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LONG TIME BEHAVIOR OF THE SOLUTIONS OF NLW

ON THE D-DIMENSIONAL TORUS

JOACKIM BERNIER, ERWAN FAOU, AND BENOÎT GRÉBERT

Abstract. We consider the non linear wave equation (NLW) on the
d-dimensional torus Td with a smooth nonlinearity of order at least two
at the origin. We prove that, for almost any mass, small and smooth so-
lutions of high Sobolev indices are stable up to arbitrary long times with
respect to the size of the initial data. To prove this result we use a nor-
mal form transformation decomposing the dynamics into low and high
frequencies with weak interactions. While the low part of the dynamics
can be put under classical Birkhoff normal form, the high modes evolve
according to a time dependent linear Hamiltonian system. We then con-
trol the global dynamics by using polynomial growth estimates for high
modes and the preservation of Sobolev norms for the low modes. Our
general strategy applies to any semi-linear Hamiltonian PDEs whose
linear frequencies satisfy a very general non resonance condition. The
(NLW) equation on Td is a good example since the standard Birkhoff
normal form applies only when d = 1 while our strategy applies in any
dimension.
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1. Introduction

Let us consider the nonlinear wave equation set on the d-dimensonal torus
Td = (R/2πZ)d with d ≥ 1,

utt −∆u+mu+ f(u) = 0, x ∈ Td, (NLW)

satisfied by a real valued function u(t, x) with given initial data u(0) ≡ u(0, ·)
and u̇(0) ≡ u̇(0, ·) = ∂tu(0, ·). The function f ∈ C∞(R,R) is at least of order
2 at the origin, i.e. f(0) = f ′(0) = 0. For small and smooth initial data
u(0) ∈ Hs(Td) and u̇(0) ∈ Hs−1(Td) with large s, we are interested in a
description of the long time behavior of u(t) ≡ u(t, ·) solution of (NLW).

In dimension d = 1, it is known that if ε measures the size of the initial
data, the solution is controlled for arbitrary polynomial times with respect
to ε, and for almost all m away from zero. More precisely, it has been proved
(see for instance [BG06] and also [Bam03])

Theorem 1.1. ([BG06]) Let d = 1 and r ≥ 2. For almost any m > 0 there
exists s∗(r) such that for s > s∗(r) there exists ε0(r, s) > 0 such that for all
ε < ε0

‖(u(0), u̇(0))‖
Hs×Hs−1 ≤ ε =⇒ ‖(u(t), u̇(t))‖

Hs×Hs−1 ≤ 2ε, t ≤ ε−r.
(1)

The crucial tool to obtain this result is to show that for a large set of
parameters m, the frequencies ωj =

√
|j|2 +m of the linear wave operator

satisfy a non-resonance condition of the following form:
Fix r ≥ 3, there exists γ > 0 such that for k = (k1, · · · , kp) ∈ (Zd)p,
` = (`1, · · · , `q) ∈ (Zd)q with p+ q ≤ r we have

|ωk1 + · · ·+ ωkp − ω`1 − · · · − ω`q | ≥
γ

µ3(k, `)α
, (µ3)

unless (|k1|, · · · , |kp|) and (|`1|, · · · , |`q|) are equal up to a permutation,
and where µ3(k, `) denotes the third largest number amongst the collec-
tion (|ki|, |`j |)i,j , and α depends on r.
This condition, introduced in [BG06], allows to eliminate (or normalize) all
the terms in the Hamiltonian of the perturbation (depending on F , a primi-
tive of f in (NLW)) involving at most two high Fourier modes via a Birkhoff
normal form procedure. On the other hand, it is known since [Bam03] that
we can neglect all the monomials involving more than three high modes (see
for instance [Gre07] or [Bam07] for a simple presentation of these two facts).
So once we have (µ3) we can expect a control of the Sobolev norms similar
to (1).
Notice that (µ3) is close from the so-called second-order Melnikov non-
resonance condition1 that says in a formulation allowing comparison with

1This terminology refers to the original papers [Mel65, Mel68] where similar conditions
where introduced for proving the stability of low-dimensional invariant tori in Hamiltonian
dynamics, and popularized in the KAM literature [Mos67, Eli88, Bou97, XY01] and later
while extending these results to Hamiltonian PDEs [Kuk93, Pös96].
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(µ3):
Fix n ≥ 2, there exists γ > 0 such that for k = (k1, · · · , kp) ∈ (Zd)p,
` = (`1, · · · , `q) ∈ (Zd)q with |ki|, |`i| ≤ n and for (j1, j2) ∈ (Zd)2 with
|j1|, |j2| > n

|ωk1 + · · ·+ ωkp − ω`1 − · · · − ω`q + ωj1 − ωj2 | ≥
γ

rα
,

unless (|k1|, · · · , |kp|) and (|`1|, · · · , |`q|) are equal up to a permutation,
where r = p+ q.
We note that in the Melnikov case, the “length” of the resonance (r + 2) is
free but the number of “interior” modes (here (2n+ 1)d) is fixed while it is
exactly the converse in (µ3). So the two conditions are not equivalent but
similar.

The condition (µ3) applies to many situations, including the one dimen-
sional wave equations, the one dimensional nonlinear Schrödinger equation
with an external potential [Bam03, Bam07, BG06], the d-dimensional non-
linear Schrödinger equation with a convolution potential [BG03, BG06],
plane waves stability for non-linear Schrödinger equation [FGL13], wave
equations on Zoll manifolds [BDGS07] or quantum harmonic oscillator on
Rd [GIP09].

The main difficulty of the higher dimensional case for (NLW) is that
the frequencies do not satisfy the second-order Melnikov condition for a
large set of parameters m, as already noted for instance in [Bou95, Del09].
In fact, in dimension d ≥ 2 (µ3) is not satisfied either: let for instance
|k1| ≥ |`1| ≥ µ3(k, `) then in the left hand side of (µ3) the quantity ωk1−ω`1
depends on indices that are not controlled by µ3(k, `). For d = 1, if k1 and `1
are large, the difference ωk1−ω`1 is close to be an integer and the parameter
m can be chosen in a large set so that (µ3) holds. However, in dimension
d ≥ 2, ωk1 − ω`1 describes a dense set at the scale |k1| which prevents (µ3)
to hold. Actually we can only prove that for a large set of parameters m,
the following condition (which is related to the so-called first-order Melnikov
condition) holds

|ωk1 + · · ·+ ωkp − ω`1 − · · · − ω`q | ≥
γ

µ2(k, `)α
(µ2)

unless (|k1|, · · · , |kp|) are (|`1|, · · · , |`q|) equal up to a permutation where
µ2(k, `) is the second largest index in the multi-index (k, `).

Despite this known problem, some results have been proved concerning
the existence of quasi-periodic solutions, where the loss of derivative is con-
trolled by the use of KAM-Newton schemes, see [Bou95]. Concerning the
control of large open sets of solutions, some results can be found in [DS06]
and [Del09] but the time control depends on the shape on the nonlinear-
ity inducing restriction on the index r (essentially driven by the annulation
degree of the nonlinearity in 0).

Another situation where (µ2) appears in a natural way is given by nu-
merical discretization of Hamiltonian PDEs. For example standard splitting
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methods applied to wave equations in dimension d = 1 induces numerical
resonances destroying the property (µ3) and degenerating to (µ2) even for
generic time discretization parameters2. In this case, it is however possible
to control the solution by playing with the time integrator or with the space
discretization, see [CHL08, FGP10a, FGP10b, Fao12, FGL14].

In this paper, we propose a new method to overcome this difficulty by
a careful examination of the normal form induced by (µ2) and a control
in mixed Sobolev norm inspired by some tools used in numerical analysis.
In particular it can be seen as a nonlinear extension of [DF07], here in a
continuous in time setting.

As byproduct of this method, we prove the following.

Theorem 1.2. Let d ≥ 2, r ≥ 2 and s > d/2. For almost any m > 0 there
exists s∗ = s∗(r, s) and ε0(r, s) > 0 such that for all ε < ε0 the solution to
(NLW) satisfies

‖(u(0), u̇(0))‖
Hs∗×Hs∗−1 ≤ ε =⇒ ‖(u(t), u̇(t))‖

Hs×Hs−1 ≤ 2ε, t ≤ ε−r.
(2)

In other words, (1) holds up to a finite loss of derivative in the initial
condition3. Concretely we can prove that s∗(r, s) is of order less thanO(r5s5)
but this is certainly not optimal.

The previous property (2) is in fact a corollary of a stronger abstract result
proved in Theorem 2.9. The main idea is to decompose the dynamics into
low and high frequencies according to some large threshold depending on ε,
and then to try to conjugate the system to a normal form whose dynamics
can be described and controlled.

When the (µ3) condition holds, this normal form approach allows to con-
jugate all the (NLW) flow to a flow preserving the Hs norm up to terms that
are arbitrarily small. When only (µ2) is satisfied, this cannot be done, and
linear terms remains in the dynamics of high modes, coupled with the low
modes. Fortunately, these terms can be put under a symmetric Hamilton-
ian quadratic form. Hence, despite the linear nature of their dynamics, the
L2 norm of the high modes can be proved to be preserved over long times
in the normal form analysis. This crucial information allows to initiate an
effective decomposition between low and high modes. To prove the almost
preservation of higher Sobolev norms of the high modes we use a sort of
pseudo-differential argument (or commutator Lemma) that allows to gain
one derivative (see (49) and (50)). Then for given indices s and s0 with
s � s0 > d/2, we can control the low modes in a Sobolev norm Hs and

2The fundamental reason is that time discrete numerical schemes require the control of
small divisors of the form eihΩ(k,`)− 1 instead of Ω(k, `) as defined in (µ3), where h is the
time discretization parameter. Hence numerical resonances can occurs when for instance
h(ωk1 −ω`1) is close to an arbitrary large multiple of 2π (see for instance [Sha00, HLW06]
for a finite dimensional analysis of symplectic integrators).

3Historically, a similar result with loss of derivative was first given under the condition
(µ3) in [Bou96].
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we show a polynomial growth in time of a Sobolev norm Hs0 of the high
modes of order O(ts0). By choosing a smoother initial condition such that
‖(u(0), u̇(0))‖

H2s×H2s−1 ≤ ε we then obtain (see Theorem 3.2)

‖u(t)≤Nε‖Hs ≤ 2ε and ‖u(t)>Nε‖Hs0
≤ εr, t ≤ ε−

r
s0+1 , (3)

in a regime where s − s0 is large with respect to r. Here u(t)≤Nε and
u(t)>Nε denote the low and high modes parts, according to the threshold

Nε = ε
− r
s−s0 . When s is large, we obtain (2) after a change of indices,

but Theorem 3.2 (see also Theorem 2.9) gives more precise informations. It
shows that the dynamics of the low modes preserves the super-actions4, i.e.
the quantities Jn(t) =

∑
|k|=n |uk(t)|2, n ≤ Nε over very long times, where

uk(t), k ∈ Zd denote the Fourier coefficients of u(t). Such a result does not
hold for high modes since the interaction between two close large modes
cannot be eliminated but only controlled. Theorem 2.9 expresses the fact
that the condition (µ2) -much more general than (µ3)- is enough to ensure
a decoupling of the dynamics of low and high modes for very long times.

In the previous estimate, s0 has only to satisfy the condition5 s0 > d/2.
It also typically corresponds to what is numerically observed for initial data
taken as trigonometric polynomials6 for which the dynamics does not ex-
hibit energy exchanges over long times. Such two-stage norms with different
Sobolev scaling were previously used in the context of numerical analysis of
splitting methods for Schrödinger equations in the linear case, see [DF07]
and [DF09] where again the preservation of the L2 norm of the high-modes
was crucial to obtain a global control of the dynamics.

We also believe that results of the form (2) or (3) involving mixed Sobolev
norms provides a natural setting for numerical discretization, for which (µ2)
is the generic control of non-resonance condition. It might for instance
allow to weaken the usual CFL conditions required, or to derive low-order
integrators following the analysis of [HS17, OS18].

Acknowledgement. During the preparation of this work the three authors
benefited from the support of the Centre Henri Lebesgue ANR-11-LABX-
0020-01 and B.G. was supported by ANR -15-CE40-0001-02 “BEKAM” and
ANR-16-CE40-0013 “ISDEEC” of the Agence Nationale de la Recherche.

4Already used in [BG06] for (NLW) in dimension d = 1 in a periodic setting.
5Condition that could probably be refined in the critical case using Galigardo-Nirenberg

inequality.
6Note that in the present result, all the constants depends on the Sobolev indices s and

s0. An optimization of these constant could be done in an analytic context, following the
technics used in [FG13].
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2. Abstract statement

2.1. Hamiltonian formalism. We recall in this subsection the formalism
used in [Gre07, FG13, BFG] to deal with infinite dimensional Hamiltoni-
ans and flows depending on a infinite set of symplectic variables (q, p) =

(qa, pa)a∈Zd ∈ RZd × RZd equipped with the usual `2s(Z
d,R2) norm defined7

as

‖(q, p)‖2

s
=
∑
a∈Zd

〈a〉2s(p2
a + q2

a), 〈a〉2 = 1 + |a|2.

As explained in [Gre07], for U an open set of `2s, for a function H(q, p) such
that H ∈ C∞(U ,R), with `2 gradient ∇(q,p)H ∈ C∞(U , `2s), we can define the
flow of a Hamiltonian system

∀ a ∈ Zd, q̇a =
∂H

∂pa
(q, p), ṗa = −∂H

∂qa
(q, p). (4)

To easily deal with normal form transformations, it is convenient to use the

complex representation (ξa)a∈Zd = ( 1√
2
(qa + ipa))a∈Zd in CZd equipped with

the `2s(Z
d,C) norm. Then with the notations

∂

∂ξa
=

1√
2

(
∂

∂qa
− i ∂

∂pa

)
and

∂

∂ξ̄a
=

1√
2

(
∂

∂qa
+ i

∂

∂pa

)
,

the real Hamiltonian system is equivalent to the complex system,

∀ a ∈ Zd, ξ̇a = −i∂H
∂ξ̄a

(ξ, ξ̄) =: (XH(ξ, ξ̄))a (5)

where H(q, p) = H(ξ, ξ̄) ∈ R is a called a real Hamiltonian. The notation
XH(ξ, ξ̄) = (XH(ξ, ξ̄))a∈Zd thus denote the Hamiltonian vector field associ-
ated with the Hamiltonian H. If we associate with (ξ, ξ̄) a complex function
ψ on Td, through the formula

ψ(x) =
∑
a∈Zd

ξae
iax, (6)

then the Sobolev norm ‖ψ‖
Hs is equivalent to the norm

‖ξ‖2

s
=
∑
a∈Zd

〈a〉2s|ξa|2.

The symplectic structure is given by∑
a∈Zd

dqa ∧ dpa = −i
∑
a∈Zd

dξa ∧ dξ̄a. (7)

and the Poisson bracket in complex notation reads

{F,G} = −i
∑
a∈Zd

∂F

∂ξa

∂G

∂ξ̄a
− ∂F

∂ξ̄a

∂G

∂ξa
. (8)

7with the usual notation |a|2 = a2
1 + · · ·+ a2

d for a = (a1, . . . , ad) ∈ Zd.
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Definition 2.1. For a given s > d/2 and a domain U containing 0 in `2s :=
`2s(Z

d,C), we denote by Hs(U) the space of real Hamiltonians P (ξ, ξ̄) ∈ R
satisfying

P ∈ C∞(U ,R), and XP ∈ C∞(U , `2s),
where XP is defined in (5). We will use the shortcut F ∈ Hs to indicate
that there exists a domain U containing 0 in `2s such that F ∈ Hs(U).

Notice that for F and G in Hs the formula (8) is well defined in a neigh-
borhood of 0. With a given Hamiltonian function H ∈ Hs, we associate the
Hamiltonian system (5), and we can naturally defines its flow.

Proposition 2.2. Let s > d/2. Any Hamiltonian in Hs defines a local flow
in `2s which is a symplectic transformation.

2.2. Polynomial Hamiltonians. To algebraically deal with polynomials

depending on (ξ, ξ̄), we identify CZd ×CZd ' CU2×Zd where U2 = {±1} and

use the convenient notation (ξ, ξ̄) = z = (zj)j∈U2×Zd ∈ CU2×Zd where

j = (δ, a) ∈ U2 × Zd =⇒

{
zj = ξa if δ = 1,

zj = ξ̄a if δ = −1.
(9)

We define the `2s norm of an element z = (ξ, ξ̄) to be

‖z‖2

s
:=

∑
j∈U2×Zd

〈j〉2s|zj |2 = 2
∑
a∈Zd

〈a〉2s|ξa|2 = 2‖ξ‖2

s
.

where for j = (δ, a) ∈ U2 × Zd we set 〈j〉2 = 〈a〉2. With this notation, the
Hamiltonian system (5) can be written

ż = XH(z), where (XH(z))(δ,a) := −iδ(XH(ξ, ξ̄))a, z = (ξ, ξ̄) .

Here XH(ξ, ξ̄) denote the vector field in (5). Another way to formulate this
notation is to say that with the identification (9), the vector field XH(ξ, ξ̄)
is naturally extended as (XH(z))j = −iδ ∂H∂zj (z), for j = (δ, a) ∈ U2 × Zd,

where j = (−δ, a).
For k = (k1, . . . , km) = (δi, ai)

m
i=1 ∈ (U2×Zd)m we denote the momentum

M(k) =

m∑
i=1

δiai,

and we define the conjugate k = (−δi, ai)mi=1 ∈ (U2 × Zd)m. We set

Mm = {k ∈ (U2 × Zd)m | M(k) = 0} (10)

the set of zero-momentum multi-indices.
For a given k ∈Mm we write

zk = zk1 · · · zkm .



8 JOACKIM BERNIER, ERWAN FAOU, AND BENOÎT GRÉBERT

We also define

Rm = {(δj , aj)mj=1 ∈Mm | ∃σ ∈ Sm, ∀j = 1, . . . ,m, δj = −δσj
and 〈aj〉 = 〈aσj 〉} (11)

the set of resonant multi-indices. Note that by construction if m is odd
then Rm is empty and that if k = (δj , aj)

m
j=1 ∈ Rm is associated with a

permutation σ then we have

zk =
∏

1≤j≤m
δj=1

ξaj ξ̄aσj . (12)

Definition 2.3. We say that P (z) is a homogeneous polynomial of order m
if it can be written

P (z) = P [c](z) =
∑

j∈Mm

cjzj , with c = (cj)j∈Mm ∈ `∞(Mm), (13)

and such that the coefficients cj satisfy cj = cj.

Note that the last condition ensures that P is real valued, as the set of
indices are invariant by the application j 7→ j. Following [FG13, BFG] but
in a `2s framework, we get the following Proposition. It turns out to be a
consequence of the more general Lemma 5.1 proved below.

Proposition 2.4. Let s > d/2.

(i) A homogeneous polynomial, P [c], of degree m ≥ 2 belongs to Hs(`2s)
and we have

‖XP [c](z)‖s ≤ (Cs)
m‖c‖

`∞
‖z‖m−1

s
, z = (ξ, ξ̄), (14)

for some constant Cs depending only on s.

(ii) For two homogeneous polynomials, P [c] and P [c′], of degree respec-
tively m and n, the Poisson bracket is a homogeneous polynomial of
degree m+ n− 2, {P [c], P [c′]} = P [c′′] and we have the estimate

‖c′′‖
`∞
≤ 2mn‖c‖

`∞
‖c′‖

`∞
. (15)

We end this section with a result concerning Lie transformations. We
recall that to a Hamiltonian function F we associate, if it exists, the Lie
transformation Φ1

F which is the time one flow generated by F . This trans-
formation is automatically symplectic.

Lemma 2.5. Assume that s > d/2 and let P = P [c3] + · · · + P [cr], cm ∈
Mm, be a polynomial of order at least 3 at the origin, then for all ν ≤
κr,s
(

max(‖c3‖`∞ , . . . , ‖cr‖`∞)
)−1

, the Lie transformation τ = Φ1
P is well

defined on a ball Bs(0, ν) of `2s with values in Bs(0, 2ν) and we have

‖τ(z)− z‖
s
≤ Cr,s max

m
‖cm‖`∞ ν

2, ∀ z ∈ Bs(0, ν), (16)

where Cr,s and κr,s are some positive constants depending only on r and s.
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Proof. In view of Proposition 2.4 assertion (i) we deduce from the Cauchy-
Lipschitz Theorem that the flow Φt

P is locally well defined on `2s. Further-
more we have for z ∈ Bs(0, ν) and as long as z(t) = Φt

P (z) ∈ B(0, 2ν)

‖Φt
P (z)− z‖

s
≤
∣∣∣∣∫ t

0
‖XP (z(w))‖

s
dw

∣∣∣∣ ≤ r∑
m=3

Cm,s‖cm‖`∞ |t|(2ν)m−1

≤ Cr,s|t|max
m
‖cm‖`∞ ν

2.

Thus we conclude by a bootstrap argument that, taking ν small enough, the
flow is defined for all z ∈ B(0, ν) up to time t = 1 and that z(t) remains in
B(0, 2ν) for t ≤ 1 and satisfies (16). �

2.3. Non resonance condition.

Definition 2.6. A family of frequencies ω = {ωa, a ∈ Zd} is non resonant,
if there exist (α(r))r≥1 ∈ (R∗+)N and (γr)r≥1 ∈ (R∗+)N, such that for all

r ≥ 1, all N ≥ 1 and all k = (δi, ai)
r
i=1 ∈ (U2 × Zd)r satisfying 〈ai〉 ≤ N,

for i = 1, · · · , r, we have

|δ1ωa1 + · · ·+ δrωar | ≥ γrN−α(r), when k /∈ Rr, (H1)

|δ1ωa1 + · · ·+ δrωar + ωb| ≥ γr+1N
−α(r+1), ∀〈b〉 > N withM(k) + b = 0,

(H2)

|δ1ωa1 + · · ·+ δrωar + ωb1 + ωb2 | ≥ γr+2N
−α(r+2), ∀〈b1〉, 〈b2〉 > N (H3)

with M(k) + b1 + b2 = 0.

We notice that conditions (H1)-(H2) are equivalent to condition (µ2) in-
troduced in the introduction while conditions (H1)-(H2)-(H3) are not equiv-
alent to (µ3) since in (H3) we are not considering the case where the two
high frequencies have opposite sign.

Remark 2.7. Note that in (H2) using the zero momentum condition (see
(10)), 〈b〉 is in fact bounded by rN . Hence (H2) is a trivial consequence of
(H1). Similarly, as in many applications ωa ∼ |a|ν when a → ∞, for some
ν > 0, (H3) is also a consequence of (H1) as we can restrict (H3) to a set of
(b1, b2) that are bounded by C(r)N .

2.4. Statement. Let us start with the following notation: For ξ ∈ `2s and
a given number N , we decompose ξ = ξ≤N + ξ>N where for all j ∈ U2×Zd,

(ξ≤N )j =

{
ξj for 〈j〉 ≤ N,
0 for 〈j〉 > N,

and ξ>N = ξ − ξ≤N .

Given a function ψ ∈ Hs(Td) with Fourier coefficients ξa, a ∈ Zd, and a num-
ber N ≥ 1 the previous decomposition induces naturally the decomposition
ψ = ψ≤N + ψ>N with

ψ≤N (x) =
∑
〈a〉≤N

ξae
ia·x and ψ>N (x) =

∑
〈a〉>N

ξae
ia·x.
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Similarly, we note z≥N and z>N the decomposition induced by the notation
(9).

We now make our hypothesis on the Hamiltonian H that we will consider.

Hypothesis 2.8. The Hamiltonian H can be written

H = H2 + P =
∑
a∈Zd

ωa|ξa|2 + P (17)

where ω = (ωa)a∈Zd is a non resonant family of real numbers in the sense of
Definition 2.6, P belongs to Hs for some s > d/2 and P is of order at least
3 at the origin (which means that P and its differentials up to the order 2
vanish at 0).

Note that in general the frequencies ωa will not be uniformly bounded with
respect to a, and hence the quadratic part

∑
a∈Z ωa|ξa|2, does not belong

to Hs. Nevertheless it generates a continuous flow which maps `2s into `2s
explicitly given for all time t and for all indices a by ξa(t) = e−iωatξa(0).
Furthermore this flow has the group property. By standard arguments (see
for instance [Caz03] and [BFG] in a similar framework), this is enough to
define the local symplectic flow, ż = XH(z), in `2s.

Theorem 2.9. Let H be a Hamiltonian satisfying Hypothesis 2.8. Then for
all r ≥ 2 and all s > s0 > d/2 satisfying

s− s0 ≥ s∗(r) := 6r2α(3r) + 2dr (18)

there exists ε0(r, s, s0, ω) > 0 such that for all ε < ε0(r, s, s0, ω) the solution
ξ(t), generated by the flow of H issued from an initial datum ξ(0) ∈ `22s
satisfying ‖ξ(0)‖

2s
≤ ε, exists for all time t ≤ ε−

r
s0+1 and satisfies

∀ 〈a〉 ≤ Nε := ε
− r
s−s0 ,

∀ t ≤ ε−
r

s0+1 ,

∣∣∣∣∣∣∣∣
∑
b∈Zd
〈b〉=〈a〉

|ξb(t)|2 −
∑
b∈Zd
〈b〉=〈a〉

|ξb(0)|2

∣∣∣∣∣∣∣∣ ≤ ε
3〈a〉−2s

(19)
and 

‖ξ(t)≤Nε‖
2

s
=

∑
〈a〉≤Nε

〈a〉2s|ξa(t)|2 ≤ 4ε2

‖ξ(t)>Nε‖
2

s0
=

∑
〈a〉>Nε

〈a〉2s0 |ξa(t)|2 ≤ ε2r
for t ≤ ε−

r
s0+1 .

Note that by playing with the indices, we can obtain the following corol-
lary (in the same vein as Theorem 1.2) which essentially proves that arbi-
trary high regularity small solutions to (5) are controlled over arbitrary long
times.

Corollary 2.10. Let H be a Hamiltonian satisfying Hypothesis 2.8. For all
r ≥ 2 and s > d/2, there exists s∗(r, s) and ε0(r, s, ω) > 0 such that for all
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ε < ε0(r, s, ω),

‖ξ(0)‖
s∗
≤ ε =⇒ ‖ξ(t)‖

s
≤ 2ε for t ≤ ε−r.

Proof. It is a consequence of the previous Theorem by replacing r by r(s0 +
1), s0 by s and assuming that s∗ is large enough with respect to r and s. �

3. Application to (NLW) on Td.

Introducing v = ut ≡ u̇ we rewrite (NLW) as{
u̇ = v,
v̇ = −Λ2u− f(u) ,

(20)

where Λ = (−∆ +m)1/2 and f ∈ C∞ having a zero of order at least two at
the origin. When m > 0, we can define

ψ =
1√
2

(Λ1/2u+ iΛ−1/2v), (21)

and we get that (u, v) ∈ Hs(Td,R) ×Hs−1(Td,R) is solution of (20) if and

only if ψ ∈ Hs+1/2(Td,C) is solution of

iψ̇ = Λψ +
1√
2

Λ−1/2f

(
Λ−1/2

(
ψ + ψ̄√

2

))
. (22)

Then, endowing the space L2(Td,C) with the standard (real) symplectic
structure −idψ ∧ dψ̄ equation (22) reads as a Hamiltonian equation

iψ̇ =
∂H

∂ψ̄

where H is the hamiltonian function

H(ψ, ψ̄) =
1

(2π)d

∫
Td

(Λψ)ψ̄ dx+
1

(2π)d

∫
Td
F

(
Λ−1/2

(
ψ + ψ̄√

2

))
dx,

and F is a primitive of f with respect to the variable u, i.e. f = ∂uF .
The linear operator Λ is diagonal in the complex Fourier basis8 {eia·x}a∈Zd ,
with eigenvalues

ωa =
√
|a|2 +m, a = (a1, . . . , ad) ∈ Zd, |a|2 = a2

1 + · · · a2
d. (23)

Decomposing ψ in Fourier variables with Fourier coefficients (ξa)a∈Zd as in
(6), (22) takes the form (5) where the Hamiltonian function H is given by
H = H2 + P with,

H2(ξ, ξ̄) =
∑
a∈Zd

ωa|ξa|2,

P (ξ, ξ̄) =
1

(2π)d

∫
Td
F

∑
a∈Zd

ξae
ia·x + ξ̄ae

−ia·x
√

2ωa

dx.

8Here for a = (a1, . . . , ad) ∈ Zd and x = (x1, . . . xd) ∈ Td we set a·x = a1x1 +· · ·+adxd
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As F is smooth, the function P is in Hs and we can define its flow. Finally
(u, v) ∈ Hs(Td,R)×Hs−1(Td,R) is a solution of (20) if and only if ξ ∈ `2s−1/2

is a solution of the Hamiltonian system associated with the Hamiltonian H.
In order to apply Theorem 2.9, we need the following result

Proposition 3.1 ([Del09], Theorem 2.1.1). For almost all m ∈ (0,+∞) the
family of frequencies

ωa(m) =
√
|a|2 +m, a ∈ Zd

associated with (NLW) is non resonant in the sense of Definition 2.6.

A direct proof of this proposition can also be done by using the arguments
given in [Bam03, EGK16] or [FGL13]. By following these proofs, one can
verify that α(r) is of order O(r3).

As a consequence, Theorem 2.9 applies. By scaling back to the variable
(u, v), we obtain

Theorem 3.2. Let f be a C∞ function with zero of order at least 2 at
the origin. Then for almost all m ∈ (0,+∞) and for all r ≥ 2, and all
s0 > (d + 1)/2, there exists s1(r, s0) such that for all s ≥ s1(r, s0), there
exists ε0(r, s0, s,m) and for all ε < ε0(r, s0, s,m), if (u(0), u̇(0)) ∈ Hs ×
Hs−1(T) satisfies ‖(u(0), u̇(0))‖

Hs×Hs−1 ≤ ε, then the system (NLW) admits

a solution over a time T ≥ ε−
r

s0+1 , and we have ‖u(t)≤Nε‖s ≤ 2ε

‖u(t)>Nε‖s0 ≤ ε
r

for t ≤ ε−
r

s0+1

where Nε := ε
− r
s−s0 .

Using that α(r) = O(r3) we can verify that s1(r, s) ' (rs)5. Then Theo-
rem 1.2 is just a reformulation of Corollary 2.10.

4. Normal form

The strategy used to prove Theorem 2.9 is to put the original Hamiltonian
(17) into normal form eliminating most of interactions between the low and
high frequencies. By using Taylor expansion at the origin, the Hamiltonian
H can be written

H = H2 +
r∑

m=3

Pm +Rr+1, with H2 =
∑
a∈Zd

ωa|ξa|2, (24)

where Pm is a homogeneous polynomial of degree m, and where Rr+1 ∈ Hs
is of order r + 1 which means that its differentials vanish up to the order r.
In particular, it is small in the sense that we have

‖XRr+1(z)‖
s
≤ (Cs)

r‖z‖r
s

(25)

for some constant depending only on s and for z small enough in `2s.
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For j ∈Mm let us denote by µn(j) the n-th largest number amongst the
collection 〈ji〉mi=1:

µ1(j) ≥ µ2(j) ≥ · · · ≥ µm(j).

By convention, we will also set µ0(j) = +∞.
LetN be a fixed number and letH be a Hamiltonian satisfying Hypothesis

2.8. For a given r we decompose the Hamiltonian H in (24) as follows:

H = H2 +
r∑

m=3

(P (◦)
m + P (i)

m + P (ii)
m + P (iii)

m ) +Rr+1,

where for all m,

• the polynomial P
(◦)
m = P [c

(◦)
m ], depends only of low modes:

∀j ∈Mm, (c(◦)
m )j 6= 0 =⇒ µ1(j) ≤ N. (26)

• P (i)
m = P [c

(i)
m ] contains only one high mode:

∀j ∈Mm, (c(i)
m )j 6= 0 =⇒ µ1(j) > N ≥ µ2(j), (27)

• P (ii)
m = P [c

(ii)
m ] contains only two high modes:

∀j ∈Mm, (c(ii)
m )j 6= 0 =⇒ µ2(j) > N ≥ µ3(j), (28)

• and P
(iii)
m = P [c

(iii)
m ] contains at least three high modes:

∀j ∈Mm, (c(iii)
m )j 6= 0 =⇒ µ3(j) > N. (29)

Following [BG06], we know that polynomials of the form P
(iii)
m = P [c

(iii)
m ]

are already small in the sense that

‖X
P

(iii)
m
‖
s
≤ CN−s‖z‖m−1

s .

On the other hand, thanks to our non resonance condition, polynomials of

the form P
(i)
m = P [c

(i)
m ] can be killed by a symplectic change of variables

since it cannot be resonant (only one high mode) and polynomials of the

form P
(◦)
m = P [c

(◦)
m ] can be normalized by a standard Birkhoff normal form

procedure. In addition to these two known facts, the following Theorem

says that we can also symmetrize polynomials of the form P
(ii)
m = P [c

(ii)
m ]:

Theorem 4.1. Assume that the frequencies ω = (ωa)a∈Zd are non resonant
in the sense of Definition 2.6, and let r ≥ 2 be given. There exists a con-
stant C depending on r, such that for all N ≥ 1, there exists a polynomial
Hamiltonian

χ =

r∑
m=3

(χ(◦)
m + χ(i)

m + χ(ii)
m ) (30)
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such that χ
(◦)
m = P [a

(◦)
m ], χ

(i)
m = P [a

(i)
m ], χ

(ii)
m = P [a

(ii)
m ], contain zero, one and

two high modes respectively (i.e. satisfy (26), (27) and (28) respectively),
with coefficients satisfying

‖a(◦)
m ‖`∞ + ‖a(i)

m ‖`∞ + ‖a(ii)
m ‖`∞ ≤ CN

rα(r), (31)

and such that the Lie transformation Φ1
χ, whose existence is guaranteed in

a neighborhood of the origin of `2s for all s > d/2 by Lemma 2.5, puts H in
normal form:

H ◦ Φ1
χ = H2 +

r∑
m=3

(Z(◦)
m + S(ii)

m + P̃ (iii)
m ) + R̃r+1, (32)

where Z
(◦)
m = P [b

(◦)
m ], S

(ii)
m = P [b

(ii)
m ], P̃

(iii)
m = P [b

(iii)
m ], contain zero, two

and at least three high modes respectively (i.e. satisfy (26), (28), (29)), with
coefficients satisfying

‖b(◦)m ‖`∞ + ‖b(ii)m ‖`∞ + ‖b(iii)m ‖
`∞
≤ CN rα(r).

Moreover

• Z(◦)
m contains only resonant monomials, which means that

∀ j ∈Mm, j /∈ Rm =⇒ (b(◦)m )j = 0.

• S(ii)
m contains terms that are symmetric in the high modes which

means that if b
(ii)
j 6= 0 for j ∈ Mm, the two highest modes are of

opposite signs: they are of the form (δ, a) and (−δ, b) for some a and
b ∈ Zd.
• The remainder term R̃r+1 is of the form

R̃r+1 = Rr+1 ◦ Φ1
χ +

∫ 1

0
(1− s)r+1P [br+1] ◦ Φs

χds (33)

where P [br+1] defines a homogeneous polynomial of order r+ 1 with

coefficients bounded by ‖br+1‖`∞ ≤ CN
rα(r).

Proof. The proof is standard and use the non resonant Birkhoff normal form
procedure (see [BG06, BDGS07, Gre07]). We follow here the construction
made in [FG13]. By using the formal series expansions H = H2 +

∑
m≥3 Pm

and χ =
∑

m≥3 χm in homogeneous polynomials, the formal normal form

problem is to find χ and X (under normal form) such that

H ◦ Φ1
χ =

∑
k≥0

adkχ(H2 + P ) = H2 +X.

In the formal series algebra, this problem is equivalent to a sequence of
homological equation of the form

∀m ≥ 3, {H2, χm} = Qm −Xm,
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where Qm depends on the function Pk, χk and Xk, k < m previously con-
structed. It is obtained by iterated Poisson brackets preserving the homo-
geneity of polynomial and boundedness of coefficients (see (15)). Formula
for Qm can be found in [FG13], Eq. (3.4).

Now assume that Qm =
∑

j∈Mm
qjzj is given. For a given N we can

decompose it into terms containing zero, one, two and at least three high

modes: Qm = Q
(◦)
m +Q

(i)
m +Q

(ii)
m +Q

(iii)
m and a similar decomposition for the

coefficients qj . The normal form term Xm is then the sum of the resonant

terms in Q
(◦)
m (contributing to the term Z

(◦)
m ), the symmetric part of Q

(ii)
m

(contributing to the term S
(ii)
m ), and the term Q

(iii)
m (contributing to the

term P̃
(iii)
m ). By noting that

{H2, zk} = iΩ(k)zk with Ω(k) = −
m∑
i=1

δiωai , k = ((δi, ai))
m
i=1 ∈Mm,

we then solve the other terms by setting

χm =
∑

j∈Mm\Rm

q
(◦)
j

iΩ(j)
zj +

∑
j∈Mm

q
(i)
j

iΩ(j)
zj +

∑
j∈Mm\Sm

q
(ii)
j

iΩ(j)
zj ,

where Sm denote the set of indices with two symmetric high modes. Note
that when j ∈ Mm\Sm, the two highest modes (larger that N) have the
same sign, and the denominator Ω(j) is controlled by (H3). Similarly, the
first term can be controlled using (H1) and the second using (H2). We then

observe that we loose a factor Nα(m) after each solution of the homological
equation, yielding a bound of order N rα(r) after r iterations. Note also
that all the operations (solution of the Homological equation and Poisson
brackets) preserve homogeneity and the reality of the global Hamiltonians.

It is easy to see that for all s > s0 for z small enough (such that

Cr,sN
rα(r)‖z‖

s
≤ 1 for some constant Cr,s by using (14)) the flow Φ1

χ(z) is

well defined and locally invertible in `2s (its inverse being Φ−1
χ ), see Lemma

2.5.
Finally to obtain (32) we use a Taylor expansion of the term H ◦ Φt

χ for
t ∈ (0, 1). �

For ξ ∈ `2s, we define the pseudo-actions:

Ja(ξ, ξ̄) =
∑
b∈Zd
〈a〉=〈b〉

|ξb|2 (and Jj =
1

2

∑
`∈U2×Zd

〈`〉=〈j〉

|z`|2, j ∈ U2 × Zd). (34)

By definition of the resonant set Rm (see (11)) and the corresponding reso-

nant monomials (see (12)) we see that for all m, the normal form terms Z
(◦)
m
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can be written9

Z(◦)
m (ξ, ξ̄) =

∑
k∈Rm
∀i,〈ki〉≤N

ckzk =
∑

a,b∈(Zd)
m
2 ,

∀i,〈ai〉=〈bi〉≤N

cab

m
2∏
i=1

ξai ξ̄bi , z = (ξ, ξ̄).

We notice that a polynomials in normal form commutes with all the pseudo-
actions:

{Z(◦)
m , Ja} = 0, ∀a ∈ Z, (35)

in such a way the flow generated by Z
(◦)
m will not modify the `2s norms since

‖z‖2

s
=
∑

(1 + a2)2sJa.

5. Proof of the main Theorem

To prove the main Theorem, we will need the following Lemma which
controls polynomial vector fields in mixed Sobolev norms, as high and low
modes are not controled at the same Sobolev scale.

Lemma 5.1. For all s ≥ s0 > d/2, there exists a constant C such that for
all m ≥ 3, for all N ≥ 1 and for all c ∈ `∞(Mm), if the polynomials P [c]
contains at least n-th high modes, n = 0, 1, 2, 3 (i.e. cj 6= 0 =⇒ µn(j) > N)
then we have for z = (ξ, ξ̄) with z≤N ∈ `2s and z>N ∈ `2s0

‖XP [c](z)≤N‖s ≤

 Cm‖c‖
`∞
‖z≤N‖

m−1

s
if n = 0

Cm‖c‖
`∞
Nn(s−s0)‖z≤N‖

m−n−1

s
‖z>N‖

n

s0
if n ≥ 1,

(36)
and

‖XP [c](z)>N‖s0 ≤


0 if n = 0,

Cm‖c‖
`∞
N s0−s‖z≤N‖

m−n−1

s
if n = 1,

Cm‖c‖
`∞
‖z≤N‖

m−n
s
‖z>N‖

n−1

s0
if n ≥ 2.

(37)

Proof. For z = (ξ, ξ̄) ∈ `2s, we have

‖XP [c](z)≤N‖
2

s
≤
∑
〈`〉≤N

〈`〉2s
∣∣∣∣∂P [c]

∂z`
(z)

∣∣∣∣2 ≤ m2‖c‖2

`∞

∑
〈`〉≤N

〈`〉2s0P`(z)2,

where
P`(z) = 〈`〉s−s0

∑
M(j)=0
µn(j,`)>N

|zj1 | · · · |zjm−1 |. (38)

Let j = (j1, . . . , jm) be given such that M(j, `) = 0. We have

〈`〉s−s0 ≤ (〈j1〉+ · · ·+ 〈jm−1〉)s−s0 ≤ ms−s0〈j1〉s−s0 · · · 〈jm−1〉s−s0 .

9Recall that Z
(◦)
m = 0 when m is odd.
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If P [c] contains no high modes, i.e. if n = 0 then we can define z̃j = 〈j〉s−s0zj
and we obtain

P`(z) ≤
∑

M(j,`)=0
µ1(j)≤N

|z̃j1 | · · · |z̃jm−1 |.

For a function g on the torus, we will denote ĝb = (1/2π)d
∫

Td g(x)e−ib·xdx,

b ∈ Zd, the Fourier coefficients of g. Then denoting f(x) =
∑
〈`〉≤N |z̃`|eiδ a·x

we have ∑
M(j,`)=0
µ1(j)≤N

|z̃j1 | · · · |z̃jm−1 | = (f̂m−1)−δa, ` = (δ, a) ∈ U2 × Zd

for some constant C depending on m. So we get for some generic constant
A depending on s and s0 but independent on m

‖XP [c](z)≤N‖
2

s
≤ Ams−s0+2‖c‖2

`∞

∑
a∈Zd

〈a〉2s0 |(fm−1)a|2

= Ams−s0+2‖c‖2

`∞
‖fm−1‖2Hs0 ≤ ACm‖c‖

2

`∞
‖f‖2m−2

Hs0 ,

where ‖g‖
Hs0

, s0 > d/2 is the usual Sobolev norm on Td equivalent to the

`2s0 norm of the Fourier coefficients of g. Here C depends on s and s0 but not

on m. We then note that ‖f‖
Hs0

= ‖z≤N‖s which shows the first equation

in (36).
To prove the second in the case n ≥ 1, we simply bound 〈`〉s−s0 by N s−s0

and we obtain

P`(y) ≤ N s−s0
∑

M(j,`)=0
µn(j)>N

|zj1 | · · · |zjm−1 | = ( ̂fm−ngn)−δa

for ` = −δa with the same notation as before, where

f(x) =
∑
〈`〉≤N

|z`|eiδ a·x and g(x) =
∑
〈`〉>N

|z`|eiδ a·x,

and we conclude as in the previous case.
To show (37) we use

‖XP [c](z)>N‖
2

s0
≤ m2‖c‖2

`∞

∑
〈`〉>N

〈`〉2s0P`(z)2,

where

P`(z) =
∑
M(j)=0
µn(j,`)>N

|zj1 | · · · |zjm−1 |, (39)

In the case n = 1, we have no high mode in the sum. However due to
the zero momentum condition, there exists one mode greater than N/(2m),
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hence with the same notation as before, we have

P`(z) ≤ AN s0−s
∑
M(j)=0
µn(j,`)>N

|z̃j1 | · · · |z̃jm−1 |,

and we conclude as before. The proof of the last estimate in (37) is similar
as the proof of (36) for n ≥ 1 . �

Proof of Theorem 2.9. Let ε > 0, s ≥ s0 > d/2 and r be given, and
z(0) ∈ `22s such that ‖z(0)‖

2s
≤ ε. We apply the normal form Theorem (4.1)

at the order 3r and set
N = Nε = ε

− r
s−s0 .

Under the hypothesis (18), we have the bound

N3rα(3r)+d ≤ ε−1/2. (40)

In particular, all the coefficients of the polynomials Hamiltonian χ, Z◦m,

S
(ii)
m and P̃

(iii)
m in (32) are bounded by CN3rα(3r) ≤ Cε−

1
2 . Hence using

Lemma 2.5 we have for ε small enough (in a way depending on r and s) that
y(0) = Φ−1

χ (z(0)) is in `22s and satisfies ‖y(0)‖
2s
≤ 5

4ε.

This implies in particular that ‖y(0)≤N‖s ≤
5
4ε and

‖y(0)>N‖
2

s0
=
∑
〈j〉>N

〈j〉2s0 |yj |2 ≤ N2s0−4s
∑
〈j〉>N

〈j〉4s|yj |2

≤ 4ε2N4(s0−s) ≤ 4ε4r+2.

Now we need to control the dynamics of y(t) the solution of the Hamiltonian
system associated with the Hamiltonian H ◦ Φ1

χ given by (32). We define

T := sup{t > 0 | ‖y(t)≤N‖s ≤
3
2ε and ‖y(t)>N‖s0 ≤ ε

r+1}. (41)

We notice that ‖y(0)‖
2s
≤ 5

4ε < 3
2ε and ‖y(0)>N‖s0 ≤ 2ε2r+1 < εr+1.

Therefore by classical results for the definition of mild solutions of semi-
linear problems in Sobolev spaces with index greater than d/2, T is strictly
positive.

Let us prove that if t ≤ min(T, ε
− r
s0+1 ) then ‖y(t)≤N‖s ≤

11
8 ε and ‖y(t)>N‖s ≤

1
2ε
r+1. We will then conclude by a continuity argument that T ≥ ε−

r
s0+1 .

Control of the transformation. In view of Lemma 5.1, under bootstrap hy-
pothesis, the vector field Xχ(y(t)) satisfies the estimates

‖Xχ(y)≤N‖s ≤ CN
3rα(3r)(ε2 +N s−s0εr+1ε) ≤ Cε

3
2

where we used N s−s0 = ε−r, and

‖Xχ(y)≤N‖s0 ≤ CN
3rα(3r)(N s0−sε2 + εr+1ε) ≤ Cεr+

3
2 .

Hence this shows that as soon as y satisfies the bootstrap hypothesis, i.e.

‖y(t)≤N‖s ≤
3
2ε and ‖y(t)>N‖s0 ≤ ε

r+1, (42)
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we have for ε small enough and for all w ∈ (0, 1)

‖Φw
χ (y)≤N‖s ≤ 2ε and ‖Φw

χ (y)>N‖s0 ≤ 2εr+1. (43)

Now let us write the Hamiltonian (32) as H ◦ Φ1
χ = H2 + Z(◦) + S(ii) +

P̃ (iii) + R̃3r+1 by gathering together the terms with different homogeneity.

Control of the low modes y(t)≤N . For j ∈ U2×Zd, let Jj(t) = Jj(y(t)) with

the definition (34). As Z(◦) and H2 commute with Ja for all a ∈ Zd, we have

for t ≤ min(T, ε
− r
s0+1 ) and 〈j〉 ≤ N ,

〈j〉2s|J̇j | = 〈j〉2s|{Jj , H̃}| ≤
∑
〈`〉=〈j〉

〈`〉s
∣∣∣∣∣∂(S(ii) + P̃ (iii) + R̃3r+1)

∂y¯̀
(z)

∣∣∣∣∣ 〈`〉s|y`|.
By summing in 〈j〉 ≤ N , and using Cauchy-Schwarz inequality, we obtain∑

〈j〉≤N

〈j〉2s|J̇j | ≤ ‖XS(ii)+P̃ (iii)+R̃2r+1
(y)≤N‖s ‖y≤N‖s

Now under bootstrap hypothesis (42), we conclude using Lemma 5.1

‖XS(ii)+P̃ (iii)(y)≤N‖s ≤ CN
3rα(3r)N s−s0ε2r+2 ≤ Cεr+

3
2 .

On the other hand since R3r+1 is a Hamiltonian in Hs of order at least
3r + 1, we have using (25), (33) and Lemma 2.5

‖XR̃3r+1
(y)≤N‖s ≤ CN

3rα(3r)ε3r.

Hence we obtain ∑
〈j〉≤N

〈j〉2s|J̇j | ≤ C(ε3r+1 + εr+
5
2 ).

Therefore for t ≤ min(T, ε−r+1) we conclude∑
〈j〉≤N

〈j〉2s|Jj(t)− Jj(0)| ≤ ε
7
2

for ε small enough which in turn implies that

‖y(t)≤N‖s ≤
11
8 ε. (44)

Furthermore by using estimates on the vector field Xχ, we deduce that
z(t) = Φ1

χ(y(t)) satisfies (19).

Control of the high modes. The Hamiltonian S(ii) can be written as

S(ii)
m =

∑
a,b∈Zd

〈a〉>N, 〈b〉>N

Bab(y≤N )ξaξ̄b, y = (ξ, ξ̄).
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As the Hamiltonian is real we have Bab(y≤N ) = Bba(y≤N ), i.e. the operator
A = (Bab(y≤N )〈a〉,〈b〉>N acting on `2s(Z

d
>N ) is Hermitian. Moreover, we have

Bab(y≤N ) =
2r−2∑
m=1

∑
j∈Mm

µ1(j)≤N
M(j)=a−b

bab,jyj (45)

where the coefficients bab,j are uniformly bounded by CN3rα(3r). Hence for
s > d/2 and as soon as y satisfies the bootstrap assumption (42), we obtain
that

∀ 〈a〉, 〈b〉 > N |Bab(y≤N )| ≤ CN3rα(3r)‖y≤N‖s . (46)

When writing the dynamics of y = (ξ, ξ̄), we get

ξ̇a = −iωaξa − i
∑
b∈Zd

Bab(y≤N )ξb − iQa(y), 〈a〉 > N

where Qa = ∂
∂ξ̄a

(P̃ (iii) + R̃3r+1). Using (37) we have

‖Q(y)>N‖s0 ≤ CN
3rα(3r)(ε2r+2ε+ ε3r). (47)

So using the fact that the operator A is hermitian, we get for t ≤ T (recall
that we assume that ‖y(0)>N‖0

≤ ε2r+1)

‖y(t)>N‖0
= 2‖ξ(t)>N‖0

≤ 2‖ξ(0)>N‖0
+ tCε2r+ 3

2 ≤ C(1 + t)ε2r+1. (48)

Let us define Ds0 the diagonal operator from `2s(Z
d
>N ) into `2s−2s0

(Zd>N )
given by

Ds0 = diag(〈a〉2s0 , 〈a〉 > N).

With the notation (η, ξ)>N =
∑
〈a〉>N η̄aξa, we have

d

dt
(ξ,Ds0ξ)>N = −i(ξ, [Ds0 , A(t)]ξ)>N + Im(Q(y), Ds0ξ)>N

where [A,B] denotes the commutator of A and B: [A,B] = AB −BA.
Hence by bootstrap hypothesis (and using (47))∣∣∣∣ d

dt
(ξ,Ds0ξ)>N

∣∣∣∣ ≤ ∣∣(ξ, [Ds0 , A(t)]ξ)>N
∣∣+ Cε3r+ 5

2 .

Then we note that using the zero momentum condition (45) we haveBab(t) =
0 when |a− b| > 3rN . Hence, since s0 > 1/2, we have∣∣(ξ, [Ds0 , A(t)]ξ)>N

∣∣ =
∣∣∣ ∑
〈a〉,〈b〉≥N
|a−b|≤3rN

Bab(y)(〈a〉2s0 − 〈b〉2s0)ξ̄aξb

∣∣∣
≤

∑
〈a〉,〈b〉≥N
|a−b|≤3rN

2r|Bab(t)||〈a〉 − 〈b〉|(〈a〉2s0−1 + 〈b〉2s0−1)|ξ̄aξb|.
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Using the bound (46) and the fact that |〈a〉 − 〈b〉| ≤ 〈a− b〉 ≤ CN , we get∣∣(ξ, [Ds0 , A]ξ)
∣∣ ≤ CN3rα(3r)ε

∑
〈a〉,〈b〉≥N
|a−b|≤3rN

〈a〉s0−1〈b〉s0 |ξ̄aξb| (49)

where we used that for |a − b| ≤ 3rN we have 〈a〉 ≤ 〈b〉 + 3rN . Now we
apply the Cauchy-Schwarz inequality to get∑
〈a〉,〈b〉≥N
|a−b|≤3rN

〈a〉s0−1〈b〉s0 |ξ̄aξb| ≤

 ∑
〈a〉,〈b〉≥N
|a−b|≤3rN

〈a〉2s0−2|ξ̄a|2


1
2
 ∑
〈a〉,〈b〉≥N
|a−b|≤3rN

〈b〉2s0 |ξb|2


1
2

≤ CNd‖y>N‖s0−1
‖y>N‖s0

where we used again that for |a − b| ≤ 3rN we have 〈a〉 ≤ 〈b〉 + 3rN with
a ∈ Zd. Thus, using (40), we obtain

d

dt
‖y(t)>N‖

2

s0
≤ C‖y(t)>N‖s0−1

‖y(t)>N‖s0 + Cε3r+ 5
2 . (50)

Then, since s0 > 1, applying the Hölder inequality in (50), we get

d

dt
‖y(t)>N‖

2

s0
≤ C‖y(t)>N‖

1/s0

0
‖y(t)>N‖

2(1−1/s0)

s0
+ Cε3r+ 5

2 . (51)

Using, in (51), the bound on ‖y(t)>N‖0
obtained in (48), we get

d

dt
‖y(t)>N‖

2

s0
≤ C(1 + t)1/s0ε

2r+1
s0 ‖y(t)>N‖

2(1− 1
s0

)

s0
+ Cε3r+ 5

2 . (52)

We are going to apply the following elementary lemma

Lemma 5.2. Let α ∈ (0, 1), f : R → R+ a continuous function, and x :
R→ R+ a differentiable function satisfying the inequality

∀ t ∈ R,
d

dt
x(t) ≤ 1

1− α
f(t)(x(t))α.

Then we have the estimate

∀ t ∈ R, x(t)1−α ≤ x(0)1−α +

∫ t

0
f(s) ds.

Considering (52), we are going to apply Lemma 5.2 with α = 1 − 1/s0

and x(t) = ‖y(t)>N‖
2

s0
+ ει(s0,r) where ι(s0, r) = (3r + 5

2 −
2r+1
s0

)(1− 1
s0

)−1.

Indeed, x naturally satisfies the estimate

d

dt
x(t) ≤ C(1 + t)

1
s0 ε

2r+1
s0 x(t)

1− 1
s0 .



22 JOACKIM BERNIER, ERWAN FAOU, AND BENOÎT GRÉBERT

Now applying Lemma (5.2), we get

x(t) ≤ Cx(0) + Cε2r+1(1 + t)s0+1.

Since we have assumed that ‖y(0)>N‖s0 ≤ ε
2r+1 and since a straightforward

estimate proves that ι(s0, r) ≥ 2r + 1, we deduce that

‖y(t)>N‖s0 ≤ Cε
2r+1(1 + t)s0+1

and hence for t ≤ min(T, ε
− r

(s0+1) ) and ε small enough

‖y(t)>N‖s0 ≤
1

2
εr+1. (53)

Hence combining (44) and (53), we conclude by continuity argument that

T ≥ ε−
r

(s0+1) which finishes the proof.
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