also a final segment. Given a thin
and sharp convex partition I1 of F, we have Egmp,(On) = SmpNOn.

Proof. We already know from Corollary 6.10 that Egmp,(On) COn. Let a € No be such
that Egmp,, @ is an ordinal. The set (Esmp,, a)k is both empty and coinitial with respect to
I[Esmpy, ar], which implies that ag = @ and thus that a is an ordinal. O

6.3 Group actions

In this subsection, we study one particularly important way in which convex partitions
of surreal substructures arise, namely as convex hulls of orbits under a group action.

Let S be a fixed surreal substructure. We define Jg to be the (class-sized) group
of strictly increasing bijections g: S — S, with functional composition as the group law.
Consider any set-sized subgroup (; of Fs. Then (; naturally acts on S through function
application; we call g a function group acting on S.

Definition 6.18. We define the halo ([x] of an element x €S under the action of (; by
Glx] = {yeS:3g8,he(, (gx<y<hx)}=Hulls(Gx).

Proposition 6.19. The classes G[x] for x €S form a thin convex partition of S .

Proof. Let x€S. Forany y & g[x], we have g[y] = g[x]. Indeed, we have gx <y <hx for
certain g,h € (. Given ze€ (j[y], we also have ¢"y <z <h'y for certain g',h" € §, whence
(§'9) x<g' y<z<h' y<(h'h) x, so that z€ G[x]. We also have hly<x<g 'y, whence
x € (ly] and z€ G[y] for any z € [x]. The class ([x] is convex by definition. For a €S,
we know that g[a] contains 4, so the g[a] foraeS form a convex partition of S. For xS,
the set gx is cofinal and coinitial in g[x], so this partition is thin. O
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We write I for the partition from Proposition 6.19 and say that an element of S is
G-simple if it is I1g-simple. We let Smp, denote the class of (j-simple elements. Propo-
sition 6.19 implies that every property from Lemmas 6.3, 6.5 and 6.4 applies to the class
of (j-simple elements. We call 7z, := 7, the G-simple projection and write <¢, =¢, and <
instead of <mg =1 and < ;-

Proposition 6.20. Smp, is a surreal substructure with the following uniform cut equation in
No: (

Vx & No, Esmpgx = {QESmpg XL gESmpg XR}S

Proof. This is a direct consequence of Proposition 6.19, Theorem 6.7 and Proposition 6.9,
where we take § (G[x]®) to be the required cofinal and coinitial subset of G[x] for
eachxeS. O

Remark 6.21. If X is a set of strictly increasing bijective functions S — S, we define (X)
to be the subgroup of Fg generated by X, i.e. the smallest subgroup of Fg that contains
X. We say that X is pointwise cofinal with respect to Y and we write Y £ X if

VxeS,Vfe(Y),3ge(X), (fx<gx).

This relation is transitive and reflexive. If Y £ X, then Il x, £I1y), so Smp y, CSmp . If
X ZY and Y £ X, then we say that X and Y are mutually pointwise cofinal and we write XS'Y.
In that case, we have Smp x, =Smp y,.

Let us now specialize Proposition 6.11 to group-induced convex partitions.

Proposition 6.22. Let (], <) be a non-empty directed set. If (G;)je; is a £L-increasing family
of function groups acting on S, then the function group Gy =((;:j€]J) generated by (G;)je;
satisfies

Smpgl = ﬂ Smpg/_.
i€l

Proof. If x €S is j-simple, then for j€ ], we have (;; xP C Gy xP<x< Gy x§D Gj x§ so x is
Gjsimple. Conversely, assume x €S is (j;-simple for all j€]. Then let g¢=g;, - g;, €y
where for 1<k<n, we have g; € ij- Since (], <) is directed and (gj) jej 18 £Z-increasing,
there exists an index j € ] with jy, ..., j, <j and an element g; € (j; such that for all u €S we
have g]-_l u<gu<gjuforallie(l,...,n}, and thus gj'” usgu <g]’7 u. Since x is gj—simple,
we have gf' xp <x<g;" xR. This yields gx? <x<gxg, so x is (j-simple. This proves that
Nigy Smpg, =Smp . |

Proposition 6.23. Let I be a non-empty set, and let ((;)ic; be a family of function groups acting
on S such that each Smpy, is sharp in S. Then (;; Smpg, = Smpg, where ;= (Gizigl).
Proof. We have ,,; el

Let us prove by induction on n € N~ that for g=g;,-- &, € 1, we have gxP <x<gxR. By
Lemma 6.5, this will prove that x & Smpg - For n=1, the assertion is immediate. Assume

Smpgi D Smpgl for the same reasons as above. Let x€[) Smpgi.

therefore that 7 >2 and decompose ¢=g’g;, where ¢’ =g;,---g:. .. For every [€x?, we
have g;,1€(;,[1]. Since x is (j;,-simple, the sharpness of Smpgl_n implies that there exists
an !’ ex} such that ¢; I<!’. By our inductive hypothesis, we have g’ I’ < x, so gl < x. The
inequality x < gxg is proved similarly. i
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Remark 6.24. The notions of thin convex partitions and function group actions are almost
equivalent in the following sense. Let IT be a thin convex partition IT of S, none of whose
members has an extremum, and which satisfies the additional condition that there is
a regular ordinal x with cof(II[x], <), cof(II[x], >) < x for all x€S. Then it can be shown
that there is a group § acting without global fixed points on S such that IT=1I. The
converse also holds: for any function group (§ acting without global fixed points on S,
we have COf(Hg,[x], <),C0f(Hg,[X], >)< |9|+ for all xeS.

7 Common group actions

7.1 Overview of known group actions

We conclude our study of surreal substructures with a closer examination of the action
of various common types of function groups. We intentionally introduce these function
groups without assigning specific domains; this will allow us to let them act on various
surreal substructures.

Translations
Given c € No, we define the translation by c to be the map
Tex—x+c.

The group J :={T,:r € R} acts in particular on No and No>>. More generally, if A is
a set-sized subgroup of (No, +), then Ja:={T,:a€ A} acts on No and (A|D).

Halos for the action of J on No are called finite halos I [x] and J -simple elements
correspond to purely infinite numbers. The class Nos. of purely infinite numbers is some-
times denoted J; see [11, 21].

Homotheties
Given s € No~, we define the homothety by the factor s to be the map
Hg:x—sx.

The group H:={H,:r€ R”} acts in particular on No,No~, and No~>. More generally, if M
is a set-sized subgroup of (No~, x), then Hy;:={H,,:m € M} acts on No,No~, and (M |9).

Halos for the action of H on No~ are called archimedean classes H[x] and #-simple
elements are called monomials. The class of monomials Mo = «wN° is parameterized by
the w-map Ene and forms a multiplicative cross section that is isomorphic to the value
group of No as a valued field (the valuation being induced by the ordering). The rela-
tions <, <y, = correspond to the asymptotic relations <, <, and = from [26, 1]. Given
x €No¥, the projection 77)y(x) coincides with the dominant monomial 0., when considering

x as a generalized series in R[[Mo]]on.

Powers

Given s € No~, we define the s-th power map by

Pgx— x*=exp(slogx).
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Here exp and log are the exponential and logarithm functions from section 3.1. The
group P:={P,:r€ R”} acts in particular on No~ and No~>. More generally, if M is a set-
sized subgroup of (No~, x), then the group Py;:= {Py,:m €M} acts on No~ and (M| D).
Halos P[x] for the action of 2 on No~> are sometimes called multiplicative classes and
P-simple elements fundamental monomials. The class Smp p =exp(Mo”) = @™ =Mo™2
of fundamental monomials is parameterized by the w*-map: see [27, Proposition 2.5].

Exponentials

Writing

expy = expo'lxoexp
log, := logo™olog

for all ne N, we define

8*
I

(exp)
(exppoHyolog,:r€R”,nEN).

Both £* and € act in particular on No™”.

Halos €[x] and €*[x] for the actions of & and £* on No”> are sometimes called
levels and logarithmic-exponential classes respectively. The &-simple elements are called
log-atomic numbers and the class La of such numbers is parameterized by the A-map: see
[8, Section 5]. The class of £*-simple elements is denoted by K and parameterized by the
k-map: see [27, Section 3].

We notice that each of the above function groups is linearly ordered by
f<g = IxpeNo,Vx>x, f(x) <g(x).

With the exception of &, all these groups are also abelian. These are both strong proper-
ties which need not be imposed for the material of Section 6.3 to apply.

7.2 Actions by translations

Throughout this subsection, let A be a fixed set-sized subgroup of (No,+) and let
Epi= ESmP;rA' If ACNo<, then J4 £ J so Nos = Smp; CSmpy,. If AZ No<, then given
a€ A\ No<, the set Za is cofinal with respect to R, so J £ J,, whence Smpy, CNo..

Proposition 7.1. If j} acts on No, then Z4: (No,+,<,C) — (SmpTA, +,<,E) is an isomor-
phism.

Proof. We already know that 54 is a (<, C)-isomorphism so we only need to prove that
it preserves sums. Let a,b € No be such that E4 preserves sums of elements lexicograph-
ically strictly simpler than (a,b). Recall that the addition is uniform in the sense that

a={L;IRz}, b={Ly|Rp} = a+b={a+LyL,+bla+RyR,+b}
Applying this to the cut equations given by Proposition 6.9 for &4, we obtain

Eaa+Eab = {(JaBaarl JaEaar) +{Ja Eabr| Ja Ea br}
= {EAQ+7;4EAbL,I;;EAQL+EAblEAﬂ+7;}EAbR,j;EAaR+EAb},
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and by uniformity of the cut equation for 54, we get

BEaa+b) = {JaZa(a+br), JaZaar+b)| JaEa(a+Dbr), Ja Ealag+b)}
= {EAa+j:qEAbL,j:qEAHL+EAb|EAa+j:4EAbR,j:4E‘AHR+EAb}.

Thus Ea(a+b) =E4a+ E4 b. By induction, this proves that 54 preserves sums of surreals
and consequently that Smp+, is an additive subgroup of No. a

Let us now focus on J . By induction on a € On, it is easy to see that No<* = * x No
and Efo, x = w" x x for all x & No. In particular, this gives a description of Fixno, =
w® xNo in terms of sign sequences.

Let us next describe the structures NoX* for « € On in terms of Conway normal forms
and of (-simplicity for some group (; acting on No. By [12, Corollary 3.1], if & is an
ordinal, then the set No(w") is a subgroup of (No, +), which acts by translations on No.
If « =1, then the sets {k WP B<a, ke Z} and No(w") are mutually cofinal and coinitial,
and No.. = SmplTNo(w>, since No(w) =R. We claim that this generalizes to every ordinal.

Proposition 7.2. For « € On, we have No3* = w* x No = Smpy .

Proof. We proceed by induction on « € On. The result obviously holds for  =0. We saw
that it holds for # =1 in Example 5.3. Assume that « =+ 1 is a successor ordinal. Then

the function E‘No: p is additive by Proposition 7.1, so ENO:/S Z=17 ENo:ﬂ 1=2Z &P is mutu-

ally cofinal and coinitial with No(w®). Let 0 be T]\]o(wa) -simple. Then 0 is TNO( WPy simple,
so the inductive hypothesis yields 6 = E olPX for a certain number x. Since §C 6+ Z &P =
En <ﬁ(x+ 7Z), we deduce that xC x + Z Now for ze Jy[x], thereis neN with x—n <
z < X +n1. We cannot have both x <z and x>z, so the contrapositive of Lemma 4.4 yields
xCz. Thus xis Jg- -simple, so 0 € Nof ~«Nos. =Nos*. Conversely, for § € Nos", we have
0= ENosh ¥ for a certain x€No,. WehavexCx+Z,s0 0C 0+ Z wP. Similar arguments
as above yield C Ino(wn[0], whence 8 € Smp: Tnoo, . This proves that Smpy__ o = =No3“.
If & is a limit ordinal, then Proposition 6.11 ylelds
No* = ﬂ No?
B<a

= ﬂ Smp

ﬂ<0€ No(w )
=S
mp- TUﬁ<aN°( F)
= SmpINO(M) O

A consequence of Propositions 7.1 and 7.2 is that Ey,, is additive for all # € On. In
fact, we even have the following:

Proposition 7.3. For « € On, the function 31”(10>: R[[Mo]]lon— R[[Mo]]on is strongly linear,
with No$*<Mo = Mo < No=*.

Proof. Let # €On~ and ® :=ER,,. Let us first show that ®(rx) =7 Px for all r€ R
and x € No. By Proposition 7.2, the function @ is additive, so this holds for any dyadic
number r. In particular we have ®(0) = w” x0=0. Let r be a non-dyadic real number.
Let x € No be such that ®(ry) =r ®y for all y € xc. It is well known that r- contains
only dyadic numbers. By Proposition 7.2 and (3.5), we have

O (rx) = {L1,L21Rq1, Ry}
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where

L1 = ©(rpx+rxp—rrxr) + No(w?),
Ly, = ®(rrx+rxg—rrxg) +No(w"),
R1 = ®(rpx+rxg—rrxr) + No(w®), and
Ry = ®(rrx+rxp—rrxr) + No(w?).

The cut equation (3.5) for the surreal product by r is uniform [21, Theorem 3.5], so
r®x = {A1,A2|B1,By},

where

e
I

(r'®x+r(®x"+No(w")) —r' (®x"+No(w"))},
Ay = {r" ®x+r(@x" +No(w)) —r" (®x" +No(w™))},
B1 = {r' ®x+7r(®x" +No(w")) —r' (®x" + No(w"))}, and
By, = {r'" ®x+7r(®x'+No(w")) —r" (®Px"+ No(w"))},
where ', 7", x’,x"" respectively range in r, g, x, xg. Let us prove that L and A; are

mutually cofinal. Analog relations hold for the other sets so this will yield r ®x = ®(rx).
Since ® is additive, for r’' €r; and x’ € x;, we have

D' x+rx' —1'xY+No(w*) = O(r'x) +DPrx")—P('x") + No(w?).

Now ®(rx") =r®x" and ®(r'x") =+ ®x’ by our inductive hypothesis. Moreover, we
have ®(r'x) =r' ®x, since r' is dyadic. It follows that

D' x+rx —1r'x") +No(w®) =r' ®x+r®x' —r' Px’ + No(w®).

Since r is non-zero, we have {r’,r} No(w") =No(w"), so this set is mutually cofinal with
the set ¥’ ®x+ 71 (®x" + No(w®)) —r' (Px’ + No(w®)). Therefore ® is R-linear.

Let us next prove by induction that No5* <Mo =Mo < NoZ". Let x € No be such that
DPE Mo Y = EMo ENno i for all yEx-. Let (L, R) be an arbitrary cut representation in No
such that L (resp. R) has no maximum (resp. minimum), so that ®L (resp ®R) has no
minimum (resp. maximum). Then we note that the cut equation

@ {LIR} = {Ino@®) PLI INo() PR}
simplifies as
D {L|IR}={PL|DR}.
Considering the cut representation ({0} U R” w*, R” w**) of w¥, we deduce that we have

® w*={No(w") + D (0), D(R”) Epmo x| D(R”) Epo X1}

We have seen that ® is R-linear, so the induction hypothesis yields

b w* {No(w"),R” ® w't|R” ® w*r}

{NO(C(.JDC), R> a'}tl-irxLl R> a-]zx-i-xR}

= {R”> @™, R> @"* | R> @****}  since R” w* and No(w") are mutually cofinal
{R> w(uﬁ'—x)Ll R> w(uc+x)g}

— a']Dc+x'
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We thus have:
Nos*~«Mo=Mo~<No=*.

In particular ® preserves monomials.

Let x =) x,m be a number considered as a series in R[[Mo]]on. By our previous
arguments, the number y =) x,, ®m is well defined. For all n€ Mo, we will write x,., =
> mon Xmm and Yy on = > mon Ym®m. Let us prove by induction on the order type fyo(x)
of (supp x, >) that y = ®x; this will conclude the proof. The additivity and R-linearity
of @ yield the result for fye(x) < w. If lye(x) is successor and infinite, then supp x has a
minimum my and X =Xy + Xy My, SO

Px = Pxypy, +DP(xy, my)

= ( Z xm®m)+xmx®mx

m>my
= .
Assume now that ¢y (x) is an infinite limit. Since @ is strictly increasing and monomial
preserving, [21, Lemma 5.3] yields
X = {Xont Ga=2")nlx0n+ (xa+27)n),
Y = Yot (ta=2"") @ulysen+ (x,+275) On),

where n ranges over supp x. Notice that the left (resp. right) options in the above repre-
sentation of x have no maximum (resp. minimum), so

Px={Pxyy+ P((xn—27N) 1) | Pxyy + P((xn+27 )0}
Our inductive hypothesis yields

Px = (Yront (Xa=27") Pnlysont (xa+27) P}
= .
This concludes the proof. a
Proposition 7.4. For « € On, we have
Noz*=R[[@&N™]]op
In particular Nos* is a non-unitary subring of No, and

FiXNo> =R [ [a']No>,>] lon.

Proof. The strong linearity of E,< and the relation No3*~<Mo=Mo<No= give

N0§“ = ENO;‘" R[[Mo]]on
= R[[EnozMo]]lon
= R[[Mo~<No02*]]on
= R[[&™°T]on-

That this forms a (non-unitary) subring follows from the fact that Nog”‘ = (az| D) is closed

No-=

under addition, whence @N°"" is closed under multiplication. O
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7.3 Actions by homotheties

In this subsection, M is a set-sized subgroup of (No~, x) and Ey; the defining isomor-
phism of Smp, . We will distinguish between confined and ample subgroups. We say
that M is confined if it is a subgroup of 1+ No~ and ample if not. If M is ample, then given
meMN\ (1 + No<), the maximum a = max (m, m~') > 1 satisfies a — 1 3> 1, which implies
that a is cofinal with respect to R. Thus H £ Hy; on No>, so Smp JHy ©Mo. If M is
confined, then My £ H, so Mo C Smp Jty For a € On, natural examples of ample multi-
plicative subgroups include No(e,)~ for « € On, whereas natural examples of confined
multiplicative subgroups include 1+ No(g,) <.

Remark 7.5. If M is confined, then 1/, &2 x No is Hy-simple but (1) = {1} is not coinitial
with respect to J{\m[1] which contains elements strictly below 1. So Smp;  is not sharp
in No”. The standard monomial group Mo is sharp both in No~ and in No>” by [8,
Corollary 4.17], but this observation does not generalize to arbitrary ample multiplica-

tive subgroups M of No>~. For instance, if M= Q~ 2" then " is Hy-simple and
le (ww]/z)EmPuM but the number &' € Hm[1] lies strictly above (wwm)LN"?

Proposition 7.6. Assume that M is ample and let Hyp act on No”. Then the parameteriza-
tion En of Smpy  is an isomorphism (No”,+,<,B) — (Smp , %, <,5).

Proof. We only need to prove that Ey is a morphism (No, +) — (Smp,, , x). Consider
monomials m, n € Mo with cut representations (Ly, Ry) and (Ly, R,) such that RL,, C
Hull(L,), R R,, C Hull(Ry,), and likewise for n. Then [8, Proposition 4.19] yields
mn={Lyn+mL,|Ruyn mR,}.
Given x,y € No, this applies in particular to the cut representation ({0} UM En x1, MEM XR)
of Epm x (and likewise for Epy) since M is ample. We thus have
EMXEMy = {O,MEMXLEM]/+EMXMEMyL|MEMXREMy,EMXMEMyR}
= {O,MEMXLEMy+MEMXEMyL|MEMXREMy,MEMXEMyR}
Note that By x Eyy >MEN x1 By y, MEm ¥ Eyv y1. Assume xp # @ and y # @. Since M
is ample, there exists a c €M such that ¢ >2. For [, €xy, [, €y, and m,m' €M, we have
mEm L Emy+m' Evx Byl <max (cm,cm’) max (En Lk Emy, EmxEnmly). This proves the
following relation (which also holds when x;, =@ or y; = @, by what precedes):
EMXEMyZ {O,MEMXLEMy,MEMxEMyLlMEMXREMy,MEMxEMyR}.
Now let x,y be numbers such that for any a,b € No withaCx, bCy, and (a,b) # (x,y), we
have Ep(a+b) =EpaZEm b. Then
Em(x+y) = {0, MEmxL+y), MEMm(X +yL) IMEM(Xr+Yy), MEM(X +YR)}
= {OMEMxLEmYy, MEMxEMyLIMEMXREMY, MEM X EM YR}
= EM X EM y.

We conclude by induction. O
The above proof fails if M is confined, since then Eyj1=2 and Ep2=3#2x2.

Corollary 7.7. If M is ample, then the H-simple projection 7Ty, is a surjective morphism
(N0>/ X, g) - (SmpJ{M/ X, g)
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Proof. We only need to prove that 77, preserves products. Given x,jy €No~, the relation
Mxy =xMy implies xy =, 77)1,,(x) 77),,(y). Proposition 7.6 implies that 77y, (x) 71,,(y)
is Ha-simple, whence 71y, (xy) = 7044, () 703, (). O

Proposition 7.8. Let RD R be a proper convex subring of (No,+, x, <) with a cofinal subset.
Let M= (R*)” and write Mg for the convex subgroup M N Mo of Mo. Define Ry to be the
group Smp . Then there is a canonical strongly linear isomorphism of ordered valued fields

No — R[[MRr]]on[[NRr]]On-

Proof. By [1, Page 713], we only need to prove that My is a convex subgroup of Mo with

IMrNPr={1} and Mo = Mg Ng. Since R has a cofinal subset, the group M has an ample

cofinal and coinitial subgroup M and we may apply the two previous results to M.
Intersections and convex hulls of subgroups are again subgroups, so My is a convex

subgroup of Mo. We claim that for a € Mo, we have a=mn where n:= 7, (a) € MR

and m:= % € Mg. Indeed, as a product of monomials, m is a monomial. Furthermore,

Corollary 7.7 yields

(@) 1Ty (a)

Tt (W) Ty (a)

Ty (M) =

whence m € Hy[1]. This means that there exist r <r' € (R*)” with r <m <r’. In other
words, we have m € M. This concludes the proof. O

Remark 7.9. Assume now that Hull(M) is closed under exp. In [7], an alternative
to Gonshor's definition of the exponential function has been proposed in terms of
Conway's w-map. This definition can be generalized [7, Proposition 2.12] by replacing
the w-map by Ey. This yields an alternative exponential function expy on No for which
(No, +, x,expy) is an elementary extension of (R, +, x,exp). The exponentials exp and
expm coincide on Ry := R[[#MRr]]on, but expy grows faster than exp on Ry[[:r]]on.
It would be interesting to see if the properties of No as the exponential field of gen-
eralized series (Rm[[Jr]]on, +, %, €xpm) over Ry are similar to those of (R[[Mo]]on,
+,%,exp) over R.

7.4 Exponential groups

Let us now study the action of £ and £* on No””. Given x € No, recall that one tradition-
ally writes A,:=E¢x and x,:=E¢ x.

The parameterization A = Z¢ of the class La:= Smp, was first given in [8]. It was
also shown there that La coincides with the class of log-atomic surreal numbers, which
consists of those numbers x € No”” such that log, x € Mo for all n € N. Such numbers
were essential for the definition of well-behaved formal derivations on No. This was first
achieved in [8], while building on analogue results in the context of transseries [35, 23].

The structure K:=Smp¢ . of k-numbers was introduced and studied in detail in [27], as
an intermediate subclass between fundamental monomials and the log-atomic numbers.
It turns out that the structure K is not big enough to describe all log-atomic numbers.
Indeed, it was noticed in [32] that K=La <Nos, as a corollary of [3, Proposition 2.5].

Proposition 7.10. [3, Proposition 2.5] For all x € No, we have

exp(Ay) = Axi1
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Proof. We rely on the following uniform version of [8, Theorem 3.8(1)] from [3,
Lemma 2.4]: if m={L|R} is a monomial, where R L CHull(L) and R R C Hull(R), then

exp(m) = {mN,exp(L) lexp(R)}.
In fact, we have P C E<{exp} on No””, so exp(m) >EmD mY, and
exp(m) ={Em,exp(L) [exp(R)}. (7.1)

Now let x be a number with A, ;1 =exp(A,) forall u€xc. Then x +1={x,x; +1[xg+1}.
The uniformity of the cut equation for the A-map thus yields

)‘x+1 = {EAxr 8)‘xL+1 | 8/\xR+1}
{EAy, Eexp(Ay) [Eexp Ay}

= {EAyexpo &y, lexpoEly,} (since expo E=Eoexp)
= expAy (by (7.1))
The result follows by induction. O

Corollary 7.11. [8] Smp, coincides with the class of log-atomic surreal numbers.

Proof. We have log, Ay=A,_,€La for all n € N, whence log, LaCLaCMo. This shows
that every element of La is log-atomic.

Conversely, let A be a log-atomic number and assume A & La. Note that ¢ (A) is log-
atomic by our previous argument. Assume for instance that w¢(A) <A. For neN, we
havelog, e(A) #1log, A. Since both log, A and log, 7t¢(A) are monomials, it follows that
log, me(A) <log, A. We deduce that (exp, o H olog,) (7te(1)) <A, whence Eme(A) <A,
which contradicts the defining relation 7t¢(A) =¢A. Likewise, 7t¢(A) > A is impossible. We
conclude that A = ¢ () € Smpy. O

Proposition 7.12. [32] We have K=La<Nos.

Proof. Following Mantova-Matusinski, we have the following equivalences for any
number x € No:

xeNoy, &= x1+N<x<xg—N
= expnAy) <Ay<logn(Axy)
= expn(EAy)) <Ar<logn(EAy,)
= E(Ay) <A <E (Ayy)
= A,eK. O

Corollary 7.13. K is sharp in No”"”.

Proof. Let k€K, ¥’ €, and x”’ € kK. There are unique numbers 6,6’,6" € Nos with x=
Ag, k' =Ag,and k"' =Agr. LetneN. Wehave §>60'+Nand 8’ +n={01+n,0" +ny |0 +n},
where

Or+n>0>0"+n>0+nub’ +np,

s0 036" +n. We deduce that expn (k') =Ag 4y C k. Symmetric arguments yield logy (k') =
Agr_nE k. Since expn(x’) is cofinal in £*[«'] and logn(x"’) is coinitial in £*[x"'], this
proves that K=Smp,. is sharp. ]
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On the other hand, the class La is not sharp:
Proposition 7.14. The structure La is not sharp in No”"”.

Proof. Given r€ R~ and x € No”>”, we have
x¢ = (expaoTrologr)(x) < (expzoTzologs)(x).

We deduce that the element (expzo T 0logs) (w) of £[w] is a strict upper bound for a')eR>
and hence for &N. Note that A1 = @®, so @ is cofinal in (A1);. We have (A1)F2={Ag} =
{w}, so (A1) is not cofinal in €[ (A1) F2]. This means that the defining partition of La is not
sharp. O

8 Nested surreal numbers

8.1 Nested transseries and surreal numbers

The study of generalized transseries solutions to functional equations was started
in [14, 23]. It is well known that non-trivial solutions of the functional equation E(x+1) =
exp E(x) grow faster than any iterated exponential. This motivates the introduction
of “hyperseries” [14, 35, 2, 13] as a generalization of transseries that allows for trans-
finite iterates of exponentiation and logarithm. In [23, section 2.7.1], it was pointed out
that functional equations of the kind

fx) = yx+eflosy (8.1)

admit natural symbolic solutions of the form
Toglogx+e”
fx) = JxteViosrre . (8.2)
The formal calculus with this kind of expressions requires a second extension of Ecalle's
original theory from [14] with so-called “nested transseries”. In our context, it is also
natural to study those surreal numbers
Toglogw+e™”

Y= flw) = Jo+eBre (8.3)
that are obtained by substituting w for x in such a generalized transseries. More specifi-
cally, one may wonder whether there exist sequences (v;)ien € NoliI with

yi = ylog;w+e’*,
for all i€ N. In this section, we will show that the class of such numbers actually forms a
surreal substructure. This shows in particular that expressions of the form (8.2) or (8.3)
are highly ambiguous and therefore somewhat misleading.
In order to develop a sound calculus for nested transseries and surreal numbers such
as (8.2) and (8.3) it is crucial to decide which expressions of the form (8.2) should be
considered to be well-formed. For instance, the functional equation

g(x) = ﬁ+eg<1°gx)+logx (8.4)

admits a “natural” solution

Togpx+e”

“tlogax
o(x) = Ji+e logx+e 53 +10g2x+10gx' (8.5)
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However, such expressions do not behave well for basic calculus operations. For instance,
the syntactic derivative of (8.5) is given by

1 1 1 1
’ _ = g(ogx)
gx) = _2J7+x+(2x r,gx-kxlogx]e +

1 1
+ e8logx) ng(logax) 4 .
(2xlogx,llog2x xlogxloggx)

However, the sum

1 1 1
4 ———e8lo80 4

= 8(ogy) gglogax) |
x  xlogx xlog xlogs x

does not converge in the sense of section 2.3. Fortunately, as pointed out in [23, sec-
tion 2.7.1], the equation (8.4) is a perturbation of (8.1) and its solutions can naturally be
expressed in terms of f.

The above counterexample led the second author to introduce the abstract notion
of so-called fields of transseries [24] which excludes transseries such as (8.5). General-
izing the combinatorial ideas from [23], this enabled him and his student Schmeling to
construct derivations and right compositions on fields of transseries [35]. This theory
reappeared crucially in Berarducci and Mantova's construction of a well-behaved deriva-
tion dpv on No [8]. Indeed, one of the main ingredients of their construction is the
proof [8, Theorem 8.10] that No is a field of transseries in the sense of [24, 35]. In par-
ticular, it satisfies the following condition:

T4. Let (m;)ien € MoY be a sequence of monomials with m;,; € supp log m; for all i.
Then there exists an ip€ N with

Vizip, wmipiXsupplogm; A (logm;)y,, €{-1,1}.

This condition can be regarded as a formal translation of the idea that all surreal numbers
should be “well nested”. In particular, it rules out the existence of surreal numbers of the
form

Togaw+e” “+loggw

JO+e logw+e +logaw

+log w.
8.2 Admissible sequences

Given sequences (¢;)ien € NoY and (€))ienE{-1, 13N letus study how to give a meaning

to expressions of the type
e¥2+ere”

po+ege? ! (8.6)

In this subsection, we start with the determination of lower and upper bounds for (8.6).
We say that (¢, €) is a signed sequence if

SS1. ¢;>0foralli>2.

$S2. pi=0=¢;=1foralli>2.
SS3. ;>0 for infinitely many i.
SS4. p;eNos foralli>1.

In that case, we may define a signed sequence (¢ -, € -) for every k€ N by taking (¢ )=
@r+i and (€ q¢)i:= €4 forallie N.
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Assume that (¢, €) is a fixed signed sequence. For all i,j € N with i <j, we define
functions ®;, ®;,, ®;,;: No— No by

Di(x) = pi+eie’.

pim1tei1e
e¢2+€26'

Di(x) = (Pgo--o®@;_1)(x) = @o+epe? "

X
Pj-1tej—1e
q)i+1+€’.+1e¢i+2+€i+29'

Dji(x) = (Pjo--0®j_q1)(x) = @itee
By convention, we understand that ®,(x) =x and ®;;;(x) =x whenever i=.

Writing €;,:=€,:= €0+ €;-1 and €j;;:= €;;j:= €; -+ €1, we notice that ®;, ®;,, and P;;; are
strictly increasing if €;=1, €;;=1, and €;;; =1, respectively, and strictly decreasing in the
contrary case. We will write @, and ®;;; for the partial inverses of ®;; and ®;,;. We will
also use the abbreviations

q)i,-(X) Xji = q)j;i(x)
q);i(X) xi;]- : q)i;]'(X).

X, ¢
X, ¢

For instance, we have
_ 2+€2e”
X1;3 = @Q1+€1 e?

for all x and
X —¢o

x;1 = log o

whenever x;—om >0. For all i e N, we next define

Li; :
R,’; :

(goi—e;iR>Supp Pi)i; L := UieN L
(pi+€,;R”supp ¢1):: R := UenR;;

We finally define
S = {XENOiViEN/x;i_(Pi<Supp 401}

In the remainder of this section, the signed sequence (¢, €) will mostly remain fixed. In
the rare cases when (¢, €) needs to be varied, we will use subscripts, e.g. by writing S, ¢
instead of S. For each k€ N we also write S x:=S , ¢ .-

Lemma 8.1. If x&S or x& (L|R), then x.; is well defined for all i€ N.

Proof. If x €S, then the definition of S implicitly assumes that x;; is well defined for all
ieN. If xe (L|R), so in particular L <R, then let us prove the lemma by induction on i.
The result clearly holds for i =0. Assuming that x; is well defined, let j > i be minimal
such that ¢; #0. Applying ®;; to the inequality
L]'; <x<R s s
we obtain
€. (L]';);z' <E€;iX,;i<E€; (R]';);i .

By definition, we have

(L]',-),-l' = @i+ €i€Xp]‘_,'((pj — €;]' R~ supp 47])

(Rj);i = @i+eiexpj_i(@j+e€;R”supp @),

whence

x;i

€;ir1expj_i(@j— €, R”supp ¢;) <€;i41 Pi <e€ir1expj—i(@j+€,;R”supp ¢)).

€;
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Both in the cases when €,;.1 =1 and when €,;, 1 = —1, it follows that (x,; — ¢;) / €;is bounded
from below by the exponential of a surreal number, whence (x,;— @;) /€; >0. In par-
ticular, x,;+1 =1log((x,;— ¢;) / €;) is well defined. This completes the induction. O

Proposition 8.2. We have S = (L|R).

Proof. LetxeS and ieN. If €,;,=1, then ®;. is strictly increasing, whence
Li<x<R; < ¢;—R7supp ¢;<x,;<@;+ R”supp ¢;
= —R”supp ¢;<x,;—¢;<R”supp ¢;
& X;i—@i<supp ¢i.
Otherwise ®;. is strictly decreasing, whence
Li<x<R; < @i+ R”supp ¢;>x,;>¢;— R”supp ¢;
<= R7supp ¢;>x,;—¢;>—R”supp ¢;
= X;;— @;<supp ¢;.
In both cases, we conclude that L;; <x <R;; if and only if x,; — ¢; < supp ¢;. Since this
equivalence holds for all i € N, the result follows. O

We say that the signed sequence (¢, €) is admissible if
AS. L<R.

Proposition 8.3. The following statements are equivalent.
a) (@, €) is admissible.
b) S is a surreal substructure.

¢) VieN,Vmesupp ¢;, Vj>i,IpENo“"PP¥, m> (¢;+ )i — ¢

Proof. We have b) = a) by the previous proposition. If (¢, €) is admissible, then S =
(L|R) is a surreal substructure by Proposition 4.18(b). We also obtain c) by taking i &
S,j— ;. Indeed, we have (¢; + ¥);;i— ;€ (S5,));i— ¢iCS;i— @i, whence (¢;+ ) ;i — @i <
supp ¢;, by the definition of S. The definition of S also yields ¥ <supp ¢;. Assume finally
that c) is satisfied and let us prove a).

Leti,jeN. Ifi=j, then L; <R;, follows by definition and strict monotonicity of the func-
tion @;,.. Assume that i< j. Let m €supp ¢; and consider a € No *"PP? with (¢;+ 1), —
@i <m. Such a ¢ exists by c¢) and the class C,, of such numbers ¥ is a convex surreal
substructure by Proposition 4.18(d). Moreover the family (Cy)mesuppy; is decreasing on
(supp @i, ) so by Proposition 4.18(e), its intersection is non-empty. Given y in this inter-
section, we have L; < ((¢;+Yy)j:1)i; = (9j +Y)j, since (¢;+Y)j;i — ¢;<supp ¢;. Similarly,
((@i+ )i, = (@i +1);;<Rj, since y = (¢; +y) — ¢; <supp ¢;. This shows that L; < (¢;+
¥)j;<R;.. By symmetry, we obtain the same conclusion ifi>j, i.e. (¢,€) is admissible. O

8.3 Nested sequences

Let (¢, €) be a fixed admissible sequence. Now that we have described lower and upper
bounds L and R for expressions of the form (8.6), our next goal is to determine those
elements y €S = (L|R) such that

supp ¢i>@€Mo
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for alli€ N. Such elements are called nested surreal numbers and we denote by Ne=Ne,, ¢
the class of nested surreal numbers with respect to our fixed admissible sequence (¢, €).

It turns out that not all admissible sequences (¢, €) give rise to nested surreal num-
bers (see Example 8.14 below). We say that (¢, €) is nested if

NS. supp ¢;>e50, for all i€ N.

The main objective of this subsection is to show that Ne is a surreal substructure when-
ever (¢, €) is nested (in particular, Ne is non-empty). In the next subsection, we will give
various examples and sufficient conditions for NS to be satisfied.

We will say that (¢, €) is large if we have ¢1>0 or (¢1,€1) = (0,1). Notice that the
admissible sequences (¢ »;, € »;) for i>0 are always large. Let us first show how to reduce
the general case to the case when (¢, €) is large. Assuming that (¢, €) is not large, let
(¢',€") be the large nested sequence with (¢, €)) = (0,1), (¢1,€1) = (—¢@1,—€1), and @] = ¢;
fori>2. Assume that we know how to show that Ne, ./is a surreal substructure of Mo.
Writing S(a) := —a and I(a) = a~!, we have Zpgo0 S =10 Epo, whence I induces a strictly
decreases self-C-embedding on Mo. It follows that the function x+— 1o ENewr(—x) is
an embedding of Mo into itself. Hence the range (Ne,/ ¢') ~1 of this mapping is a surreal
substructure, and so is Ne = ¢+ €p (Neq,/,er)_l.

In the remainder of this section, let (¢, €) be a fixed large nested sequence.

Lemma 8.4. For x,y €S, we have

(x1—@1)/€1=¢c Ya—9¢1)/€1
Proof. Choose i € N~ minimal with ¢; #0. We have x,;— ¢;, ., — ¢; < supp ¢;, whence

1/2y;i<x;j<2y;i
and
expi—1Y;i =c expi(thy.) < expix,; < expi(2y.) =¢ expiV.i

We observe that (x.1 — ¢1) /€1 =exp;_1 x;; and (y.1 — ¢1) / €1 = exp; y,;. By convexity of
E[(W.1— 1)/ €1], we have (x;1— 1) /€1 € E[(y.1— ¢1) / €1], whence the result. ]

Lemma 8.5. We have a C-embedding
Cbl; :S,qN (§01+€1M0) —S.

Proof. Recall that ®1.(x) = ¢o+ gge* for all x € No. Let us first show that U:= S, N
(¢1+ €1Mo) is a surreal substructure. By NS, we have S .1 =¢1 4 €1 e572, Writing S o =:
(L,2IR »), as for S, we observe that L ., and R ., are sets of purely infinite numbers,
respectively without maximum and minimum. By Proposition 4.18(b), it follows that
S ,»NNos = (L IR »)No. is a convex surreal substructure of No... By Proposition 4.18(d),
we deduce that U= @1+ €3 e5720No> 5 3 convex surreal substructure of @1+ € Mo <S"PPP1,

By Proposition 4.28 and NS, the function x+— @+ €x is a C-embedding on e, so it
remains to be shown that exp is a E-embedding on U. Towards this, consider numbers
u,0€U with uCo. Since 1,0 € @1 4 €, Mo~*"PP#1, Proposition 4.28 implies that u = @1+ €1u
and v = @1 + €1 v for certain infinite monomials u and v with uC v.

Consider m € Mo™. The cuts (R”mM°| R>mN°) and (m;|mg) are mutually cofinal.
Given (7.1), it follows that

VmeMo”,e™={Em, Peml | @emg[o}.
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Proposition 4.36 therefore implies that exp is a C-embedding on £[m] N Mo~ for every
me& Mo”. Using Lemma 8.4, we deduce that e“Ce®.

Just before Lemma 8.4, we already noticed that I: Mo — Mo; m+— m~!is a C-embed-
ding. Since u and v are monomials, it follows that e“'*= (e*)' C (e")¢'=e'". By [8, Propo-
sition 4.23], we conclude that e =e?'* 1" C e?1*€1" =, ]

In order to show that Ne is a surreal substructure, let us now introduce a suitable
function group § acting on S. At a second stage, we will show that Ne = Smpg. The-
orem 6.20 then implies that Ne is a surreal substructure.

Lemma 8.6. Given x €S and r € R”, we have ¢g+r (x — o) €S.
Proof. Let y=¢o+7(x— o). Let us show by induction on i€ N that
L;<y<R;
and y.;—x,; <1 wheneveri>1. This is clear for i=0, so assume i >0. If i=1, theny.;—x,;=

log r<1. If i>1, then the induction hypothesis yields

o LT Qi1 Yi-1—X;i-1) _ _
y;i—x,;=log Fo—— —log(l +—x;i_1_¢i_1) =log(1+o0(1))=0(1)X1.

By NS, we also have supp ¢; >e*+!, whence
@i— R7supp ¢; < @i+ €;€5 < p;+ R” supp ¢;.
We have supp ¢; >1 by SS4. Since y,;=x,;+ O(1) = ¢; + €;e""*' + O(1), this yields
@i—R7supp ¢; <y, < ¢;+ R”supp ¢;.
Applying ®;, we conclude that L;; <y <R;,, which completes our proof by induction. O

The lemma implies that S »; — ¢; is closed under the action of # for all i€ N. This
allows us to define a strictly increasing bijection

¥ S—S;x— (i1 (X;i—@i)i;
forallie N and re R”. We take
G:=(¥i,;:reR”,iEN)

to be the function group generated by these functions. As usual, we will write §; ,; for the
function group obtained by applying this definition for (¢ »; € »;) instead of (¢, €).
Lemma 8.7. Given x €S, we have:

a) For eachi>0, the set ¥; g>(x) contains strict upper and lower bounds for ¥;_1 r>(x).

b) The set {¥;,(x):r€R”,i€N,i>j} is cofinal and coinitial in g[x] foralljeN.

c) Forye g[x], we have go+ €00y, E g[x], whence g[x]' € po+ egMo.

d) (GnlxaD)1,=Glx].

e) GIx1h=G lxa]®
Proof.

a) The number x.;,1 is positive infinite, so we have

q)i+2_€i(X;i— Qi) + Z <x;< §0i+2€i(X;i— Qi)+ Z,
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c)

d)

e)

whence
e¢z’+2_ei(x;i—(ﬂz’) <eVig e¢i+25i(x;i—(Pi)

If €;_1 =1, then it follows that
Pi-1+ et o) o pic1+R7eM< @1+ e+ 2 (i)
Applying ®;_1,, we obtain
W o-ei(x) <¥im1,r>(x) <Y pei(x).
If €;_1=1, then a similar reasoning yields
W pei(x) <Wimq,r>(xX) <Y p-i(X).

In both cases, this shows that ¥; g>(x) contains strict upper and lower bounds
for ¥; g>(x).

By induction on j€ N, let us show that ¥; g> is strictly cofinal and coinitial with
respect to g<]- =(Y¥;,:i<j,reR”)C g Note that g<0 ={idg}. In view of a), this
clearly holds for j=0.

Assuming that this assertion holds for a given jEN, let us first show that ¥; r>
is cofinal with respect to Qs; = g<]-+1. Given x' = (¥ ov100 Y07 (x) with
Y, s VTE g<j, we must show that x’ < ¥;s(x) for some s € R~. Using a second
induction on /, we may find ans’ € R” with y:= (Y0200 0 (X) <Y o (X).
Using the induction hypothesis on j, it follows that 71(y) <¥;(y) <¥;s+(x) for
some t € R”, whence x' =¥, ., (71(1)) <Y} 1 (x).

In a similar way, one shows that ¥; r> is strictly coinitial with respect to g< jr
Applying a) for i=j+1, it also follows that ¥}, 1 r> is strictly coinitial with respect
to g< j+1- We conclude by induction.

We have ¢o+ R~ (y — ¢g) C g[x], whence ¢+ €00y, € Hull (¢ + R (y—¢0)) C
g[x].
Applying b) to j=0 yields G[x]:=Hull(¥;r>(x) :i>1). Consequently,
(G mlxaD1, = Hull(((@i41+ R (x;41) — @in1))is1,1)1,:120)
= Hull(\Pi,R>(X) . 12 1)

= g[x].

Leta= g[x]' and b= g,l[x;l]'. By d), we have bCa;;, whence Lemma 8.5 implies
by,C (a;1)1,=a. Since by, € (j[x], it follows that aC by;Ca, whence a =bj;. ]

Theorem 8.8. The class Ne is a surreal substructure.

Proof. Let us first show that the root a= g[x]' of each halo with x €S is a nested mono-

mial. Indeed, Lemma 8.7(e) implies thata,;= g ~ilx,;]® for all i€ N, by induction on i. In

combination with Lemma 8.7(c), this yields (a,;— ¢;) /e;€ Mo for all i€ N, as required.
In order to conclude that Ne coincides with the surreal substructure Smpg, it remains

to be shown that each halo contains at most one nested monomial. Given a <b in Ne, it suf-
fices to show that g[a] <b.LetieNandreR”. Ife;,1=1,thene;=¢;and (a,,—¢;) / €;<
(b.i— ;) / €;. Those are monomials, so R (a,;— ¢;) / €;< (b,;— ¢;) / €;, whence ¥; gr>(a) <b.
Similarly, if €41 =—1, then (b, — ¢;) /€, <R~ (a,; — ¢;) / €;, whence again ¥; g>(a) <b.
Using Lemma 8.7(b), we conclude that g[a] <b. O
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8.4 Sufficient conditions for nestedness

Let (¢, €) be a signed sequence. The conditions AS and NS may not be so easy to check
for (¢,€). Let us mention a few stronger sufficient conditions that imply AS and NS.

Proposition 8.9. Let (¢, €) be a signed sequence such that

Vi>0,Vj>i, VpeENo™“"PPY, (@4 1)j; — p;<supp ¢;.

Then (@, €) is a nested sequence.

Proof. The condition clearly implies the one from Proposition 8.3(c), which is equivalent
to AS. Given i €N, let us next show that supp @; >e> . Let j>i be minimal with
¢;#0. Given { €S -1y and ¥ :=log;_(i+1) § €S »j, we obtain i < supp ¢;, whence ef =
(Wi — @i) /| €i<supp ¢;. o

Example 8.10. This proposition is in particular satisfied for the signed sequence (¢, €)
from the introduction with ¢;= ylog; w and €;=1 for all i€ N.

Example 8.11. The proposition is also satisfied for any signed sequence (¢, €) with ;=0
and e;;=1forie N and ¢y;_; =logs; w for i >0.

Given a signed sequence (¢, €) that satisfies a suitable condition NS* (see below),
Schmeling constructs a field of transseries that contains the corresponding nested
transseries [35, Section 2.5]. Following [26, p. 6] and [9, p. 14], we conjecture that every
field of transseries embeds into No. As part of our program to prove this conjecture,
let us mention two more specific conjectures that concern nested transseries.

Conjecture 8.12. Let (¢, €) be a signed sequence such that the following holds:
NS*. Vi>0, VmeEsupp ¢;, 3j>i, VpeNox PP, (¢4 )i — i< m.

Then (@, €) is a nested sequence.

Example 8.13. The condition NS* is satisfied for the sequence ((log; w);cn>, ((=1)Dien>),
which does not satisfy the condition from Proposition 8.9. It is also satisfied for

loggw
logw+e’
— w—e
po= ) % :

keN

eo=—1and €;=1, p;=/log; w for all i>0. This sequence also does not satisfy the require-
ment of Proposition 8.9.

Let us finish with a counterexample of a signed sequence (¢, €) that satisfies AS
but not NS.

Example 8.14. Consider the nested sequence ((ylog;w)ien, (1)ien) that gives rise to
nested numbers of the form A

Y= @ 4 eVoBwHe BT
Given such a number x, we define (¢, €9): =(x— V@, 1) as well as (¢;,1) := (y/log; w,1) for
all i€ N. By definition, (¢ »1,€ »1) is nested so there is u €Ne -1 with u <log(x — V/@). The
number ¢+ e" lies in Ne, so the sequence (¢, €) is admissible. However we have e”= ¢,
so e’ £ supp ¢o. This means that ¢y +e” does not lie in S and thus that (¢, €) is not nested.
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CON

0] R R~ Mo

Figure A.1. A tiny glimpse of the landscape of surreal substructures.

There even exist admissible sequences (¢, €) with Ne = (. However, we conjecture that

Conjecture 8.15. For every admissible sequence (¢, €), there exists a k€ N such that (@ s, € )
is nested.

We have made good progress on Conjectures 8.12 and 8.15 in the more general setting
of hyperseries. We plan to report on this in a forthcoming paper.

Appendix A An atlas of surreal substructures

We have encountered several types of surreal substructures: intervals and convex surreal
substructures, C-final substructures, structures of fixed points, and structures obtained
through convex partitions or group actions. Those different families of surreal substruc-
tures have non-trivial intersections. Figure A.1 gives a glimpse of the resulting landscape.

We have used the following criteria for our classification:
e Surreal substructures lie in the great circle.
e No-closed surreal substructures lie in the rightmost smaller circle (CLO).

e Structures obtained through convex partitions of convex subclasses of No lie in
the middle-upper smaller circle (CON).

e Structures of fixed points lie in the leftmost smaller circle (FIX).

All the represented classes in Figure A.1 satisfy the property that their non-empty
cuts are rooted, which is not the case for other simple classes such as No + 1. Equiva-
lently, they are uniquely (<, E)-isomorphic to a C-initial subclass of No.
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S No No~ No~~ Sy,e
I[x],x€S |Hull(x + Z) | Hull(R” x) | Hull(expz(x)) | Hull((R” x;);: i€ N~)
Smpy; No.. Mo K Ne,,c

Table A.1. Examples of surreal substructures that correspond to classes of II-simplest elements.

S |No| a+No axNo,a>0 Mo No. Mo <No2¥"

°1on|Lan (a'J“’_l,w)

Fixs[No | (axw) +No| (supcaxax-)xNo| eno R[N

Table A.2. Examples of surreal substructures obtained as classes of fixed points.

U<V No= No” No.. Mo | La | eno

NoZ*| No¥# |No®*!| x4+No. |x+Mo|x+La|x+ene

Nos | (wxB)+Nos| NoZ¥ |R[[&NTonl @™ | 2 | eno
Mo | @PxMo | Mo>® ? Smp,| ? £No
La ? La>@ K ? ? ?

Table A.3. Imbrications of various common surreal substructures. The symbols ? signify that we
were unable so far to determine an intelligible description of the corresponding imbrication.

Question marks indicate that we do not know whether La and K may be construed
as structures of fixed points. The nature of Ne, . may change as a function of (¢, €);
we assume that (¢, €) is nested. The class La is No-closed, but this result is not entirely
trivial. We derived it from a computation of sign sequences of log-atomic numbers which
is too long to produce here.

Next we give a few examples of surreal substructures that were obtained as IT-sim-
plest elements for convex partitions, through fixed points, and as imbrications of other
surreal substructures.

Remark A.1. The identity Lan (ci)“’fl, w)= (Mo%Nog“’fl)*“’ is given as an illustration;
we refer to [4] for a proof. This is also an intermediate step in our computation of sign
sequences of log-atomic numbers. There is, for every purely infinite number 6 and integer
n € Z, a similar description of La N (Ag1y, Agyns1) in terms of fixed points of certains
simple surreal substructures.

Appendix B Set-theoretic issues

Proper classes as sets

Strictly speaking, statements such as “No forms a real closed field” de facto do not make
sense. Indeed, No is a proper class and not a set, whereas the definition of real closed
fields relies on set theory. The most common standard for set theory is ZFC, i.e. Zer-
melo—Fraenkel's axioms with the axiom of choice. From a foundational point of view, it
is more convenient to base the theory of surreal numbers on Neumann-Bernays-Godel's
set theory with the axiom of global choice (NBG set theory for short), which is a conser-
vative extension of ZFC [10, 18].
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Set-sized relativations

In the other direction, many of the results from this paper that were derived for class-sized
surreal substructures admit set-sized analogues. More precisely, given a regular infinite
ordinal x, then many statements about (No, <,C) can be relativized to (No(x), <, D),
in which case “sets of cardinality <x” play a similar role with respect to “sets of car-
dinality ¥ as general “sets” with respect to “proper classes”.

For instance, a surreal substructure of No(x) is a subset S C No(x) such that the set
(LIR) NNo(x) is rooted for any two subsets L <R in S with |L|,|R| < x. In other words, the
surreal substructures of No(x) are the isomorphic copies of (No(x), <, C) inside itself,
and they behave similarly to usual surreal substructures in many respects. In particular,
if x is the cardinality of No in ZFC, with k' >k as above, then surreal substructures can
actually be considered as set-sized relativations of this kind.

Cofinality

In ZFC, the cofinality cof (X, <) of a linearly ordered set (X, <) is equivalently
o the least order type of a cofinal well-ordered subset of (X, <),
e the least cardinal of a cofinal subset of (X, ),
e the unique regular ordinal which embeds in a cofinal way in (X, ).

Assuming NBG set theory and regarding On as an initial, regular ordinal, this definition
naturally extends to proper classes. In particular, every convex subclass X of a surreal
substructure S has a cofinality cof(X, <) in OnU {On}, and elementary properties of the
cofinality apply in our case. For instance, mutually cofinal convex subclasses of No have
the same cofinality.

Glossary

No classof surrealnumbers . . . . ... . L o 1
{(x) ordinal length of the sign sequenceofanumberx . . .. ... ... ....... 2
x[a] a-th term in the sign sequenceof x . . . . ... ... L o oo L 6
xCy xissimplerthany . ... ... ... ... ... o oo e 6
Xc set of strictly simplernumbers . . . .. ... Lo o oo oL 6
ot(X,<x) ordertype . . . . e 6
(x1,XR) canonical representation of X o e e e e e e 7
supp x supportof xasaseries . . . . .. ... e 8
x4y the sum x+y whensuppy<suppx . . . . ... ... o 8
On classofordinals . . . ... ... ... o 9
On~ classof non-zeroordinals . . .. ... ... ... o oL 10
Ony,, class of limitordinals . . . ... ... ... ... oo o 10
a+p ordinalsum . .. ... . 10
axp ordinal product . . . ... ... 10
b ordinal exponentiation . . . . . . ... L. Lo oo 10
x+y sumconcatenation . . . ... ... oL oo e 10
XXy product concatenation . . . . .. ... .. Lo oo 10
a+No surreal substructure of numbers whose sign sequence begins witha . . . . . . 12
axNo surreal substructure of transfinite concatenationsofaand —a . . . . ... .. 12
X* simplest element, orroot,of X . . . . ... Lo oo 13

(LIR)g class of elements of S lying betweenLand R . . .. .. ... .. ....... 13
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