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Introduction

Let us consider the nonlinear wave equation set on the d-dimensonal torus

T d = (R/2πZ) d with d ≥ 1, u tt -∆u + mu + f (u) = 0, x ∈ T d , (NLW)
satisfied by a real valued function u(t, x) with given initial data u(0) ≡ u(0, •) and u(0) ≡ u(0, •) = ∂ t u(0, •). The function f ∈ C ∞ (R, R) is at least of order 2 at the origin, i.e. f (0) = f (0) = 0. For small and smooth initial data u(0) ∈ H s (T d ) and u(0) ∈ H s-1 (T d ) with large s, we are interested in a description of the long time behavior of u(t) ≡ u(t, •) solution of (NLW).

In dimension d = 1, it is known that if ε measures the size of the initial data, the solution is controlled for arbitrary polynomial times with respect to ε, and for almost all m away from zero. More precisely, it has been proved (see for instance [START_REF]Birkhoff normal form for PDE's with tame modulus[END_REF] and also [START_REF] Bambusi | Birkhoff normal form for some nonlinear PDEs[END_REF]) Theorem 1.1. ( [START_REF]Birkhoff normal form for PDE's with tame modulus[END_REF]) Let d = 1 and r ≥ 2. For almost any m > 0 there exists s * (r) such that for s > s * (r) there exists ε 0 (r, s) > 0 such that for all ε < ε 0 (u(0), u(0))

H s ×H s-1 ≤ ε =⇒ (u(t), u(t)) H s ×H s-1 ≤ 2ε, t ≤ ε -r .
(

The crucial tool to obtain this result is to show that for a large set of parameters m, the frequencies ω j = |j| 2 + m of the linear wave operator satisfy a non-resonance condition of the following form: Fix r ≥ 3, there exists γ > 0 such that for k = (k 1 , • • • , k p ) ∈ (Z d ) p , = ( 1 , • • • , q ) ∈ (Z d ) q with p + q ≤ r we have

|ω k 1 + • • • + ω kp -ω 1 -• • • -ω q | ≥ γ µ 3 (k, ) α , (µ 3 ) unless (|k 1 |, • • • , |k p |) and (| 1 |, • • • , | q |)
are equal up to a permutation, and where µ 3 (k, ) denotes the third largest number amongst the collection (|k i |, | j |) i,j , and α depends on r. This condition, introduced in [START_REF]Birkhoff normal form for PDE's with tame modulus[END_REF], allows to eliminate (or normalize) all the terms in the Hamiltonian of the perturbation (depending on F , a primitive of f in (NLW)) involving at most two high Fourier modes via a Birkhoff normal form procedure. On the other hand, it is known since [START_REF] Bambusi | Birkhoff normal form for some nonlinear PDEs[END_REF] that we can neglect all the monomials involving more than three high modes (see for instance [START_REF] Grébert | Birkhoff normal form and Hamiltonian PDEs[END_REF] or [START_REF] Bambusi | A Birkhoff normal form theorem for some semilinear PDEs[END_REF] for a simple presentation of these two facts). So once we have (µ 3 ) we can expect a control of the Sobolev norms similar to (1). Notice that (µ 3 ) is close from the so-called second-order Melnikov nonresonance condition 1 that says in a formulation allowing comparison with 1 This terminology refers to the original papers [START_REF] Mel'nikov | On some cases of conservation of conditionally periodic motions under a small change of the Hamiltonian function[END_REF][START_REF] Mel'nikov | A family of conditionally periodic solutions of a Hamiltonian system[END_REF] where similar conditions where introduced for proving the stability of low-dimensional invariant tori in Hamiltonian dynamics, and popularized in the KAM literature [Mos67, Eli88, Bou97, XY01] and later while extending these results to Hamiltonian PDEs [START_REF] Kuksin | Nearly Integrable Infinite Dimensional Hamiltonian Systems[END_REF][START_REF] Pöschel | A KAM-theorem for some nonlinear partial differential equations[END_REF].

(µ 3 ): Fix n ≥ 2, there exists γ > 0 such that for k

= (k 1 , • • • , k p ) ∈ (Z d ) p , = ( 1 , • • • , q ) ∈ (Z d ) q with |k i |, | i | ≤ n and for (j 1 , j 2 ) ∈ (Z d ) 2 with |j 1 |, |j 2 | > n |ω k 1 + • • • + ω kp -ω 1 -• • • -ω q + ω j 1 -ω j 2 | ≥ γ r α , unless (|k 1 |, • • • , |k p |) and (| 1 |, • • • , | q |)
are equal up to a permutation, where r = p + q. We note that in the Melnikov case, the "length" of the resonance (r + 2) is free but the number of "interior" modes (here (2n + 1) d ) is fixed while it is exactly the converse in (µ 3 ). So the two conditions are not equivalent but similar.

The condition (µ 3 ) applies to many situations, including the one dimensional wave equations, the one dimensional nonlinear Schrödinger equation with an external potential [Bam03, Bam07, BG06], the d-dimensional nonlinear Schrödinger equation with a convolution potential [START_REF] Bambusi | Forme normale pour NLS en dimension quelconque[END_REF][START_REF]Birkhoff normal form for PDE's with tame modulus[END_REF], plane waves stability for non-linear Schrödinger equation [START_REF] Faou | Lubich Sobolev stability of plane wave solutions to the cubic nonlinear Schr dinger equation on a torus[END_REF], wave equations on Zoll manifolds [START_REF] Bambusi | Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF] or quantum harmonic oscillator on

R d [GIP09].
The main difficulty of the higher dimensional case for (NLW) is that the frequencies do not satisfy the second-order Melnikov condition for a large set of parameters m, as already noted for instance in [START_REF] Bourgain | Construction of periodic solutions of nonlinear wave equations in higher dimension[END_REF][START_REF] Delort | On long time existence for small solutions of semi-linear Klein-Gordon equations on the torus[END_REF]. In fact, in dimension d ≥ 2 (µ 3 ) is not satisfied either: let for instance

|k 1 | ≥ | 1 | ≥ µ 3 (k,
) then in the left hand side of (µ 3 ) the quantity ω k 1 -ω 1 depends on indices that are not controlled by µ 3 (k, ). For d = 1, if k 1 and 1 are large, the difference ω k 1 -ω 1 is close to be an integer and the parameter m can be chosen in a large set so that (µ 3 ) holds. However, in dimension d ≥ 2, ω k 1 -ω 1 describes a dense set at the scale |k 1 | which prevents (µ 3 ) to hold. Actually we can only prove that for a large set of parameters m, the following condition (which is related to the so-called first-order Melnikov condition) holds

|ω k 1 + • • • + ω kp -ω 1 -• • • -ω q | ≥ γ µ 2 (k, ) α (µ 2 ) unless (|k 1 |, • • • , |k p |) are (| 1 |, • • • , | q |)
equal up to a permutation where µ 2 (k, ) is the second largest index in the multi-index (k, ). Despite this known problem, some results have been proved concerning the existence of quasi-periodic solutions, where the loss of derivative is controlled by the use of KAM-Newton schemes, see [START_REF] Bourgain | Construction of periodic solutions of nonlinear wave equations in higher dimension[END_REF]. Concerning the control of large open sets of solutions, some results can be found in [START_REF] Delort | Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF] and [START_REF] Delort | On long time existence for small solutions of semi-linear Klein-Gordon equations on the torus[END_REF] but the time control depends on the shape on the nonlinearity inducing restriction on the index r (essentially driven by the annulation degree of the nonlinearity in 0).

Another situation where (µ 2 ) appears in a natural way is given by numerical discretization of Hamiltonian PDEs. For example standard splitting methods applied to wave equations in dimension d = 1 induces numerical resonances destroying the property (µ 3 ) and degenerating to (µ 2 ) even for generic time discretization parameters 2 . In this case, it is however possible to control the solution by playing with the time integrator or with the space discretization, see [START_REF] Cohen | Conservation of energy, momentum and actions in numerical discretizations of nonlinear wave equations[END_REF][START_REF] Faou | Birkhoff normal form for splitting methods applied to semi linear Hamiltonian PDEs. Part I: Finite dimensional discretization[END_REF][START_REF] Faou | Paturel Birkhoff normal form for splitting methods applied to semi linear Hamiltonian PDEs. Part II: Abstract splitting[END_REF][START_REF] Faou | Geometric numerical integration and Schrödinger equations[END_REF][START_REF] Faou | Lubich Plane wave stability of the split-step Fourier method for the nonlinear Schrödinger equation Forum of Math[END_REF].

In this paper, we propose a new method to overcome this difficulty by a careful examination of the normal form induced by (µ 2 ) and a control in mixed Sobolev norm inspired by some tools used in numerical analysis. In particular it can be seen as a nonlinear extension of [START_REF] Dujardin | Normal form and long time analysis of splitting schemes for the linear Schrödinger equation with small potential[END_REF], here in a continuous in time setting.

As byproduct of this method, we prove the following.

Theorem 1.2. Let d ≥ 2, r ≥ 2 and s > d/2. For almost any m > 0 there exists s * = s * (r, s) and ε 0 (r, s) > 0 such that for all ε < ε 0 the solution to (NLW) satisfies

(u(0), u(0)) H s * ×H s * -1 ≤ ε =⇒ (u(t), u(t)) H s ×H s-1 ≤ 2ε, t ≤ ε -r . (2) 
In other words, (1) holds up to a finite loss of derivative in the initial condition 3 . Concretely we can prove that s * (r, s) is of order less than O(r 5 s 5 ) but this is certainly not optimal.

The previous property (2) is in fact a corollary of a stronger abstract result proved in Theorem 2.9. The main idea is to decompose the dynamics into low and high frequencies according to some large threshold depending on ε, and then to try to conjugate the system to a normal form whose dynamics can be described and controlled.

When the (µ 3 ) condition holds, this normal form approach allows to conjugate all the (NLW) flow to a flow preserving the H s norm up to terms that are arbitrarily small. When only (µ 2 ) is satisfied, this cannot be done, and linear terms remains in the dynamics of high modes, coupled with the low modes. Fortunately, these terms can be put under a symmetric Hamiltonian quadratic form. Hence, despite the linear nature of their dynamics, the L 2 norm of the high modes can be proved to be preserved over long times in the normal form analysis. This crucial information allows to initiate an effective decomposition between low and high modes. To prove the almost preservation of higher Sobolev norms of the high modes we use a sort of pseudo-differential argument (or commutator Lemma) that allows to gain one derivative (see (49) and (50)). Then for given indices s and s 0 with s s 0 > d/2, we can control the low modes in a Sobolev norm H s and 2 The fundamental reason is that time discrete numerical schemes require the control of small divisors of the form e ihΩ(k, ) -1 instead of Ω(k, ) as defined in (µ3), where h is the time discretization parameter. Hence numerical resonances can occurs when for instance h(ω k 1 -ω 1 ) is close to an arbitrary large multiple of 2π (see for instance [START_REF] Shang | Resonant and Diophantine step sizes in computing invariant tori of Hamiltonian systems[END_REF][START_REF] Hairer | Geometric Numerical Integration[END_REF] for a finite dimensional analysis of symplectic integrators).

3 Historically, a similar result with loss of derivative was first given under the condition (µ3) in [START_REF] Bourgain | Construction of approximative and almost-periodic solutions of perturbed linear Schrödinger and wave equations[END_REF].

we show a polynomial growth in time of a Sobolev norm H s 0 of the high modes of order O(t s 0 ). By choosing a smoother initial condition such that (u(0), u(0)) H 2s ×H 2s-1 ≤ ε we then obtain (see Theorem 3.2)

u(t) ≤Nε H s ≤ 2ε and u(t) >Nε H s 0 ≤ ε r , t ≤ ε -r s 0 +1 , (3) 
in a regime where s -s 0 is large with respect to r. Here u(t) ≤Nε and u(t) >Nε denote the low and high modes parts, according to the threshold

N ε = ε -r
s-s 0 . When s is large, we obtain (2) after a change of indices, but Theorem 3.2 (see also Theorem 2.9) gives more precise informations. It shows that the dynamics of the low modes preserves the super-actions4 , i.e. the quantities J n (t) = |k|=n |u k (t)| 2 , n ≤ N ε over very long times, where u k (t), k ∈ Z d denote the Fourier coefficients of u(t). Such a result does not hold for high modes since the interaction between two close large modes cannot be eliminated but only controlled. Theorem 2.9 expresses the fact that the condition (µ 2 ) -much more general than (µ 3 )-is enough to ensure a decoupling of the dynamics of low and high modes for very long times.

In the previous estimate, s 0 has only to satisfy the condition5 s 0 > d/2. It also typically corresponds to what is numerically observed for initial data taken as trigonometric polynomials6 for which the dynamics does not exhibit energy exchanges over long times. Such two-stage norms with different Sobolev scaling were previously used in the context of numerical analysis of splitting methods for Schrödinger equations in the linear case, see [START_REF] Dujardin | Normal form and long time analysis of splitting schemes for the linear Schrödinger equation with small potential[END_REF] and [START_REF] Faou | Debussche Modified energy for split-step methods applied to the linear Schrödinger equation[END_REF] where again the preservation of the L 2 norm of the high-modes was crucial to obtain a global control of the dynamics.

We also believe that results of the form (2) or (3) involving mixed Sobolev norms provides a natural setting for numerical discretization, for which (µ 2 ) is the generic control of non-resonance condition. It might for instance allow to weaken the usual CFL conditions required, or to derive low-order integrators following the analysis of [START_REF] Hofmanová | An exponential-type integrator for the KdV equation[END_REF][START_REF] Ostermann | Low regularity exponential-type integrators for semilinear Schrödinger equations[END_REF].

Abstract statement

2.1. Hamiltonian formalism. We recall in this subsection the formalism used in [START_REF] Grébert | Birkhoff normal form and Hamiltonian PDEs[END_REF][START_REF] Faou | A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus[END_REF][START_REF] Bernier | Rational normal forms and stability of small solutions to nonlinear Schrödinger equations[END_REF] to deal with infinite dimensional Hamiltonians and flows depending on a infinite set of symplectic variables (q, p) = (q a , p a )

a∈Z d ∈ R Z d × R Z d equipped with the usual 2 s (Z d , R 2 ) norm defined 7 as (q, p) 2 s = a∈Z d a 2s (p 2 a + q 2 a ), a 2 = 1 + |a| 2 .
As explained in [START_REF] Grébert | Birkhoff normal form and Hamiltonian PDEs[END_REF], for U an open set of 2 s , for a function

H(q, p) such that H ∈ C ∞ (U, R), with 2 gradient ∇ (q,p) H ∈ C ∞ (U, 2
s ), we can define the flow of a Hamiltonian system

∀ a ∈ Z d , qa = ∂H ∂p a (q, p), ṗa = - ∂H ∂q a (q, p). (4) 
To easily deal with normal form transformations, it is convenient to use the complex representation (ξ a )

a∈Z d = ( 1 √ 2 (q a + ip a )) a∈Z d in C Z d equipped with the 2 s (Z d , C) norm. Then with the notations ∂ ∂ξ a = 1 √ 2 ∂ ∂q a -i ∂ ∂p a and ∂ ∂ ξa = 1 √ 2 ∂ ∂q a + i ∂ ∂p a ,
the real Hamiltonian system is equivalent to the complex system,

∀ a ∈ Z d , ξa = -i ∂H ∂ ξa (ξ, ξ) =: (X H (ξ, ξ)) a (5) 
where H(q, p) = H(ξ, ξ) ∈ R is a called a real Hamiltonian. The notation X H (ξ, ξ) = (X H (ξ, ξ)) a∈Z d thus denote the Hamiltonian vector field associated with the Hamiltonian H. If we associate with (ξ, ξ) a complex function ψ on T d , through the formula

ψ(x) = a∈Z d ξ a e iax , (6) 
then the Sobolev norm ψ H s is equivalent to the norm

ξ 2 s = a∈Z d a 2s |ξ a | 2 .
The symplectic structure is given by

a∈Z d dq a ∧ dp a = -i a∈Z d dξ a ∧ d ξa . ( 7 
)
and the Poisson bracket in complex notation reads

{F, G} = -i a∈Z d ∂F ∂ξ a ∂G ∂ ξa - ∂F ∂ ξa ∂G ∂ξ a . ( 8 
)
7 with the usual notation

|a| 2 = a 2 1 + • • • + a 2 d for a = (a1, . . . , a d ) ∈ Z d .
Definition 2.1. For a given s > d/2 and a domain U containing 0 in 2 s := 2 s (Z d , C), we denote by H s (U) the space of real Hamiltonians P (ξ, ξ) ∈ R satisfying P ∈ C ∞ (U, R), and X P ∈ C ∞ (U, 2 s ), where X P is defined in (5). We will use the shortcut F ∈ H s to indicate that there exists a domain U containing 0 in 2 s such that F ∈ H s (U). Notice that for F and G in H s the formula (8) is well defined in a neighborhood of 0. With a given Hamiltonian function H ∈ H s , we associate the Hamiltonian system (5), and we can naturally defines its flow. 

C Z d × C Z d C U 2 ×Z d where U 2 = {±1} and use the convenient notation (ξ, ξ) = z = (z j ) j∈U 2 ×Z d ∈ C U 2 ×Z d where j = (δ, a) ∈ U 2 × Z d =⇒ z j = ξ a if δ = 1, z j = ξa if δ = -1. (9) 
We define the 2 s norm of an element z = (ξ, ξ) to be

z 2 s := j∈U 2 ×Z d j 2s |z j | 2 = 2 a∈Z d a 2s |ξ a | 2 = 2 ξ 2 s .
where for j = (δ, a) ∈ U 2 × Z d we set j 2 = a 2 . With this notation, the Hamiltonian system (5) can be written

ż = X H (z), where (X H (z)) (δ,a) := -iδ(X H (ξ, ξ)) a , z = (ξ, ξ) .
Here X H (ξ, ξ) denote the vector field in (5). Another way to formulate this notation is to say that with the identification (9), the vector field X H (ξ, ξ) is naturally extended as (X H (z)

) j = -iδ ∂H ∂z j (z), for j = (δ, a) ∈ U 2 × Z d ,
where j = (-δ, a).

For k = (k 1 , . . . , k m ) = (δ i , a i ) m i=1 ∈ (U 2 × Z d ) m we denote the momentum M(k) = m i=1 δ i a i ,
and we define the conjugate k

= (-δ i , a i ) m i=1 ∈ (U 2 × Z d ) m . We set M m = {k ∈ (U 2 × Z d ) m | M(k) = 0} (10)
the set of zero-momentum multi-indices. For a given k ∈ M m we write

z k = z k 1 • • • z km .
We also define

R m = {(δ j , a j ) m j=1 ∈ M m | ∃σ ∈ S m , ∀j = 1, . . . , m, δ j = -δ σ j and a j = a σ j } (11)
the set of resonant multi-indices. Note that by construction if m is odd then R m is empty and that if k = (δ j , a j ) m j=1 ∈ R m is associated with a permutation σ then we have

z k = 1≤j≤m δ j =1 ξ a j ξaσ j . ( 12 
)
Definition 2.3. We say that P (z) is a homogeneous polynomial of order m if it can be written

P (z) = P [c](z) = j∈Mm c j z j , with c = (c j ) j∈Mm ∈ ∞ (M m ), ( 13 
)
and such that the coefficients c j satisfy c j = c j .

Note that the last condition ensures that P is real valued, as the set of indices are invariant by the application j → j. Following [START_REF] Faou | A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus[END_REF][START_REF] Bernier | Rational normal forms and stability of small solutions to nonlinear Schrödinger equations[END_REF] but in a 2 s framework, we get the following Proposition. It turns out to be a consequence of the more general Lemma 5.1 proved below. (i) A homogeneous polynomial, P [c], of degree m ≥ 2 belongs to H s ( 2 s ) and we have

X P [c] (z) s ≤ (C s ) m c ∞ z m-1 s , z = (ξ, ξ), ( 14 
)
for some constant C s depending only on s. 

c ∞ ≤ 2mn c ∞ c ∞ . (15) 
We end this section with a result concerning Lie transformations. We recall that to a Hamiltonian function F we associate, if it exists, the Lie transformation Φ 1 F which is the time one flow generated by F . This transformation is automatically symplectic.

Lemma 2.5. Assume that s > d/2 and let

P = P [c 3 ] + • • • + P [c r ], c m ∈ M m ,
be a polynomial of order at least 3 at the origin, then for all ν ≤ κ r,s max( c 3 ∞ , . . . , c r ∞ )

-1 , the Lie transformation τ = Φ 1 P is well defined on a ball B s (0, ν) of 2 s with values in B s (0, 2ν) and we have

τ (z) -z s ≤ C r,s max m c m ∞ ν 2 , ∀ z ∈ B s (0, ν), (16) 
where C r,s and κ r,s are some positive constants depending only on r and s.

Proof. In view of Proposition 2.4 assertion (i) we deduce from the Cauchy-Lipschitz Theorem that the flow Φ t P is locally well defined on 2 s . Furthermore we have for z ∈ B s (0, ν) and as long as z(t) = Φ t P (z) ∈ B(0, 2ν)

Φ t P (z) -z s ≤ t 0 X P (z(w)) s dw ≤ r m=3 C m,s c m ∞ |t|(2ν) m-1 ≤ C r,s |t| max m c m ∞ ν 2 .
Thus we conclude by a bootstrap argument that, taking ν small enough, the flow is defined for all z ∈ B(0, ν) up to time t = 1 and that z(t) remains in B(0, 2ν) for t ≤ 1 and satisfies (16).

2.3. Non resonance condition.

Definition 2.6. A family of frequencies

ω = {ω a , a ∈ Z d } is non resonant, if there exist (α(r)) r≥1 ∈ (R * + ) N and (γ r ) r≥1 ∈ (R * + ) N , such that for all r ≥ 1, all N ≥ 1 and all k = (δ i , a i ) r i=1 ∈ (U 2 × Z d ) r satisfying a i ≤ N, for i = 1, • • • , r, we have |δ 1 ω a 1 + • • • + δ r ω ar | ≥ γ r N -α(r) , when k / ∈ R r , (H1 
)

|δ 1 ω a 1 + • • • + δ r ω ar + ω b | ≥ γ r+1 N -α(r+1) , ∀ b > N with M(k) + b = 0, ( H2 
)
|δ 1 ω a 1 + • • • + δ r ω ar + ω b 1 + ω b 2 | ≥ γ r+2 N -α(r+2) , ∀ b 1 , b 2 > N (H3) with M(k) + b 1 + b 2 = 0.
We notice that conditions (H1)-(H2) are equivalent to condition (µ 2 ) introduced in the introduction while conditions (H1)-(H2)-(H3) are not equivalent to (µ 3 ) since in (H3) we are not considering the case where the two high frequencies have opposite sign.

Remark 2.7. Note that in (H2) using the zero momentum condition (see (10)), b is in fact bounded by rN . Hence (H2) is a trivial consequence of (H1). Similarly, as in many applications ω a ∼ |a| ν when a → ∞, for some ν > 0, (H3) is also a consequence of (H1) as we can restrict (H3) to a set of (b 1 , b 2 ) that are bounded by C(r)N . Similarly, we note z ≥N and z >N the decomposition induced by the notation (9). We now make our hypothesis on the Hamiltonian H that we will consider.

Hypothesis 2.8. The Hamiltonian H can be written

H = H 2 + P = a∈Z d ω a |ξ a | 2 + P ( 17 
)
where ω = (ω a ) a∈Z d is a non resonant family of real numbers in the sense of Definition 2.6, P belongs to H s for some s > d/2 and P is of order at least 3 at the origin (which means that P and its differentials up to the order 2 vanish at 0).

Note that in general the frequencies ω a will not be uniformly bounded with respect to a, and hence the quadratic part a∈Z ω a |ξ a | 2 , does not belong to H s . Nevertheless it generates a continuous flow which maps 2 s into 2 s explicitly given for all time t and for all indices a by ξ a (t) = e -iωat ξ a (0). Furthermore this flow has the group property. By standard arguments (see for instance [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF] and [BFG] in a similar framework), this is enough to define the local symplectic flow, ż = X H (z), in 2 s . Theorem 2.9. Let H be a Hamiltonian satisfying Hypothesis 2.8. Then for all r ≥ 2 and all s > s 0 > d/2 satisfying s -s 0 ≥ s * (r) := 6r 2 α(3r) + 2dr (18)

there exists ε 0 (r, s, s 0 , ω) > 0 such that for all ε < ε 0 (r, s, s 0 , ω) the solution ξ(t), generated by the flow of H issued from an initial datum ξ(0) ∈ 2 2s satisfying ξ(0) 2s ≤ ε, exists for all time t ≤ ε -r s 0 +1 and satisfies

∀ a ≤ N ε := ε -r s-s 0 , ∀ t ≤ ε -r s 0 +1 , b∈Z d b = a |ξ b (t)| 2 - b∈Z d b = a |ξ b (0)| 2 ≤ ε 3 a -2s (19) and        ξ(t) ≤Nε 2 s = a ≤Nε a 2s |ξ a (t)| 2 ≤ 4ε 2 ξ(t) >Nε 2 s 0 = a >Nε a 2s 0 |ξ a (t)| 2 ≤ ε 2r for t ≤ ε -r s 0 +1 .
Note that by playing with the indices, we can obtain the following corollary (in the same vein as Theorem 1.2) which essentially proves that arbitrary high regularity small solutions to (5) are controlled over arbitrary long times.

Corollary 2.10. Let H be a Hamiltonian satisfying Hypothesis 2.8. For all r ≥ 2 and s > d/2, there exists s * (r, s) and ε 0 (r, s, ω) > 0 such that for all ε < ε 0 (r, s, ω),

ξ(0) s * ≤ ε =⇒ ξ(t) s ≤ 2ε for t ≤ ε -r .
Proof. It is a consequence of the previous Theorem by replacing r by r(s 0 + 1), s 0 by s and assuming that s * is large enough with respect to r and s.

3. Application to (NLW) on T d .

Introducing v = u t ≡ u we rewrite (NLW) as u = v, v = -Λ 2 u -f (u) , (20) 
where Λ = (-∆ + m) 1/2 and f ∈ C ∞ having a zero of order at least two at the origin. When m > 0, we can define

ψ = 1 √ 2 (Λ 1/2 u + iΛ -1/2 v), (21) 
and we get that (u, v)

∈ H s (T d , R) × H s-1 (T d , R) is solution of (20) if and only if ψ ∈ H s+1/2 (T d , C) is solution of i ψ = Λψ + 1 √ 2 Λ -1/2 f Λ -1/2 ψ + ψ √ 2 . (22) 
Then, endowing the space L 2 (T d , C) with the standard (real) symplectic structure -idψ ∧ d ψ equation ( 22) reads as a Hamiltonian equation

i ψ = ∂H ∂ ψ
where H is the hamiltonian function

H(ψ, ψ) = 1 (2π) d T d (Λψ) ψ dx + 1 (2π) d T d F Λ -1/2 ψ + ψ √ 2 dx,
and F is a primitive of f with respect to the variable u, i.e. f = ∂ u F . The linear operator Λ is diagonal in the complex Fourier basis8 {e ia•x } a∈Z d , with eigenvalues

ω a = |a| 2 + m, a = (a 1 , . . . , a d ) ∈ Z d , |a| 2 = a 2 1 + • • • a 2 d . (23) 
Decomposing ψ in Fourier variables with Fourier coefficients (ξ a ) a∈Z d as in (6), ( 22) takes the form (5) where the Hamiltonian function H is given by H = H 2 + P with,

H 2 (ξ, ξ) = a∈Z d ω a |ξ a | 2 , P (ξ, ξ) = 1 (2π) d T d F   a∈Z d ξ a e ia•x + ξa e -ia•x √ 2ω a   dx.
As F is smooth, the function P is in H s and we can define its flow. Finally

(u, v) ∈ H s (T d , R)×H s-1 (T d , R) is a solution of (20) if and only if ξ ∈ 2 s-1/2
is a solution of the Hamiltonian system associated with the Hamiltonian H.

In order to apply Theorem 2.9, we need the following result A direct proof of this proposition can also be done by using the arguments given in [START_REF] Bambusi | Birkhoff normal form for some nonlinear PDEs[END_REF][START_REF] Eliasson | KAM for non-linear beam equation[END_REF] or [START_REF] Faou | Lubich Sobolev stability of plane wave solutions to the cubic nonlinear Schr dinger equation on a torus[END_REF]. By following these proofs, one can verify that α(r) is of order O(r 3 ).

As a consequence, Theorem 2.9 applies. By scaling back to the variable (u, v), we obtain Theorem 3.2. Let f be a C ∞ function with zero of order at least 2 at the origin. Then for almost all m ∈ (0, +∞) and for all r ≥ 2, and all s 0 > (d + 1)/2, there exists s 1 (r, s 0 ) such that for all s ≥ s 1 (r, s 0 ), there exists ε 0 (r, s 0 , s, m) and for all ε < ε 0 (r, s 0 , s, m), if (u(0), u(0)) ∈ H s × H s-1 (T) satisfies (u(0), u(0)) H s ×H s-1 ≤ ε, then the system (NLW) admits a solution over a time T ≥ ε -r s 0 +1 , and we have

   u(t) ≤Nε s ≤ 2ε u(t) >Nε s 0 ≤ ε r for t ≤ ε -r s 0 +1
where

N ε := ε -r s-s 0 .
Using that α(r) = O(r 3 ) we can verify that s 1 (r, s) (rs) 5 . Then Theorem 1.2 is just a reformulation of Corollary 2.10.

Normal form

The strategy used to prove Theorem 2.9 is to put the original Hamiltonian (17) into normal form eliminating most of interactions between the low and high frequencies. By using Taylor expansion at the origin, the Hamiltonian H can be written

H = H 2 + r m=3 P m + R r+1 , with H 2 = a∈Z d ω a |ξ a | 2 , ( 24 
)
where P m is a homogeneous polynomial of degree m, and where R r+1 ∈ H s is of order r + 1 which means that its differentials vanish up to the order r.

In particular, it is small in the sense that we have

X R r+1 (z) s ≤ (C s ) r z r s (25) 
for some constant depending only on s and for z small enough in 2 s .

For j ∈ M m let us denote by µ n (j) the n-th largest number amongst the collection j i m i=1 :

µ 1 (j) ≥ µ 2 (j) ≥ • • • ≥ µ m (j).
By convention, we will also set µ 0 (j) = +∞.

Let N be a fixed number and let H be a Hamiltonian satisfying Hypothesis 2.8. For a given r we decompose the Hamiltonian H in (24) as follows:

H = H 2 + r m=3 (P (•) m + P (i) m + P (ii) m + P (iii) m ) + R r+1 ,
where for all m,

• the polynomial

P (•) m = P [c (•)
m ], depends only of low modes:

∀j ∈ M m , (c (•) m ) j = 0 =⇒ µ 1 (j) ≤ N. ( 26 
)
• P (i)

m = P [c (i)
m ] contains only one high mode:

∀j ∈ M m , (c (i) m ) j = 0 =⇒ µ 1 (j) > N ≥ µ 2 (j), (27) 
• P (ii)

m = P [c (ii)
m ] contains only two high modes:

∀j ∈ M m , (c (ii) m ) j = 0 =⇒ µ 2 (j) > N ≥ µ 3 (j), (28) 
• and P

(iii) m = P [c (iii)
m ] contains at least three high modes:

∀j ∈ M m , (c (iii) m ) j = 0 =⇒ µ 3 (j) > N. ( 29 
)
Following [START_REF]Birkhoff normal form for PDE's with tame modulus[END_REF], we know that polynomials of the form P

(iii) m = P [c (iii)
m ] are already small in the sense that

X P (iii) m s ≤ CN -s z m-1 s .
On the other hand, thanks to our non resonance condition, polynomials of the form P (i)

m = P [c (i)
m ] can be killed by a symplectic change of variables since it cannot be resonant (only one high mode) and polynomials of the form P (•)

m = P [c (•)
m ] can be normalized by a standard Birkhoff normal form procedure. In addition to these two known facts, the following Theorem says that we can also symmetrize polynomials of the form P (ii)

m = P [c (ii) m ]:
Theorem 4.1. Assume that the frequencies ω = (ω a ) a∈Z d are non resonant in the sense of Definition 2.6, and let r ≥ 2 be given. There exists a constant C depending on r, such that for all N ≥ 1, there exists a polynomial Hamiltonian

χ = r m=3 (χ (•) m + χ (i) m + χ (ii) m ) (30) such that χ (•) m = P [a (•) m ], χ (i) 
m = P [a (i) m ], χ (ii) 
m = P [a (ii)
m ], contain zero, one and two high modes respectively (i.e. satisfy (26), ( 27) and (28) respectively), with coefficients satisfying

a (•) m ∞ + a (i) m ∞ + a (ii) m ∞ ≤ CN rα(r) , (31) 
and such that the Lie transformation Φ 1 χ , whose existence is guaranteed in a neighborhood of the origin of 2 s for all s > d/2 by Lemma 2.5, puts H in normal form:

H • Φ 1 χ = H 2 + r m=3 (Z (•) m + S (ii) m + P (iii) m ) + Rr+1 , (32) 
where

Z (•) m = P [b (•) m ], S (ii) 
m = P [b (ii) m ], P (iii) 
m = P [b (iii) 
m ], contain zero, two and at least three high modes respectively (i.e. satisfy (26), ( 28), (29)), with coefficients satisfying

b (•) m ∞ + b (ii) m ∞ + b (iii) m ∞ ≤ CN rα(r) . Moreover • Z (•)
m contains only resonant monomials, which means that

∀ j ∈ M m , j / ∈ R m =⇒ (b (•) m ) j = 0. • S (ii)
m contains terms that are symmetric in the high modes which means that if b (ii) j = 0 for j ∈ M m , the two highest modes are of opposite signs: they are of the form (δ, a) and (-δ, b) for some a and b ∈ Z d .

• The remainder term Rr+1 is of the form

Rr+1 = R r+1 • Φ 1 χ + 1 0 (1 -s) r+1 P [b r+1 ] • Φ s χ ds (33) 
where P [b r+1 ] defines a homogeneous polynomial of order r + 1 with coefficients bounded by b r+1 ∞ ≤ CN rα(r) .

Proof. The proof is standard and use the non resonant Birkhoff normal form procedure (see [START_REF]Birkhoff normal form for PDE's with tame modulus[END_REF][START_REF] Bambusi | Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF][START_REF] Grébert | Birkhoff normal form and Hamiltonian PDEs[END_REF]). We follow here the construction made in [START_REF] Faou | A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus[END_REF]. By using the formal series expansions H = H 2 + m≥3 P m and χ = m≥3 χ m in homogeneous polynomials, the formal normal form problem is to find χ and X (under normal form) such that

H • Φ 1 χ = k≥0 ad k χ (H 2 + P ) = H 2 + X.
In the formal series algebra, this problem is equivalent to a sequence of homological equation of the form

∀ m ≥ 3, {H 2 , χ m } = Q m -X m ,
where Q m depends on the function P k , χ k and X k , k < m previously constructed. It is obtained by iterated Poisson brackets preserving the homogeneity of polynomial and boundedness of coefficients (see ( 15)). Formula for Q m can be found in [START_REF] Faou | A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus[END_REF], Eq. (3.4). Now assume that Q m = j∈Mm q j z j is given. For a given N we can decompose it into terms containing zero, one, two and at least three high modes:

Q m = Q (•) m + Q (i) m + Q (ii) m + Q (iii)
m and a similar decomposition for the coefficients q j . The normal form term X m is then the sum of the resonant terms in Q 

{H 2 , z k } = iΩ(k)z k with Ω(k) = - m i=1 δ i ω a i , k = ((δ i , a i )) m i=1 ∈ M m ,
we then solve the other terms by setting

χ m = j∈Mm\Rm q (•) j iΩ(j) z j + j∈Mm q (i) j iΩ(j) z j + j∈Mm\Sm q (ii) j iΩ(j) z j ,
where S m denote the set of indices with two symmetric high modes. Note that when j ∈ M m \S m , the two highest modes (larger that N ) have the same sign, and the denominator Ω(j) is controlled by (H3). Similarly, the first term can be controlled using (H1) and the second using (H2). We then observe that we loose a factor N α(m) after each solution of the homological equation, yielding a bound of order N rα(r) after r iterations. Note also that all the operations (solution of the Homological equation and Poisson brackets) preserve homogeneity and the reality of the global Hamiltonians.

It is easy to see that for all s > s 0 for z small enough (such that C r,s N rα(r) z s ≤ 1 for some constant C r,s by using ( 14)) the flow Φ 1 χ (z) is well defined and locally invertible in 2 s (its inverse being Φ -1 χ ), see Lemma 2.5.

Finally to obtain (32) we use a Taylor expansion of the term H • Φ t χ for t ∈ (0, 1).

For ξ ∈ 2 s , we define the pseudo-actions:

J a (ξ, ξ) = b∈Z d a = b |ξ b | 2 (and J j = 1 2 ∈U 2 ×Z d = j |z | 2 , j ∈ U 2 × Z d ). ( 34 
)
By definition of the resonant set R m (see (11)) and the corresponding resonant monomials (see ( 12)) we see that for all m, the normal form terms Z (•) m can be written 9

Z (•) m (ξ, ξ) = k∈Rm ∀i, k i ≤N c k z k = a,b∈(Z d ) m 2 , ∀i, a i = b i ≤N c ab m 2 i=1 ξ a i ξb i , z = (ξ, ξ).
We notice that a polynomials in normal form commutes with all the pseudoactions:

{Z (•) m , J a } = 0, ∀a ∈ Z, (35) 
in such a way the flow generated by Z (•) m will not modify the 2 s norms since z 2 s = (1 + a 2 ) 2s J a .

Proof of the main Theorem

To prove the main Theorem, we will need the following Lemma which controls polynomial vector fields in mixed Sobolev norms, as high and low modes are not controled at the same Sobolev scale.

Lemma 5.1. For all s ≥ s 0 > d/2, there exists a constant C such that for all m ≥ 3, for all N ≥ 1 and for all c ∈ ∞ (M m ), if the polynomials P [c] contains at least n-th high modes, n = 0, 1, 2, 3 (i.e. c j = 0 =⇒ µ n (j) > N ) then we have for z = (ξ, ξ) with z ≤N ∈ 2 s and z >N ∈ 2 s 0

X P [c] (z) ≤N s ≤    C m c ∞ z ≤N m-1 s if n = 0 C m c ∞ N n(s-s 0 ) z ≤N m-n-1 s z >N n s 0 if n ≥ 1, ( 36 
) and

X P [c] (z) >N s 0 ≤            0 if n = 0, C m c ∞ N s 0 -s z ≤N m-n-1 s if n = 1, C m c ∞ z ≤N m-n s z >N n-1 s 0 if n ≥ 2. ( 37 
)
Proof. For z = (ξ, ξ) ∈ 2 s , we have

X P [c] (z) ≤N 2 s ≤ ≤N 2s ∂P [c] ∂z (z) 2 ≤ m 2 c 2 ∞ ≤N 2s 0 P (z) 2 ,
where

P (z) = s-s 0 M(j)=0 µn(j, )>N |z j 1 | • • • |z j m-1 |. ( 38 
)
Let j = (j 1 , . . . , j m ) be given such that M(j, ) = 0. We have

s-s 0 ≤ ( j 1 + • • • + j m-1 ) s-s 0 ≤ m s-s 0 j 1 s-s 0 • • • j m-1 s-s 0 .
9 Recall that Z (•) m = 0 when m is odd.

If P [c] contains no high modes, i.e. if n = 0 then we can define zj = j s-s 0 z j and we obtain

P (z) ≤ M(j, )=0 µ 1 (j)≤N |z j 1 | • • • |z j m-1 |.
For a function g on the torus, we will denote ĝb = (1/2π) d

T d g(x)e -ib•x dx, b ∈ Z d , the Fourier coefficients of g. Then denoting f (x) = ≤N |z |e iδ a•x we have M(j, )=0 µ 1 (j)≤N |z j 1 | • • • |z j m-1 | = ( f m-1 ) -δa , = (δ, a) ∈ U 2 × Z d
for some constant C depending on m. So we get for some generic constant A depending on s and s 0 but independent on m

X P [c] (z) ≤N 2 s ≤ Am s-s 0 +2 c 2 ∞ a∈Z d a 2s 0 |(f m-1 ) a | 2 = Am s-s 0 +2 c 2 ∞ f m-1 2 H s 0 ≤ AC m c 2 ∞ f 2m-2 H s 0 ,
where g H s 0 , s 0 > d/2 is the usual Sobolev norm on T d equivalent to the 2 s 0 norm of the Fourier coefficients of g. Here C depends on s and s 0 but not on m. We then note that f H s 0 = z ≤N s which shows the first equation in (36).

To prove the second in the case n ≥ 1, we simply bound s-s 0 by N s-s 0 and we obtain

P (y) ≤ N s-s 0 M(j, )=0 µn(j)>N |z j 1 | • • • |z j m-1 | = ( f m-n g n ) -δa
for = -δa with the same notation as before, where

f (x) = ≤N |z |e iδ a•x and g(x) = >N |z |e iδ a•x ,
and we conclude as in the previous case.

To show (37) we use

X P [c] (z) >N 2 s 0 ≤ m 2 c 2 ∞ >N 2s 0 P (z) 2 , where P (z) = M(j)=0 µn(j, )>N |z j 1 | • • • |z j m-1 |, (39) 
In the case n = 1, we have no high mode in the sum. However due to the zero momentum condition, there exists one mode greater than N/(2m),

we have for ε small enough and for all w ∈ (0, 1)

Φ w χ (y) ≤N s ≤ 2ε and Φ w χ (y) >N s 0 ≤ 2ε r+1 . (43) 
Now let us write the Hamiltonian (32) as H • Φ 1 χ = H 2 + Z (•) + S (ii) + P (iii) + R3r+1 by gathering together the terms with different homogeneity.

Control of the low modes y(t) ≤N . For j ∈ U 2 × Z d , let J j (t) = J j (y(t)) with the definition (34). As Z (•) and H 2 commute with J a for all a ∈ Z d , we have for t ≤ min(T, ε -r s 0 +1 ) and j ≤ N ,

j 2s | Jj | = j 2s |{J j , H}| ≤ = j s ∂(S (ii) + P (iii) + R3r+1 ) ∂y¯ (z) s |y |.
By summing in j ≤ N , and using Cauchy-Schwarz inequality, we obtain

j ≤N j 2s | Jj | ≤ X S (ii) + P (iii) + R2r+1 (y) ≤N s y ≤N s
Now under bootstrap hypothesis (42), we conclude using Lemma 5.1

X S (ii) + P (iii) (y) ≤N s ≤ CN 3rα(3r) N s-s 0 ε 2r+2 ≤ Cε r+ 3 2 .
On the other hand since R 3r+1 is a Hamiltonian in H s of order at least 3r + 1, we have using (25), (33) and Lemma 2.5 X R3r+1 (y) ≤N s ≤ CN 3rα(3r) ε 3r .

Hence we obtain

j ≤N j 2s | Jj | ≤ C(ε 3r+1 + ε r+ 5 2 ).
Therefore for t ≤ min(T, ε -r+1 ) we conclude

j ≤N j 2s |J j (t) -J j (0)| ≤ ε 7 2
for ε small enough which in turn implies that

y(t) ≤N s ≤ 11 8 ε. (44) 
Furthermore by using estimates on the vector field X χ , we deduce that z(t) = Φ 1 χ (y(t)) satisfies (19).

Control of the high modes. The Hamiltonian S (ii) can be written as ( P (iii) + R3r+1 ). Using (37) we have

S (ii) m = a,
Q(y) >N s 0 ≤ CN 3rα(3r) (ε 2r+2 ε + ε 3r ). ( 47 
)
So using the fact that the operator A is hermitian, we get for t ≤ T (recall that we assume that y(0) >N 0 ≤ ε 2r+1 ) y(t) >N 0 = 2 ξ(t) >N 0 ≤ 2 ξ(0) >N 0 + tCε 2r+ Then we note that using the zero momentum condition (45) we have B ab (t) = 0 when |a -b| > 3rN . Hence, since s 0 > 1/2, we have 

) s 0 + Cε 3r+ 5 2 . ( 52 
)
We are going to apply the following elementary lemma Lemma 5.2. Let α ∈ (0, 1), f : R → R + a continuous function, and x : R → R + a differentiable function satisfying the inequality

∀ t ∈ R, d dt x(t) ≤ 1 1 -α f (t)(x(t)) α .
Then we have the estimate ∀ t ∈ R, x(t) 1-α ≤ x(0) 1-α + t 0 f (s) ds.

Considering (52), we are going to apply Lemma 5.2 with α = 1 -1/s 0 and x(t) = y(t) >N 2 s 0 + ε ι(s 0 ,r) where ι(s 0 , r) = (3r + 5 2 -2r+1 s 0 )(1 -1 s 0 ) -1 . Indeed, x naturally satisfies the estimate d dt x(t) ≤ C(1 + t)

1 s 0 ε 2r+1 s 0 x(t) 1-1 s 0 .
Now applying Lemma (5.2), we get x(t) ≤ Cx(0) + Cε 2r+1 (1 + t) s 0 +1 .

Since we have assumed that y(0) >N s 0 ≤ ε 2r+1 and since a straightforward estimate proves that ι(s 0 , r) ≥ 2r + 1, we deduce that y(t) >N s 0 ≤ Cε 2r+1 (1 + t) s 0 +1

and hence for t ≤ min(T, ε -r (s 0 +1) ) and ε small enough

y(t) >N s 0 ≤ 1 2 ε r+1 . ( 53 
)
Hence combining (44) and (53), we conclude by continuity argument that T ≥ ε -r (s 0 +1) which finishes the proof.

  Proposition 2.4. Let s > d/2.

(

  ii) For two homogeneous polynomials, P [c] and P [c ], of degree respectively m and n, the Poisson bracket is a homogeneous polynomial of degree m + n -2, {P [c], P [c ]} = P [c ] and we have the estimate

2. 4 .

 4 Statement. Let us start with the following notation: For ξ ∈ 2 s and a given number N , we decompose ξ = ξ ≤N + ξ >N where for all j ∈ U 2 × Z d , (ξ ≤N ) j = ξ j for j ≤ N, 0 for j > N, and ξ >N = ξ -ξ ≤N . Given a function ψ ∈ H s (T d ) with Fourier coefficients ξ a , a ∈ Z d , and a number N ≥ 1 the previous decomposition induces naturally the decomposition ψ = ψ ≤N + ψ >N with ψ ≤N (x) = a ≤N ξ a e ia•x and ψ >N (x) = a >N ξ a e ia•x .

  Proposition 3.1 ([Del09], Theorem 2.1.1). For almost all m ∈ (0, +∞) the family of frequencies ω a (m) = |a| 2 + m, a ∈ Z d associated with (NLW) is non resonant in the sense of Definition 2.6.

  b∈Z d a >N, b >N B ab (y ≤N )ξ a ξb , y = (ξ, ξ). As the Hamiltonian is real we have B ab (y ≤N ) = B ba (y ≤N ), i.e. the operator A = (B ab (y ≤N ) a , b >N acting on 2 s (Z d >N ) is Hermitian. Moreover, we have B ab (y ≤N ) = 2r-2 m=1 j∈Mm µ 1 (j)≤N M(j)=a-b b ab,j y j (45) where the coefficients b ab,j are uniformly bounded by CN 3rα(3r) . Hence for s > d/2 and as soon as y satisfies the bootstrap assumption (42), we obtain that ∀ a , b > N |B ab (y ≤N )| ≤ CN 3rα(3r) y ≤N s . (46) When writing the dynamics of y = (ξ, ξ), we get ξa = -iω a ξ a -i b∈Z d B ab (y ≤N )ξ b -iQ a (y), a > N where Q a = ∂ ∂ ξa

  3 2 ≤ C(1 + t)ε 2r+1 . (48) Let us define D s 0 the diagonal operator from 2 s (Z d >N ) into 2 s-2s 0 (Z d >N ) given by D s 0 = diag( a 2s 0 , a > N ). With the notation (η, ξ) >N = a >N ηa ξ a , we have d dt (ξ, D s 0 ξ) >N = -i(ξ, [D s 0 , A(t)]ξ) >N + Im(Q(y), D s 0 ξ) >N where [A, B] denotes the commutator of A and B: [A, B] = AB -BA. Hence by bootstrap hypothesis (and using (47)) d dt (ξ, D s 0 ξ) >N ≤ (ξ, [D s 0 , A(t)]ξ) >N + Cε 3r+ 5 2 .

≤

  (ξ, [D s 0 , A(t)]ξ) >N = a , b ≥N |a-b|≤3rN B ab (y)( a 2s 0 -b 2s 0 ) ξa ξ b ≤ a , b ≥N |a-b|≤3rN 2r|B ab (t)|| a -b |( a 2s 0 -1 + b 2s 0 -1 )| ξa ξ b |.Using the bound (46) and the fact that| a -b | ≤ a -b ≤ CN , we get (ξ, [D s 0 , A]ξ) ≤ CN 3rα(3r) ε a , b ≥N |a-b|≤3rN a s 0 -1 b s 0 | ξa ξ b |(49)where we used that for |a -b| ≤ 3rN we have a ≤ b + 3rN . Now we apply the Cauchy-Schwarz inequality to geta , b ≥N |a-b|≤3rN a s 0 -1 b s 0 | ξa ξ b | ≤     a , b ≥N |a-b|≤3rN a 2s 0 -2 | ξa | 2 CN d y >N s 0 -1 y >N s 0where we used again that for |a -b| ≤ 3rN we have a ≤ b + 3rN with a ∈ Z d . Thus, using (40), we obtain d dt

  Proposition 2.2. Let s > d/2. Any Hamiltonian in H s defines a local flow in 2 s which is a symplectic transformation. 2.2. Polynomial Hamiltonians. To algebraically deal with polynomials depending on (ξ, ξ), we identify

Already used in[START_REF]Birkhoff normal form for PDE's with tame modulus[END_REF] for (NLW) in dimension d = 1 in a periodic setting.

Condition that could probably be refined in the critical case using Galigardo-Nirenberg inequality.

Note that in the present result, all the constants depends on the Sobolev indices s and s0. An optimization of these constant could be done in an analytic context, following the technics used in[START_REF] Faou | A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus[END_REF].

Here for a = (a1, . . . , a d ) ∈ Z d and x = (x1, . . . x d ) ∈ T d we set a•x = a1x1 +• • •+a d x d
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hence with the same notation as before, we have

and we conclude as before. The proof of the last estimate in (37) is similar as the proof of (36) for n ≥ 1 .

Proof of Theorem 2.9. Let ε > 0, s ≥ s 0 > d/2 and r be given, and z(0) ∈ 2 2s such that z(0) 2s ≤ ε. We apply the normal form Theorem (4.1) at the order 3r and set

s-s 0 . Under the hypothesis (18), we have the bound

In particular, all the coefficients of the polynomials Hamiltonian χ, Z • m , S (ii) m and P (iii) m in (32) are bounded by CN 3rα(3r) ≤ Cε -1 2 . Hence using Lemma 2.5 we have for ε small enough (in a way depending on r and s) that y(0) = Φ -1 χ (z(0)) is in 2 2s and satisfies y(0) 2s ≤ 5 4 ε. This implies in particular that y(0) ≤N s ≤ 5 4 ε and

Now we need to control the dynamics of y(t) the solution of the Hamiltonian system associated with the Hamiltonian H • Φ 1 χ given by (32). We define

We notice that y(0) 2s ≤ 5 4 ε < 3 2 ε and y(0) >N s 0 ≤ 2ε 2r+1 < ε r+1 . Therefore by classical results for the definition of mild solutions of semilinear problems in Sobolev spaces with index greater than d/2, T is strictly positive. Let us prove that if t ≤ min(T, ε -r s 0 +1 ) then y(t) ≤N s ≤ 11 8 ε and y(t) >N s ≤ 1 2 ε r+1 . We will then conclude by a continuity argument that T ≥ ε

Control of the transformation. In view of Lemma 5.1, under bootstrap hypothesis, the vector field X χ (y(t)) satisfies the estimates

where we used N s-s 0 = ε -r , and

Hence this shows that as soon as y satisfies the bootstrap hypothesis, i.e. y(t) ≤N s ≤ 3 2 ε and y(t) >N s 0 ≤ ε r+1 , (42)