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ABSTRACT
A nonlinear fluid-elastic model is developed in order to study the
dynamics of two-dimensional inverted flags subject to wind at an
initial angle of attack. Theodorsen’s quasi-steady aerodynamic
theory is used for the inviscid fluid-dynamic modelling of the
deforming flag. The Polhamus leading edge suction analogy is
employed to model flow separation effects from the free end at
moderate angles of attack via a nonlinear vortex-lift force. The
flag dynamics is solely described by the angle of rotation within
the geometrically-exact Euler-Bernoulli beam theory. The equa-
tion of motion is discretised spatially via the Galerkin method.
Bifurcation diagrams are obtained using a pseudo-arclength con-
tinuation technique. The numerical results show that inverted
flags undergo multiple bifurcations as the flow velocity is in-
creased. It is shown that transition between the regimes occurs
at flow velocities inversely proportional to the initial incidence
angle. It is also shown that, for sufficiently large mass ratios,
the existence of a strong subcritical periodic solution can lead to
direct transition from the stretch-straight (undeflected) state to
large-amplitude flapping motion.
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INTRODUCTION
The dynamics of a subset of fluid-structure interaction (FSI)
problems involving a cantilevered flexible thin plate (also termed
a flag) subjected to a fluid flowing axially from the free end
towards the clamped one, otherwise known as an ‘inverted flag’,
has attracted attention due to its engineering applications, such
as small scale energy harvesting systems [1, 2] and heat transfer
enhancement in heat exchangers [3]. There has been ongoing
research on this FSI problem over the past few years, aiming to
understand the dynamics of the system [4, 5, 6, 7, 8].

It is of interest to explore the dynamical behaviour of inverted
flags when they are subject to oncoming flow with a non-zero

angle of attack  0, as illustrated in Fig. 1. This problem is of
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Figure 1: Idealised inverted flag in axial flow with a small initial
angle of attack  0

practical importance in the design of energy harvesters suitable
for ambient wind conditions where the wind direction is not
necessarily aligned with the flag neutral plane [1]. The effect
of initial angle of attack has been investigated experimentally
by Cossé et al. [9] and computationally by Shoele et al. [2] as
well as Tang et al. [10]. The aim of the present paper is to derive
an analytical model able to capture to explore the nonlinear
dynamics and post-critical behaviour of inverted flags with an
initial angle of attack.

ANALYTICAL MODELLING
The system under consideration is shown schematically in Fig. 1.
It consists of a vertical cantilevered thin plate subjected to an
inviscid axial flow impinging on its free end.

The flag is idealized as an Euler-Bernoulli beam, thus the
spanwise deformation is neglected. The aerodynamic forces are
modelled via a two-dimensional incompressible flow theory. The
inverted flag is of chord L, thickness h, cross-sectional area A,
flexural rigidity D, and transverse moment of inertia I . The
mechanical properties of the flag, i.e., its mass density, Poisson



ratio, Young’s modulus, and internal damping coefficient are
represented by �p, �, E, and �, respectively; �f denotes the
density of the fluid flowing with mean flow velocity U . The
neutral plane of the inverted flag is rotated by  0 with respect to
the direction of the undisturbed flow, noting that  0 is constant
with respect to temporal and spatial coordinates.

For an inextensible cantilevered beam, the rotation angle of
a straight cross-section  .x; t/1 as well as the curvature �.x; t/
are related to the longitudinal, u.x; t/, and transverse, w.x; t/,
motions of an arbitrary point located at a distance z from the mid-
plane on the cross-section by sin D @xw, cos D 1C @xu,
and � D @x , where @xdenotes the first spatial derivative. Conse-
quently, w and u can be formulated in terms of the rotation angle
of the cross-section  , as the primary variable for describing the
flag motion. Derivation of the equation of motion in terms of the
rotation angle allows prediction of large-amplitude deformations
even when the tip rotation exceeds �=2 [8].

The projection of the undistributed flow velocity onto the x
and z directions leads to Ux D U � ex D U cos 0 and Uz D
U � ez D U sin 0, respectively. Consequently, the normal and
tangential components of the relative flow velocity are given by

Vn.x; t/D. Pw�U sin 0/cos �. PuCU cos 0/sin ; (1a)
V� .x; t/D. PuCU cos 0/cos C. Pw�U sin 0/sin ; (1b)

with overdot being differentiation with time. The inviscid
pressure-related forces corresponding to the relative motion of
the inverted flag and the incident flow are modelled based on
the two-dimensional quasi-steady thin airfoil theory involving
large angles of attack [11, 12]. First, the quasi-steady forces are
derived using a velocity potential approach in a way that the solu-
tion is divided into non-circulatory and circulatory contributions,
each part of which is conveniently obtained using Joukowski’s
conformal transformation. Next, the effects of separated flow at
the leading edge are modelled by utilizing Polhamus’s leading
edge suction analogy [13]. Hence, the total normal force acting
on the flag is formulated as

FN.�; t/ D �.�P nc C�P c/ � 2Fp.t/ıD.cos � � 1/; (2)
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in which x D .1Ccos �/=2, Vd.'; t/ D Vn.'; t/.1Ccos'/ and
ıD represents the Dirac delta distribution and is used to transfer
the end-shear from the boundary condition into the equation of

1It should be noted that the space and time dependencies are indicated only
once when quantities of interest are introduced and when they cannot be omitted.

motion, in order to be able to discretize the equation of motion
by the Galerkin method. The absolute operator is also used to
modify the force so as to be always aligned with motion.

The singular integral in Eq. (3) is evaluated using Glauert’s
principal value integral given as
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To this end, the normal component of the relative velocity is
expressed in a succession Taylor’s expansions. This results in a
polynomial representation of the induced velocity in terms of  .
In this paper, third order Taylor’s series expansions are retained.

Utilizing the dimensionless parameters x� D x=L, t� D
t=� , ˇ D I=AL2, �d D �=� , f � D f � , � D �fL=.�ph/,
… Dp�fL=DLU , with f being the frequency of flapping and
� Dp�ph=DL

2, the time scale, the equation of motion in terms
of the rotation angle  can be expressed as
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where @tt and @xx represent the second differentiation with re-
spect to time and space, respectively; F �N denotes the dimension-
less counterpart of FN. Note that the asterisk notation is dropped
throughout for simplicity.

The clamped-free boundary conditions which read as
 .0; t/ D 0 and  x.L; t/ D 0.

The spatial discretisation of the nonlinear equation (7) is made
through the Galerkin method, where a linear set of comparison
functions ‰i .x/ is selected to approximate the rotation of the
flag. Hence,  .x; t/ D PM

iD1‰i .x/qi .t/ where qi .t/ are the
unknown time-dependent generalized coordinates and M de-
notes the number of modes used.

NUMERICAL RESULTS
In this paper, M D 6 modes are employed to discretize Eq. (7)
together with the following parameters: L D 10 cm, h D 1 mm,
�p D 1200 kg m�3, �f D 1:2 kg m�3, D D 2454 N cm2 and
� D 0:0002. The dimensionless flow velocity … is selected as
the bifurcation parameter to explore the system dynamics.

The nonlinear response of the two-dimensional flag with
� D 0:1, and  0 D 0:1 � 5:7ı is shown in Fig. 2. Even
such a seemingly small angle of attack gives rise to asymmetric
fluid loading on the inverted flag which consequently breaks
the symmetry of the nonlinear response. More specifically, as
opposed to the case with  0 D 0, i.e. an inverted flag perfectly
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Figure 2: Bifurcation diagrams for two-dimensional inverted
flags with � D 0:1 and (i)  0 D 0 (heavy lines), for (ii)  0 D
0:1, where the peak values of the leading edge rotation over
a cycle of steady-state oscillation of period T � are plotted as
a function of …. [ ] Stable static solution; [ ] unstable
periodic solution; [ ] stable symmetric periodic solution; and
[ ] stable periodic solution (asymmetric oscillations).

aligned with the incident flow (drawn with heavy lines), the
flag bends continuously with increasing flow velocity (a gradual
transition from small to large deflections). This behaviour is
followed by a Paı̈doussis-type Hopf bifurcation at … D 1:55

giving rise to a stable limit cycle corresponding to asymmetric
flapping around the deflected equilibrium. This solution folds at
the first saddle-node bifurcation encountered (at … D 1:84) and
becomes unstable. By tracing the unstable solution, a second
saddle-node bifurcation arises at … D 1:63 where the response
of the system folds once again. Following the second saddle-
node bifurcation, the solution becomes stable again, which is
physically manifested as asymmetric large-amplitude flapping
around the origin.

The bifurcation diagrams shown in Fig. 3 for  0 D 0:2 ex-
amine the response of the system for different values of mass
ratio �. Different scenarios can be expected for flags of differ-
ent mass ratios. While the sequence of progressive bending to
asymmetric deformed-flapping to asymmetric large-amplitude
flapping is more plausible for the inverted flag with a low mass
ratio, e.g. � D 0:1, the flag with the high mass ratio of � D 5:0,
if sufficiently perturbed, may turn directly from the buckled
shape to large-amplitude flapping due to the presence of a limit
cycle in the fairly close of the static solution.

The sensitivity of the nonlinear response of the system to  0
is shown in Fig. 4. The numerical results show fairly good agree-
ment with observations by Cossé et al. [9], who investigated
experimentally the effects of flag orientation to the impinging
flow on the dynamics of the system. For example, Cossé et al. [9]
reported that the transition between bifurcations for  0 ¤ 0 was
gradual, as opposed to the case with  0 D 0, where an abrupt
jump to large-amplitude flapping was observed. This agrees
well with the present results which show that the transition be-
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Figure 3: Bifurcation diagrams for two-dimensional inverted
flags with  0 D 0:2, and various mass ratios: (a) � D 0:1,
(b) � D 0:5, (c) � D 2:0 and (d) � D 5:0.

tween the two flapping motions becomes smoother as  0 is
increased. Furthermore, as seen in Fig. 4, varying  0 affects
the onset of flapping significantly: for inverted flags with larger
initial angle of attack, the asymmetric flapping motion around
the buckled shape occurs at lower flow velocities. The ampli-
tude of large-amplitude flapping also decreases correspondingly.
These also agree well with the measurements reported in [9],
which reveal that, as the initial angle of attack is increased, the
transition from static equilibrium to the flapping mode occurs
at lower flow velocities and with smaller amplitude of oscilla-
tions. Moreover, as seen in Fig. 4 for all investigated cases, the
inverted flag undergoes asymmetric deformed-flapping motion
at different critical flow velocities, which is consistent with the
computational findings by Shoele et al. [2, 10] and, again, the
experimental observations in [9].

CONCLUSION
An analytical model was proposed to explore the nonlinear dy-
namics of two-dimensional inverted flags subject to wind at
an initial angle of attack  0. The nonlinear partial-integro-
differential equation governing the dynamics of the inverted
flag in terms of the angle of rotation was discretised, using the
Galerkin technique, and then the resulting nonlinear ODEs were
solved via a pseudo-arclength scheme to construct bifurcation
diagrams. It was shown that the transition between the two flap-
ping motions becomes smoother as  0 increases. Moreover, the
sensitivity of the onset of flapping to  0 is high. For inverted
flags with large  0, the asymmetric flapping motion around the
buckled shape occurs at low flow velocities. These findings
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Figure 4: Bifurcation diagram for the investigated inverted flag
with � D 1:0 and various initial angles of attack  0.

highlight the ability of inverted flags to perform flapping motion
even when the oncoming flow is not parallel to their longitudinal
axis. The outcome can be of practical importance for the design
of robust energy harvesters in actual ambient conditions.
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