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CONCENTRATION VERSUS OSCILLATION EFFECTS IN
BRITTLE DAMAGE

JEAN-FRANCOIS BABADJIAN, FLAVIANA IURLANO, AND FILIP RINDLER

ABSTRACT. This work is concerned with an asymptotic analysis, in the sense of I'-convergence,
of a sequence of variational models of brittle damage in the context of linearized elasticity. The
study is performed as the damaged zone concentrates into a set of zero volume and, at the
same time and to the same order ¢, the stiffness of the damaged material becomes small. Three
main features make the analysis highly nontrivial: at ¢ fixed, minimizing sequences of each
brittle damage model oscillate and develop microstructures; as € — 0, concentration of damage
and worsening of the elastic properties are favoured; and the competition of these phenomena
translates into a degeneration of the growth of the elastic energy, which passes from being
quadratic (at e fixed) to being linear (in the limit). Consequently, homogenization effects interact
with singularity formation in a nontrivial way, which requires new methods of analysis. In
particular, the interaction of homogenization with singularity formation in the framework of
linearized elasticity appears to not have been considered in the literature so far. We explicitly
identify the I'-limit in two and three dimensions for isotropic Hooke tensors. The expression of
the limit effective energy turns out to be of Hencky plasticity type. We further consider the
regime where the divergence remains square-integrable in the limit, which leads to a Tresca-type
model.
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1. INTRODUCTION

In the theory of brittle damage (see, e.g., [26]) in the so-called “brutal” regime, a linearly elastic
material can exist in one of two states: a damaged state, for which the energy is described via
a symmetric fourth-order “weak” elasticity (Hooke) tensor A,; or an undamaged state with a
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“strong” elasticity tensor A, with A, < A,. Damage is a typical inelastic phenomenon described
by means of an internal variable, which here is given as the indicator function of the damaged region.
The dissipational energy is taken as proportional to the damaged volume. If @ C R™ stands for
the volume occupied by the body at rest, u : Q@ — R™ (n = 2 or n = 3) is the displacement and
x : @ — {0,1} is the indicator function of the damaged region, then the total energy is given as

(u,x) = E(u, x) == %/Q[XAUJ +(1- X)As]e(u) ce(u) dx + /f/gxdx,

where x > 0 is the material toughness, i.e., the local cost of damaging a healthy part of the
medium, and e(u) := 1(Vu + VuT) is the linearized strain. This type of energy functional is
also encountered in the theory of shape optimization, where one aims to find optimal shape (here
D := {x = 1}) minimizing a cost functional (here the elastic energy) under a volume constraint.
In this framework, the toughness x can be thought of as a Lagrange multiplier associated to this
equality constraint.

Assuming standard symmetry and ellipticity conditions on the elasticity tensors A,, and A, the
above energy F is well-defined for displacements u € H'(2;R™). It is well known that the problem
of minimizing F (adding suitable forces and/or boundary conditions) is ill-posed, in the sense that
minimizing sequences tend to highly oscillate and develop microstructures (see, e.g., [26] [6] 29]). A
relaxation phenomenon occurs, leading to a homogenized problem where brittle damage is replaced
by progressive damage. In this new formulation, damage is described by means of a volume fraction
0 € L>(£;]0,1]) and the homogenized stiffness of a composite material is obtained through fine
mixtures between the damaged part with volume fraction # and the undamaged part with volume
fraction 1 —6. Much work has been devoted to the study of this relaxed problem in homogenization
theory, for example to the identification of all attainable composite materials (the so-called G-
closure set), or to bounds on the effective coefficients (the Hashin-Shtrikman bounds). We refer
to [31, 36l 27, 4, 5, 29] and to the monograph [I] as well as the references therein for more details.

Minimizing FE first with respect to x, the relaxation problem described above can be rephrased
as the identification of the lower semicontinuous envelope of the functional

u€ HY(QR") /QW(e(u)) dx,

where
W(€) := min {;Asf &, %Awf &+ K,} .

Notice in particular that W fails to be (quasi-)convex. Standard relaxation results show that the
lower semicontinuous envelope is given by

uH/{ZSQW(e(u)) dzx,

where SQW is the symmetric quasiconvex envelope of W. An explicit expression for SQW is in
general unknown, although several results have been obtained, see, for instance, [3] [6].

In the present work, we are interested in the limit passage to a total damage model, i.e., when
the elasticity coefficients A, of the weak material tend to zero, and at the same time the volume of
the damaged region vanishes. More precisely, we introduce a small parameter £ > 0 and consider
the rescaled energy functional

E.(u,x) := %/ﬂ[newa + (1= x)AL]e(u) : e(u) dz + g /Q x dz,

where . — 0 as € — 0 is a rescaling factor. We then ask about the limit behavior of F, as ¢ — 0.
Note that now there is a trade-off between the cost of the damage /e and the resulting weakening
of the stiffness tensor 7. A,, in the damaged region.
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One motivation of this analysis goes back to the numerical investigations performed in [2] in
a discrete framework. There, forcing the elastic properties to become weaker and weaker on sets
of arbitrarily small measure leads to the appearance of singularities. A first aim of this paper is
to make rigorous such observations and to precisely describe the limit model obtained through an
asymptotic analysis.

From a mathematical point of view, we will carry out our analysis by computing the I'-limit of
E. as € — 0 for the three different regimes of 7. < &, . ~ € and 1. > €. It turns out that the most
relevant regime is 7. ~ €. Indeed, on the one hand, if 1. < ¢, the elastic energy associated to the
damaged material is so negligible that it is preferable to damage as much as possible, leading to a
trivial T-limit (see Theorem . On the other hand, if n. > ¢, the damaged set is so small that
the limit model turns out to be of pure elasticity type with elasticity tensor A (see Theorem [5.1]).

The case 7. ~ € poses a number of mathematical challenges. First, as ¢ — 0, it is not hard
to see that, if u. denotes an almost-infimum point of E., the only uniform bound that can be
obtained is on the L'-norm of the elastic strains (e(u.)):>o (see Lemma [2.1). This shows that
e(ue) may concentrate into a singular measure in the limit, which describes “condensated” defects
inside the medium. The domain of the displacements in the I'-limit is thus given by BD(Q2), which
are vector fields of bounded deformation (see the next section for a precise definition). Second, to
compute the I-limit of F., we need to take into account that homogenization effects will interact
with the singularity formation in a nontrivial way. We are not aware of any previous works
considering the above framework. We remark that the quadratic-to-linear behavior arising from
energetic competition is typical of works in the gradient theory of phase transition [25] @], where,
however, the full gradient is considered in place of the symmetric gradient; a quadratic-to-linear-
type behavior in the context of linearized elasticity is obtained in [I3] [14], but there the relaxation
concerns a functional defined on functions that are smooth outside the free-discontinuity set; finally,
explicit identifications of the I'-limit in linearized elasticity are available for quadratic-to-quadratic
convergences [24] [15] [1'7, [16].

The identification of the I'-limit is highly nontrivial because of the inherent nonconvexity of the
problem. Assuming for simplicity that 7. = €, the problem of finding the I'-limit of E. turns out
to be equivalent to finding the I'-limit of the family of functionals

u€ HY(RY) — /QVVg(e(u)) dz,

where
W.(€) := min {;Asg €, gAwg e ';} ,

or still the I'-limit of their relaxations, given by

uH/ﬂSQWS(e(u)) dx,

where SQW. is the symmetric quasiconvex envelope of W,.. We next specialize to isotropic Hooke
tensors A,, and Ag, that is,

A& = (tr ) Id 42048,

Asf = )\s(tr 5) Id +2p¢,
where A\; > 0 and p; > 0 are the Lamé coefficients. In this case, although the explicit expression of
SQW, is not known (see [6]), it is possible to compute explicitly its pointwise limit W, which rests
on an interesting I'-convergence argument for the Hashin-Shtrikman bound (see Proposition .
More precisely, the pointwise limit W is given as an infimal convolution

W := fOV2kh
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between
& %Asﬁ & and € \/2kA(E),

where h is defined as

hE) = (Zm) + O + 1) (Z@) . eemn,
i=1 i=1

with the £;’s denoting the eigenvalues of &.
Our main result (see Theorem is then that the functionals E. I'-converge as ¢ — 0 to the
functional
J— —00 dEsu
we BD(QY) — [ W(e(u)dz+ [ W | =—— | d|E°ul,
Q Q d|Esul

where W is the recession function of W and the linearized strain measure Eu is decomposed
(in the Lebesgue-Radon-Nikodym sense) as Eu = e(u)L™ + E*u. The function W turns out
to be quadratic close to the origin and to grow linearly at infinity, with a slope given by the
recession function W~ = v/2kh. Remarkably, and perhaps surprisingly, this is a typical energy
density encountered in perfect plasticity (actually, Hencky plasticity, since we are dealing with
static models). So, our results show how a brittle damage model may lead to a plasticity model in
a singular limit (see also [28] [20] for gradient damage models).

This result entails that for the bulk part we have a response that is (optimally) homogenized
between the undamaged and the damaged parts, while for the singular part (which may contain
jumps and fractals) we only see a dependence on the damaged Hooke tensor A,. Since for £ €
ngxn? the expression \/m describes the energy cost (density) of optimally damaging the linear
map z — £x, the above expression for the I'-limit can be interpreted as follows: in the bulk part,
the material may oscillate finely between damaged and undamaged areas, giving, by definition of
the infimal convolution, a decomposition of the homogenized bulk energy of the form

W) = %Ase i e+ v/2kh(p),

where the linearized strain is additively decomposed as £ = e + p with e an elastic strain and p a
plastic (permanent) strain.

For the proof of the theorem, one first observes that the effective integrand W is a natural
candidate for the bulk energy density of the I'-limit and the energy functional associated to it
easily provides an upper bound for F.. We stress that it is not straightforward to obtain the
I-limsup inequality through a direct construction of a recovery sequence. Explicit constructions
can be exhibited if the displacement is linear u(x) = £z and the matrix ¢ is diagonal, and improved
if £ is rank-one symmetric (see Section .

The problem of establishing the lower bound is much more delicate. The crucial question is
to understand the interplay between the shape of SQW. and a sequence of symmetric gradients.
These questions are in general highly nontrivial and not much is known (the only results about
concentrations in sequences in BD() seem to be [21]22]). The main difficulty is related to the fact
that there is a loss in the growth of the elastic energy passing to the limit as € — 0, which prevents
one to easily control the contribution of the energy for large strains. In addition, standard cut-off
techniques, which replace the boundary value of a minimizing sequence by that of the target, do
not apply since minimizing sequences only converge in the weak* sense in BD (thus strongly in L
for any p < -5 < 2 by compact embedding), while the energy has quadratic growth for fixed e.

The classical argument to get a lower bound is to apply Young’s inequality inside the damaged
region. This allows us to bound from below the energy associated to arbitrary sequences (x:)e>0
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and (u6)5>0 by

/Q(l - Xs)%ASe(us) se(us) + xev/2rA we(us) : e(ue) da. (1.1)

One observes

V2EALE : € < \/26N(E)

and that equality holds only on rank-one symmetric matrices a ® b (see Proposition . Hence,
this lower bound would coincide with the previous upper bound if e(u.)(x) was rank-one symmetric
for almost every x € {x. = 1}, which, however, is obviously false.

Analyzing for simplicity the two-dimensional case, one observes that, when e(u,) is not rank-one
symmetric, the gap originating from replacing A, e(u.) : (u:) by h(e(ue)) in is controled by
the quantity e(dive(uc))™. Now, heuristically, since |e(u:)x:| ~ 1/, one imagines that the subset,
say Z., where u. has slope 1/¢ along two different directions (in the sense that e(u.) fails to be
rank-one symmetric and has both eigenvalues of order 1/¢) has measure of order strictly smaller
than e. If one would be able to formalize this idea, the two bounds obtained from below and from
above would match. This intuition is supported by the fact that e(u.) on Z. is away from the wave
cone associated to the differential operator curl curl, so that by [21] it is reasonably to expect some
elliptic regularity properties for u. in Z. and therefore a good size estimate for Z.. However, the
formalization of this “compensated compactness” strategy is at present unclear and we here must
follow a different argument (which can, in fact, itself also be seen as a “compensated compactness”
approach).

The key observation enabling our proof is that \/zu. — 0 weakly in H!(Q;R™) and therefore in
dimension n = 2 one has edet(Vu:) — 0 weakly* in the sense of measures. Fine computations are
needed to adapt this observation to the symmetric gradient, then to its positive part, and, finally,
to generalize the argument to three dimensions, where the condition edet(Vu.) — 0 has to be
replaced by ecof (Vu.) — 0 with cof £ the cofactor matrix associated to &.

In the same spirit as the model described above, we also study the asymptotic behavior of
a similar family of functionals, where now the divergence term of the weak material does not
degenerate to zero. More precisely, we consider a weak material with an elasticity tensor AS of
the form

ALE = A (tr) Td 4261,
where A\, < Ay For all (u,x) € HY(Q;R") x L>=(Q;{0,1}), the associated energy is defined by

E.(u,x) := %/Q[XAZJ + (1= x)As]e(u) : e(u) dz + S/Q)(dz.

In this new problem, the divergence of the displacement is not penalized anymore, and the domain
of the I'-limit is given by those displacements u € BD(Q) satisfying divu € L*(Q) (that is, the
distributional divergence is absolutely continuous with respect to Lebesgue measure and has a
square summable density). In other words, this means that the displacement w lies in the Temam—
Strang space U(), see, e.g., [37]. Using the same type of arguments, we show that the I'-limit is
a quadratic functional of divu and a linear functional of the deviatoric part Epu of the linearized
strain measure Fu. It is explicitly given by

un—>/( 'u“’)(dlvu dm+/WeD dx—l—/ 2K h d|E5 d|E}§,u|7

where the deviatoric bulk energy density is again defined via an infimal convolution, namely as

W::fDVQ/JL
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with

n 2

F©) = mlel? R(€) == pa (Z §i|> for all € € MJy™

i=1
and & < --- <&, being the ordered eigenvalues of £&. We recover in this way the well-known Tresca
model of perfect plasticity since V 2kh is precisely the support function of the Tresca elasticity set
K = {’7’ S M%X” T — T < 2\/2/€uw}, where again 71 < --- < 7, are the ordered eigenvalues of
the deviatoric matrix 7 € M7*".

This paper is organized as follows. In Section 2, we introduce general notation and define
precisely the problem under investigation. In Section 3, we analyze the main regime 7. ~ ¢,
leading to a Hencky-type model. Sections 4 and 5 are devoted to investigating the trivial regime
1. < € and the elastic regime 7. < . Finally, in Section 6, we carry out the analysis of the
modified problem leading to a Tresca-type model. In an appendix we state basic (but perhaps less
well-known) facts from linear algebra, which we need in the analysis.

2. NOTATION AND PRELIMINARIES

2.1. Notation. The Lebesgue measure in R” is denoted by £™ and H* stands for the k-dimensional
Hausdorff (outer) measure. If a and b € R", we write a - b := Y .| a;b; for the Euclidean scalar
product, and we denote the corresponding norm by |a| := v/a - a.

Matrices. The space of symmetric n x n matrices is denoted by M. It is endowed with the

Frobenius scalar product ¢ : n := tr({n) and with the corresponding Frobenius norm |{| := /€ : €.

We also denote by M the set of all symmetric deviatoric matrices, i.e. all { € M/ such
that tré = 0. Any matrix £ € ngxrg can be uniquely decomposed as £ = £p + %Id, where

Epi=&— % Id € M’y*" is the deviatoric part of £, and % Id is the hydrostatic part of £. Finally,
given § € MIT", we denote by det({) its determinant and by cof § € M its cofactor matrix.
For any a, b € R, we define the tensor product a ® b := ab” and the symmetric tensor product

a®b:=(a®b+b®a)/2.

Function spaces. We use standard notation for Lebesgue spaces, LP, and Sobolev spaces, WP
or H* := W"2. Given an open subset © of R”, we denote by BD(f2) the space of functions of
bounded deformation, i.e., all vector fields u € L'(€2;R™) such that the distributional linearized
strain Eu := (Du+ Du”)/2 € M(; ML), where M(Q; MZ5") stands for the space of all M-
valued Radon measures with finite total variation. We can split Fu according to the Lebesgue
decomposition as

dE?
Eu=e(u)L"L_Q+ Fu=ec(u)L"_Q+ d|ESZ\ |E*ul,
where e(u) € L'(Q; MZ<") is the Radon-Nikodym derivative of Fu with respect to £, and E*u

is the singular part of Fu with respect to £™. Furthermore, we denote by d(fgizz‘ the Radon—
Nikodym derivative of E®u by its own total variation measure |E*ul, i.e. the polar of E%u. We
refer to [34], B5), BT, [7] for general properties of the space BD(2). We also define LD(2) := {u €
BD(QY): ESu=0}.

Convez analysis. We recall several definitions and basic facts from convex analysis (we refer

to [23], B3] for proofs). Let ¢ : MZX" — [0, +00] be a proper function (i.e. not identically +o0).

sym

The convex conjugate of 1 is defined as
Y (1) := sup {T (€ — 1/}(5)} for all £ € Mfyﬁl, (2.1)
£EM!

which is a convex and lower semicontinuous function. Repeating the process, we can define the
biconjugate function ¥** = (¢*)* which turns out to be the lower semicontinuous convex hull of
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1, i.e., the largest lower semicontinuous and convex function below . In particular, if C' C Mg

is a set, we define the indicator function I of C' as I¢ := 0 in C' and +oo otherwise. The convex
conjugate I} of I¢ is called the support function of C'.

If k : M — [0, +0oc] is a positively 1-homogeneous convex function such that k(0) = 0, the

polar function of k is defined by
k°(&):= sup 7:& forall £ € MR,

k(r)<1 o
Let ¢ : ME" — [0, +0c) be a convex function. Then the limit
o o(t8)
o0 o
0= lm =

exists for every £ € M TP (in [0, +oc]), and ¢ is called the recession function of ¢. It is a convex
positively 1-homogeneous function.
If ¢1, g2 : M — [0, +o00] are proper convex functions, then the infimal convolution of ¢; and

@9 is defined as
(¢10¢2)(¢) = inf {¢1(§ &) +¢a(E)}, (22)

£ eME"
which turns out to be a convex function. It can be shown that
$10¢2 = (97 + ¢3)".
Moreover, if ¢; and ¢ are nonnegative, convex, ¢1(0) = 0, and ¢, is positively 1-homogeneous,
then ¢1 O ¢ is the convex hull of ¢1 A ¢o := min(dy, ¢2).

If ¢, ¢1, ¢2 are defined on MB " only, then the convex conjugate and the inf-convolution can be
defined as functions on M,*", taking respectively the supremum and the infimum in the formu-

las ([2.1) and (2.2)) over the space MH*".

2.2. Description of the problem. Let Q be a bounded open set of R™. For every u € H'(£2;R"),
X € L>(Q;{0,1}) and any € > 0, we define the following brittle damage energy functional:

Peunn) = 5 [ [roxn+ (1= 0AJew) ey do+ = [

In the previous expression, k > 0, . > 0, and A,,, As are symmetric fourth-order tensors satisfying
g Id<A; < 1d forie{w,s} (2.3)

as quadratic forms over M{{", for some constants c,, ¢, ¢, ¢ > 0.

We assume that . — 0 as ¢ — 0, so that one can suppose that . A, < A; as quadratic forms.
The Hooke tensors 1. A, and Ag represent respectively the elasticity coefficients of a weak and a
strong material. The weak, or damaged, part of the body has elastic properties which degenerate.
At the same time, the toughness xk/e — 400 as € — 0 forces the damaged zones to concentrate
on vanishingly small sets. Our goal is to understand the behavior of the previous brittle damage
functional as € — 0 by means of a I'-convergence analysis.

Let us define for all £ € M X"

sym )

FO) = 5AE 6 0= TAuE 4" (2.49)

and
WE(&) = f(g) /\gs(g)'

Then, we can write
Buun) = 5 [ (1= 0f(etu) + xge(e(uw) da
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For all (u,x) € L'(Q;R"™) x L*(€), we further set

E(ux) = Eo(u,x) i (u,x) € HY(Q;R™) x L=(Q;{0,1}),
s\th X) = +00 otherwise.

We consider the I'-lower and T-upper limits &) and & : L'(Q; R™) x L1(Q) — [0, +00], respectively,
of (€:)e>0, that is (see [19]), for all (u,x) € L*(;R™) x L1(Q),
Eh(u, x) := inf {limi(l)lfé‘s(ug,xg) ¢ (ue, xe) = (u, x) in LY R™) x Ll(Q)} ,
e—
and

' (u, x) := inf {limsupé's(ug,xg) ¢ (ue, xe) — (u, x) in LY R™) x Ll(Q)} .
e—0

If &) = &/, then this functional is the I-limit of the sequence (&;)c>o. It is our task in the following
to explicitly identify this functional. It turns out that this depends on the sequence (1.)e~0 (only)
through the value

a:=1lim E ¢ [0, +o0].
e—=0 €

We consider the sequence (7:).>0 fixed, so we do not make the dependence on « explicit in our
notation.
We begin our analysis by identifying the domain of finiteness of the I'-limit.

Lemma 2.1. Let (u,x) € L*(Q;R") x LY(Q) be such that E)(u,x) < +o0o. Then x =0 a.e. in Q
and if further o > 0, then uw € BD(Q).

Proof. Let (ue, X<)e>0 be a sequence such that (uc,x:) — (u,x) in L1(Q;R") x L}(Q) and
lim inf & (ue, x=) = E(u, x) < +o00.
Let us extract a subsequence (ug, Xk )keN := (Ue,, Xep Jken Of (Ue, Xe)e>o such that
kli_)n; Ee, (ug, Xx) = liggffg(ua,xa) < +o0.
This implies that, for k large enough, uz, € H'(;R™), xx € L>=(Q;{0,1}), and

M :=sup E;, (ug, xx) < +o0.
keN

From this energy bound first observe that
M
/Xkda:gj—)O as k — oo
Q k

which shows that x = 0 a.e. in .
Since A€ : € > c,|€]? and A€ : € > ¢,|€]?, Young’s inequality yields
. Cs 2neKey
Ws<5>zmm{2|e|2, 5|§|}.
€

If n./e = a € (0,400], then we can find a constant ¢ > 0, only depending on ¢, ¢s, k, and a,
such that 1

W.(&) > cl¢| — - for all £ € ML (2.5)

As a consequence, we have

c/ le(ug)| dx — L(Q) < / We, (e(ug)) dz < E., (ug, xx) < M.
Q ¢ Q

This implies that the sequence (ug)ken is bounded in BD(R2), and thus u; — u weakly* in BD(Q)
with u € BD(Q). O
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3. THE HENCKY REGIME

In this section, we consider the case a € (0,00). Our first main result reads as follows.

Theorem 3.1. Let  C R™ (n = 2 or n = 3) be a bounded open set with Lipschitz boundary.
Assume that A, and A are isotropic tensors, i.e., for all § € M{JT,

AE = Ay (tré) Id+2u,€,

As§ = )‘s(tr 5) Id +2ps¢,

where \; > 0 and p; > 0 are the Lamé coefficients. If

a:=lim = ¢ (0, 00),
e—0 &

then the functionals €. T-converge as ¢ — 0 with respect to the strong L*(2;R™) x L*(2)-topology
to the functional & : L*(;R™) x L1(Q) — [0, +00] defined by

_— E'S
/ W(e(u)) dx —|—/ 2akh dE*u d|E°u|  if x =0 a.e. and u € BD(Q),
Q Q d|E*ul

otherwise.
Here, the limit integrand is given by the infimal convolution
W := fOV2akh,

where, if & < -+ < &, denote the ordered eigenvalues of & € MZX"

sym 7

FO) = 3AL:E e (Zm) (o + ) (Z@) : (3.1)

Remark 3.2. According to [2I, Theorem 1.7], if w € BD(2), then for |Eful-a.e. x € , there
exist a(z) and b(x) € R™ \ {0} such that

dE*u
B (x) = a(z) © b(x).

Therefore, also using Proposition below, the T-limit & (u, x) for x = 0 a.e. and u € BD(Q) can
alternatively be expressed as

dEsu dESu
W(e(u))d ) : ——— d|E*ul.
o) = [ Wietw)de sV /\/ “ame - gl 1

This entails that for concentrated strain (i.e. in the singular part of Fu) only the weak elasticity
tensor is seen, meaning that these strain concentrations are completely damaged.

3.1. Explanatory examples. Beiore addressing the proof of Theorem let us explain the
appearance of the term v/2axh in W, in the simplified case where Q = @ = (0,1)? is a cube in R?,

Ne = &, and u(z) = &x is affine, where £ € MZ22 is a diagonal matrix.

Case 1: Assume first that £ has two nonzero eigenvalues &; and &; such that ;€5 > 0. We consider
integers N. € N such that N. — +o0 as ¢ — 0, and we subdivide the interval (0,1) into N; + 1
sub-intervals of length 1/(N. + 1). For each ¢ = 0,1,..., N 4+ 1, we define s5 :=i/(N; + 1). For
7 = 1,2, we choose

5o GV A @ ey) i (e; @) e
. 2V2k N +1
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and set

s¢— 60 < s <85+ 6,

G55+ 6 S (s — sf 4+ 60) it

ul(s) = . == A
I(s) == , :
" " 8§+ 0L <s<sj—0L

o 0<i<N,,

and v is extended as a constant up to the boundary of [0,1]. We also introduce the sets

Ne
Al = U(s — 81,55 460), DI={reQ: x; €A}

i=1
satisfying £1(AZ) = 2N.6J — 0. Finally we define the displacement and the damaged set by
ue () := (ul(x1),u?(xz)) forallz €@ and D.:=D!uD..
Note that u. — u in L?(Q;R?) and £2(D.) — 0. We also observe that

2
E "(zj)ej @ e; for a.e. x € Dy;
j=1

in particular, e(u.)(z) =0 for a.e. € @ \ D.. Therefore,

13 K
—Ae(ue) s e(us) + — ) dz
AwleA;, zo g A2} (2 : : 6)
€ 1
- (wa( LY(z1)e1 @ ey : (ul) (z1)er ® eq + )d:c
{21€AL, z2¢A2Z) V2

2 K
) Ayle1®er): (e1®eq) + g) dx

/{xleag,m@g}( 20 N+1

in (€ &1 ? : il
< 258N€<2 (2(2(]\75 n 1)) Ayler®er):(e1®eq) + 5)

__ &feN: . 2K6L N,
- 461(N. + 1)2Aw(61 ®ey):(e1®er) +
€1]V/26Aw(e1 @ e1) : (e1 @ er).

A similar computation can be performed to show that

€
/ (iAwe(us) se(ue) + ) dr < |&|V/2rA L (e2 @ €2) : (€2 @ ea).
{IQEAZ w1$A1}

IN

Finally, we have that

/ (EAwe(uE) ce(ue) + E) dx — 0.
{s1€AL, saeaz) \2 €

We conclude that

2
lim sup E. (ue, Xp, ) Z|gj|\/2f;A (65 ®e5) : (e ® €5) = /2K 0w + 2t) S 165 = /255 (E)
j=1

e—0

since the eigenvalues have the same sign.

Case 2: On the other hand, if & & < 0, then according to Lemma [7.1] we have £ = a ® b for some
a,b € R2. In this case, the linear function u is given by

u(z) =a(z-b) foralxe@.
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Using the same notation as before, but setting this time

_ V/Ia©®b) €

T 92k N+ U

we define

85 — 0. < 5 < 85+ 0,
1<i< N,

" " 5§+ 0. < s <85, — 0,
' 0<i< N,

€ €
S;—8;_1

Sio1+ 55 (s —s5+0.) if

and w, is extended as a constant up to the boundary of [0,1]. The displacement is now given by
ue(z) := awe(x - b),

while the damaged set is defined by
Ne
D.:={z€Q: z-a€A.}, where A, = U(sf—55,5f+55).
i=1
Again we have u. — u in L*(Q;R?) and £?(D.) — 0. Observe that e(u.)(z) = (a ® b)w.(z - b)
for a.e. z € Q and so e(ue)(x) = 0 for a.e. z € Q \ D.. Then, from Proposition [3.6| below we have
A,(a®b): (a®b)=h(a®b), and so

Ee(ue, xp.) :/

D,

/Dg (;(m)gh(QQb)Jr};) da

(%Aw[wé(ﬂf b)a®@b] : [wl(z-b)a® b+ g) dz

€ 1 2 K
< R — -
72561\75(2(256(%“)) h(a@b)+5)+o(1)
N. 2k0. N.
: ha ® b) + 22222 4 o(1)

T 45, (N. +1)2
= /2kh(a ®b) + o(1).

In both cases, these explicit constructions show that y/2xh(€) is an upper bound for the I'-limit

in the concentrating zone, at least when u(x) = £z with ¢ diagonal. This suggests that /2xh(§)
will describe the (linear) slope at infinity of the effective energy density.

3.2. Pointwise limit of relaxed energy densities. We next investigate the pointwise properties
of the functions W€. Let us denote by SQW, the symmetric quasiconvex envelope of W, given by

SQW(§) :== inf Wo(&+e(p))de, &eMiir.
(= it [ WE ) dn, ey
From [0, Proposition 5.2], we know that it can be expressed as

SQWE(&) = Or<nl9121 FE(Qag)v

where

F.(6,¢) := %Aw§:€+%0+(179) max {T:{i(AsnsAw)lT:T 4 G(T)}

nxn
TEMgym

:@Aw§:§+%‘92+(1—9) max {T:f—;(As—ngAw)_lT'T-i- o (M—G(T))}

2 TEMI
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and, if 1y < --- < 7, are the ordered eigenvalues of T,

2

L . Aw+2 0
N+ 24ty ) if 200w+ Hw) (T4 70) <71,
o (7'1_7'77,) (7—1 +7—n) 3 A +200
G(r) := T tioorey  Un < s+ mm) <7, (3.2)
Aw 20w lf Tn < 2(>‘w+“w) (Tl + Tn).

As is remarked in [6] (below Proposition 5.2 in loc. cit.), the maximization above is over a strictly
concave function, so a maximizer indeed exist.

In the following result we identify the poinwise limit W of SQW., which turns out to be a
density typically encountered in plasticity theory, i.e. a quadratic function close to the origin and
with linear growth at infinity.

Proposition 3.3. Setting K := {T e M2X™: G(1) < 2a/<;}, we have

sym
SQW. — W = (f* + Ix)*

y y nxn
pointwise on M.

Proof. Fix £ € M2X". Let us prove that (F.(-,£))e>0 [-converges in [0, 1] to the function Fy(-,£)

sym

defined by Fy(0,&) :== W (&) if 0 = 0 and Fy(0,&) := +oo if 6 # 0.

Lower bound: Let (0:)->0 be a sequence in [0,1]. If liminf, F.(0.,£) = 400, there is nothing to
prove. Without loss of generality, we can therefore assume that lim inf, F. (6., &) < +o00. Moreover,
up to a subsequence, we can also suppose that the previous lower limit is actually a limit, and that
0. — 0 € [0,1]. Since F.(0.,£) > "= (choose 7 = 0), we deduce that & = 0. We next estimate

from below F as follows: for all 7 € M{T,

1 0 2K
F(0-,6) > (1-02) 47 6= S(Ay —neAw) 7 om+ = (25 —G(n) ) ¢ -
2 20, €
Let 7 € K, i.e. G(7) < 2ak. For every €, we define 7. := /=7, for which (G being 2-homogeneous)
G(7.) < 2kn. /e and 7. — 7. Specifying the previous inequality to 7., we get that

F.(0:,6)>(1—6.) {7‘E € — l(As —nAy) T TE} .

2

Passing to the limit as € — 0, and using that 7 is arbitrary in K, we deduce that

limingE(GE,f) > sup {T N %As_lT : T} =(f"+ 1) (&) =W().
e— TeK

Upper bound: If 6 # 0, there is nothing to prove. We can thus assume without loss of generality
that = 0. Let A > 0 and set 6. := An. — 0. Then, since (A; —n:A,,)"! > A;! as quadratic
forms,

N2 1 A (2
Fo(0.,6) < LA e+ 4 qup drie— AT rir 2 (ZEE ()
2 13 TEM;Ly)I(I;VL 2 2 13
AZp? 1 A
= %Awg SE+ % +T€S1\1/;§:>§n" {’7’ 1€ — §AS—17 T+ o) (2k0 — G(T))} + )\n(% - a).

Passing to the limit as € — 0 and then taking the infimum with respect to A > 0, we get

. . 1, _ A
hmsupFa(HE,g)gir;f sup {T:f—QAS Lrir+ Z(QQK—G(T))}.

=0 =Y reMIy
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According to standard results on inequality-constrained optimization problems (see, e.g., [23, Chap-
ter VI, Proposition 2.3]), we have (note that the function inside the curly braces is concave in 7
and affine in \)

inf sup {T 1€ - 1A;lT IT — g(G(T) - 204/1)}

A20 - enger 2

= sup inf {'r 1€ — %AQIT IT— %(G(T) - 20[/{)}

remzr A20
1 _
= sup T:f—*Asth’T ,
TEK 2

from which we deduce that

lim sup . (6, €) < sup { oo tacr, } (4 IR) (€)= TO).
e—0 reK 2

Convergence of minimizers. According to classical results of I'-convergence, we deduce that
SQWe(§) = min Fe(6,§) — min Fo(6,£) = W(5),
which completes the proof of the proposition. ([

The following result relates the function A to the convex conjugate of the indicator function of
the closed convex set K.

Lemma 3.4. For all £ € M2X"

sym ?

I (&) = v/ 2akh(§),
where h is defined in (3.1)). In particular, W = f O+/2arh(€).
Proof. For all £ € MIX" we have

Sym
Ig(§) =sup7:&= sup 7:&=k"(),
TEK k(T)<1

where k(1) := \/G(7)/2ax and k° is the polar function of k. The function k is a nonnegative,
real valued, lower semicontinuous, and positively 1-homogeneous function such that k(0) = 0.
According to the terminology of [33, Section 15] & is a closed gauge, and thanks to [33, Corollary

15.3.1], we get that
1 1 1,\" 1 *
- I* 2 _ ko 2 _ *k2 _ - .
5 Ti)" = 5 () (2 Tar®

From [0, Proof of Theorem 5.3] we have that
h(€) = sup {27:€-G(r)} = G(20),

nxn
TEMI W

and since h is 2-homogeneous, G* = ih. We thus infer that

<4a1HG> ©= s (75€-11G0) = 1-G"(dang) = anh(o)

reMI! dak dak

where we used again the fact that h is 2-homogeneous. We thus deduce that I}, = v2axh. (]
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Remark 3.5. We observe that the function v2akh can also be considered as the pointwise limit of
the symmetric quasiconvex envelope of the generalized Kohn—Strang functional (see [29]), defined
by

_ L %Awfﬁ-F? 1f57$0,
9(8) = {0 if £ = 0.

Indeed, according to [6], Theorem 5.3], the symmetric quasiconvex envelope of g. can be explicitely
computed, namely

BALE 48 if h(¢) > 2=

o _ = nee’
Q5:(¢) {\/ng(Awftf—h(ﬁ)) if h(€) < 2%,

and so we observe that SQg. — V2akh pointwise on M2X".

sym

We are now in the position to prove several properties of the energy density W.

Proposition 3.6. The function W is convez,

1 _
clel ~ ~ <) < Clel  for all € € ML, (3.3)
for some ¢,C > 0, and
W(&) —W(&)| < Llgy — & for all &1, & € MY, (3.4)
for some L > 0. In addition, its recession function, defined for all § € M by
o . W(tE)
W () = t—lg-nooT’

exists and is given by

W (€) = v/2arh(9).

Finally, for all a, b € R™,

W (a®b) = V2akA,(a® D) : (a®b).

Proof. The function W = (f* + I )* is convex and lower semicontinuous as the supremum of affine
functions. Moreover, since f*+ I > Ik, we get that W < I = v/2akh. Hence, for all £ € M2 X"

sym
W(e) < Cl¢]
for some C' > 0. Concerning the bound from below, according to (2.5) we have

() = lim SQW.(€) > limsup W2*(¢) = el - 7.

which shows the validity of the growth and coercivity conditions . Then, as W is a convex
function with linear growth, it is in particular globally Lipschitz (see, e.g., [32, Lemma 5.6]) which
shows the validity of .

Note that the convexity of W together with W (0) = 0 implies that, for all & € M?X"

sym
W (te)
t
is increasing, and thus that the limit as ¢ — oo exists. The recession function is thus well
defined on MZX". In particular, since W < v/2arxh and since the latter function is positively

sym

t—

1-homogeneous, we infer that W™ < V2arh. To prove the converse inequality, we use that
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W = fOI} = fO+v2arh. Then, by definition of inf-convolution, for all ¢ > 0, there exists some
& € MX™ such that

Sym

W(t) _ f(t6 1) , V2arh(ig)

t t t
Since f and h are 2-homogeneous, we get that
W(te
) _ b6~ € + v/2amh(E)).
Using the growth condition (3.3) and the coercivity of the tensor A, we have
Cs w t&
il 6P < 1(e &) < 11(E &) + Vaanh(E) = ) < o,
proving that &, — £ as t — 400. Therefore, by continuity of h,
— Wit
W) = lim wite) > limsup \/2akh(€]) = v/2arh(€),
t—+oo t t—+o0
which shows that W™ = v/2axkh.
Finally, if £ = a ® b, let us denote by &1,...,&, its eigenvalues. If & has only one nonzero

eigenvalue (say &71), then

)

dlgl=1al=1{>_&
i=1 i=1

which implies in view of (3.1) that h(§) = A€ : €& If £ has two nonzero eigenvalues (say &;
an &, we know from Lemma that they must have opposite signs, hence (also using that

€2 =¢: 6= +&3)

h(€) — Awé : § = 2pu (6162 + [&1]|€2]) =0,
which completes the proof of the proposition. O

3.3. Proof of Theorem [3.11

Proof. Step 1: The upper bound. We first assume that v € W5H*(Q;R"). According to the
dominated convergence theorem, we infer that

We(w))dz = glg%) SQW,(e(u)) dx.
Q Q

For every € > 0,
v e WHH R / SQW.(e(v)) dx
Q

is the L(£2; R™)-lower semicontinuous envelope, restricted to W11(Q,R"), of
v e WHH(Q;R™) / We(e(v)) dz,
Q

see [10,[8]. It is thus possible to find a recovery sequence (uf)reny C W11 (€; R™) such that u§ — u
in L'(Q;R") as k — oo, and
/ SQW. (e(u))de = lim [ W.(e(uy,))dx.
O k—o00 O

Using a diagonalization argument, we extract a subsequence k(¢) — oo as € — 0 such that
Ve = ufy — uin L' R™) and

/ W(e(u))dz = il_r)r(l) We(e(ve)) da.
Q Q
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Then, defining the damaged sets as

D, = { €0 (A, —nAw)e(v) (@) : ev.)(z) 2 } ,

we obtain by construction that

& (u,0) < limsup E.(ve, xp.) = lim W e(ve)) dx = / W(e
e—0 =0

Since ) has a Lipschitz boundary, according to the density result [37, Proposition 1.1.3], the

previous inequality can be extended to any u € LD(Q). Indeed, let (ug)ren be a sequence in

Whee (Q; R™) such that up — u in LD(Q). By lower semicontinuity of &(-,0) with respect to the

L'(Q;R") topology, and by continuity of
Q) 500 / W (e(v)) dx
Q

& (u, O)<lklm_~1_nf50 ug, 0 /W e(ug) dx—/W

we deduce that

Finally, if u E BD(Q)7 according to the relaxation result proved in [8, Corollary 1.10], we can
find a sequence (vy)reny in LD(Q) such that v, — u in L'(Q;R"™) and

00 dEsu
Eful.
/W e(vg) d:c—)/W dx—|—/W <d|E3u>d| ul

Using again the lower semicontinuity of £J/(-,0) with respect to the L!(Q;R") topology, we infer

that
dE*u .

which completes the proof of the upper bound.

Step 2: The lower bound. Let (uc, Xc)eso be a sequence in L'(Q;R™) x L(Q) such that u. — u €
BD(Q) in L*(;R™) and x. — 0 in L'(Q). According to (the proof of) Lemma [2.1| and the fact
that n./e = a € (0,400), we infer that

up {le(ue)lz+(@) +melle(ue) 32 | < +oo. (3.5)
€

Let ve := \/N-u.. By the energy estimates (3.5) and Korn’s inequality, this sequence is bounded
in H1(Q;R"), hence v, — 0 weakly in H!({;R").
For every open set w C €, let us define the set function

o) = tmigt {5 [+ (0= xOAe(ue) s eluydo+ = [ o).

which is clearly a super-additive set function on disjoint open sets, i.e. ,u(wl Uwsa) > p(wr) + pws)
for all open sets wq, we C Q, with @ Nwy = 0 and w; Uws C Q.

Step 2a: The two-dimensional case. For all r € [0, 1], we have by Young’s inequality (see also (2.4))
for all ¢ € M2X2

sym

9:(6) = = (A€ : €+ dpyr det(€)) + = — 2pymer det(€)

2 \/2 e ( w + &+ A det(f)) — 211 det(§)

2akh,(§) — 2u,ner det(€) + o(1)[€],
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where 0(1) - 0 as € — 0 and
Ry (&) := A€ : € + dpyrdet(€)  for all € € M2X2

sym*

Note that since 0 < 7 < 1 and 2| det(¢)| < |£]?, we deduce that h,. is a nonnegative quadratic form,
and thus the function v/2akh, is convex.
We next claim that there exists 9 > 0 such that for all r € [0, 1] and all € < g,

1
—2pmer det(€) < 5Asg & for all &€ e M2X2

sym*

Indeed, if det(¢) > 0 the result is obvious, while if det(¢) < 0, then using that —2det(¢) < [£]?, we
have

Cs 1
—2pmer det(§) < ane‘€|2 < 5|§|2 < §As€ 2 &,

provided we choose €9 > 0 such that for € < ey we have 1. < ¢5/(244)-
Let w C © be an open set. Then, for all ¢ € C.(w) with 0 < ¢ <1 we have
1

5/ [nEXEAw +(1- XE)AS]e(ua) se(ue) dx + g / Xe dz

> [ [0 X elw) + xee(e(un))] do
> / o (f AN/ 2akh,)(e(u:)) de — 2,uw775r/ ¢ det e(u.) dz + 0(1)/ le(ue)| d.

w

Since ve — 0 weakly in H'(Q;R?), then det Vv, — 0 weakly* in M (), see [18, Theorem 8.20].
On the other hand, since 7. det e(u.) = det e(v.) < det Vv, by Young’s inequality), we infer that

hmsupng/ o det e(ug)dx < lir%/ ¢ det Voo dz = 0.
w £ w

e—0

Therefore, using that o(1) — 0 and that (e(u.))e>o is bounded in L(£2;M2X2),

sym

p(w) > lign_%lf/ o (f A 2akh,)(e(ue)) de > lirslli(r)lf/ o (f O+ 2akh,)(e(u,)) de.

Since fO+/2akh, is convex, (z,£) — o(z)(f O+v2akh,)(§) is continuous, and
0 < o(#)(f O V2akh) () <C(L+E])  forall (,&) € wx M2,

for some constant C' > 0, standard lower semicontinuity results for convex functionals of measures
show that

lig;i(r)lf/ o (f O+ 2akh,)(e(u:)) dx
d S
2/(p(fD\/Zanhr)(e(u))dx—l—/@(fD\/Qamhr)oo (dgm d|E*ul.
We thus infer that

1) 2 [ o0V Ear ) ew) do+ [ (70 VRarh)* (‘”“) 4| B,

d|Esul
and passing to the supremum with respect to all ¢ € C.(w) with 0 < ¢ <1, yields

dE® ,
plw) > /(f O+ 2akh,)(e(u)) dz + / (f O+ 2akh,)® (d|E5u|) d|E*ul.
w w u
In order to pass to the supremum with respect to 7 € [0, 1], let us observe that for all £ € M2X2

sym?
Joax he(§) = max b () = Aug: &+ Apip (det (€)™ = h(&).
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For fixed & € M2)<2, we have that & € M2%2 — f(£ — &) + /2arh, () is convex, continuous and
coercive, while r € [0,1] — f(€ — &) + \/2akh,(§) is concave and continuous. According to [23]
Chapter VI, Proposition 2.3]), we get that

sup (fO+/2akh,)(€) = sup inf {f(f &)+ 2a/<;hr(§’)}

ref0,1] rel0,1] & EMESS

= inf s { (€~ ¢)+ V2anh, ()]

€ eEMZ)2 rel0,1]

= inf € —€)+v2arh(@)}
&' eMiym

— (fOV2arh)(©).

In addition, since, for r € [0,1], the functions fO+/2arh, and fO+2akh are convex, and
(f Ov2akh,)(0) = (f OV2akh)(0) =0, we get that

sup (fO+/2akh,)>*(€) = sup sup

re(0,1] rel0,1] t>0

(f B V2akh,)(t)
t

. (f B V2arh,)(t6)
= sup sup

>0 r€[0,1] 3

(f O V2akh)(tS)
t

= sup
t>0

— (f3V2arh,)*(©).

Thus,

)= [ (rovaam et ar+ [ (£vaaiye (GE0) dEw.

and we conclude by applying [12, Proposition 1.16], to get that

— —=00 dE*u
liminf B (ue, xo) = u(€) > Eul.
mipt E(ue ) = @) > [ Weet)as+ [ W (G20 ) ap

Hence, & (u,0) > &y(u,0).

3x3

Step 2b: The three-dimensional case. By direct computation we obtain, for all £ € M1,

h(€) — Aw&: € =4py ((616)T + (&&)T + (&86)7),

where &1, &2, and &3 are the eigenvalues of £ € ngxn?; According to Proposition &€, £1&3 and
&2¢3 are the eigenvalues of cof(§), and we observe that at least one of them is nonnegative. The
highest eigenvalue of cof(£) can be computed as the maximum of the Rayleigh quotient

Amax (cof(§)) :== ‘m‘mi cof(&)y -y > 0.
i

The other two eigenvalues of cof(£) have the same sign. We can thus write that

(£162)" + (&1&3)T + (£283) T = max { Amax(cof (€)), tr(cof (€)) }
= ‘maoi max {cof (€)y - y, tr(cof (£)) }.

|=
Let us define the following set of matrices:

M:={AeM¥3: A=1d or A=y®y for y € R? with [y| = 1}.

sym
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Since cof (§)y - y = cof(§) : (y ® y) and tr(cof(€)) = cof () : Id, the previous argument shows that
for all £ € M2X3

Ssym

(L&)t + (L1&3)T + (&289)T —maX{A cof(§)} =  max  {A:cof(€)}, (3.6)

Aé€conv(M)

where in the last equality we denote by conv(M) the convex hull of M, which is a closed set. This
last equality then follows since the mapping A — A : cof(€) is linear.
For all A € conv(M), we define the quadratic form

ha(€) = Awl : & +4pp A cof(§), £ e M

We claim that for all A € conv(M), the quadratic form h,4 is convex. Indeed, on the one hand, if
A = 1d, the function hq : € = A€+ € + 4y tr(cof (€)) = Ay + 20 (t1(€))? is clearly a convex
quadratic form. On the other hand, let us consider a matrix A = y ® y for some y € R? with
ly| = 1. Let us write ¢ = PDPT where P € SO(3) and D = diag(&;, &2, &3), so that, according
to Proposition we have cof (§) = P cof (D) PT, where cof (D) = diag(&283, €163, £1€2). We have
that the quadratic form hygy : § = Ay @ &+ 4y cof (§)y - y can be written in the basis of the
eigenvectors of £ as

hyoy(€) = Aw(&1 + & + &) + 200 (67 + &5 + €3)
+ 4po (PTY) 1665 + 41w (PTy)561&5 + dpu (PTy)3616.

If &6 >0, £63 > 0, and &1€3 > 0, then the previous expression is clearly nonnegative. Otherwise,
there exists exactly one nonnegative eigenvalues of cof(D) and both the other eigenvalues are
nonpositive. Up to a permutation of indices, there is no loss of generality in assuming that £1&s > 0,
&63 < 0, and £&5 < 0. For simplicity, we define z := PTy. Using Young’s inequality and that
|z| =1, we get that

hyay(€) = Mw(E1 + &2 + €3)% + 200 (65 + & + €3) — 4pw2t |€28s] — 4pw 23 |E165] + 4025 |E1 Eo
A&+ &+ &3)% + 200 (6 + 65 + &)
— 20023 (65 + €3) — 2023 (6 + 63) + 4p 23|61 E

= Ao(é1+ &+ &) + 4023|606 + 200 (1 — 23)EF + 210 (1 — 20)&5 + 2102585
> 0.

Since the mapping A — h4(€) is linear, we deduce that also if A € conv(M), then the quadratic
forms h 4 are nonnegative. Thus, the functions v/2akh 4 are convex for all A € conv(M).

We can then proceed in a similar fashion to the two-dimensional case. Note that there exists
g0 > 0 such that, for all A € conv(M) and all € < gy, we have

1
—2ptne A cof (€) < 5Asg & for all € € M2X3,

sym

As a consequence, for all open set w C €, all ¢ € C.(w) with 0 < ¢ <1, and all A € conv(M), we
get (via Young’s inequality)

9:(6) = B (A€ €+ A A s cof(§)) + = = 2nep1 A s cof(€)

2akha(§) — 20:ptw A = cof(§) + o(1)[§].
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where o

—~

1) - 0 as € — 0. Thus,

K
[nEXEAw +(1- XE)AS]e(uE) e(ue) dx + g/ Xe dx

N |
T

> [ [0 xFlelw)) + xege(e(us))] do
> / o (f AN 2akha)(e(ue)) de — 2uwn8/ pA: cof(e(ug))dx—ko(l)/ le(ue)| da.

w

Let F' € M3*3. According to linear algebra manipulations (see, e.g., [L1, Eq. (3.2)]), we have
cof (FS¥Y™) = (cof (F))¥™ — cof (FkeW),
where cof (F*¢%) is a nonnegative matrix (see, e.g., [L1, Eq. (3.4)]). Thus, for all y € R?, we get
cof (F™)y -y < (cof (F))¥™y -y = cof (F)y - ,
tr(cof (F*™)) < tr((cof (F))™™) = tr(cof (F)),
which implies that
A cof (F™) < A:cof(F) forall A€ conv(M). (3.7

Since v. — 0 weakly in H'(Q;R?), then cof(Vv.) — 0 weakly* in M(Q;M33), see [I8, Theo-
rem 8.20]. Therefore, (3.7) implies that

lim sup 775/ p A cof(e(ue)) de = lim sup/ pA : cof(e(ve)) dx

e—0 e—0

<lim [ pA:cof(Vv)dz
e—=0 /,

=0,

hence
p(w) > lign_gglf/ o (f AN/ 2arhy)(e(ue)) de > “Ei}(?f/ o (f O~ 2akhs)(e(u,)) dx.

Since fO+/2akhy4 is convex, (x,€) — (x)(f O+v2akh4)(€) is continuous, and
0 < o(x)(f OV2akha)(€) <CA+[E])  forall (z,£) € w x M,

for some constant C' > 0, standard lower semicontinuity results for convex functionals of measures
show that

imipt [ o (70 v2anha) elu)) do
> / e (fO+v2akha)(e(u))dz —l—/ o(f OV 2arha)™ (%) d|Eul.

We thus infer that
)= [ (70 vaamha)ew)de+ [ o(roEania® (5 ) dE
and passing to the supremum with respect to all ¢ € C.(w) with 0 < ¢ <1, yields
(w) > /w(fD \/2amhA)(e(u))dx+/w(fD Nerrnts (jgg) e
It thus remains to pass to the supremum with respect to A € conv(M). Let us observe that,
according to (B.6), for all £ € M2*3

sym

geax, ha(§) = Awg : &+ 4w max{Amax(cof (£)), tr(cof (§))} = h(E). (3-8)
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We claim that

(fOVZarh)(€) = max  (fD+/2arha) ().

A€conv(M)

Indeed, the set conv(M) is compact and convex, and, for fixed & € ijn?, we have that & €

M2X3 — f(€ — &)+ 2akha(£') is convex, continuous and coercive, while A € conv(M) —

f(&€—¢&) + V2arha(€) is concave and continuous. Then, [23, Chapter VI, Proposition 2.3])
ensures that

sup  (fO+2akha)(€) = sup inf {f(g—ﬁ’)—&— 2cmhA(§’)}

A€conv(M) A€conv(M) §'e M

= inf sup {f(§ -&)+ QQHhA(f')}

€ eMYE Acconv(M)

- felixlﬂg;rg {f(g &)+ 204;{}1(5/)}

= (f O V2arh)(§).

where we used (3.8) in the second-to-last equality. In addition, since, for A € conv(M), the

functions f O+/2akhs and fO+v2akh are convex, and (f O+/2akha)(0) = (f Ov2akh)(0) =

we get that

O+v2akrhg)(t
sup  (fO+2akha)>®(€)= sup sup ( anha) ()
A€conv(M) A€conv(M) t>0 t
B (fOV2akha)(t€)
=sup sup
t>0 A€conv(M) t
_ Y IVEIE)
t>0
_(fo ¢2mh>°°<s>.
Finally, using [12], Proposition 1.16] as before, we get that
. . —00 dEéu s
11£ri)lglee(Us,Xs = u(Q / W(e(u)) dx +/ w (dESu|> d|Eul,
hence, &(u,0) > E(u,0). O

The next result establishes a relaxation-type formula for the effective energy density W in the
spirit of [13, [14].

Proposition 3.7. For all £ € M2X" we have

sym ?

W = sup {gp Mg — R conver, p(§) < f(§) for all § € MY

sym

o(a®b) < 2axAL(a@b): (a®b) for all a,b € R"}.

Proof. According to Proposition and Lemma [3.4] we can write
=(f"+1Ix)" = fOV2arh = (f AN V2arh)*™.

Therefore, if we prove that the convex envelope of the function H : M2X" — [0, +00] defined by

sym

H(E) = {\/m if £ = a © b for some a,b € R,

400 otherwise,
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is given by v/2akh, we then may conclude W = (f A (H**))** = (f A H)**, that is, the conclusion
of the proposition. First of all, since by Proposition we have H(a ©® b) = \/2axh(a ®b) for
all a, b € R™, we get that v2akh < H, and since v2akh is convex, we get the first inequality
V2arkh < H**,

We now establish the reverse inequality v2axh > H**, which is equivalent to Ix < H*, i.e.,
H*(1) = +oc for all 7 ¢ K. So, let us fix 7 ¢ K, i.e. G(T) > 2ax where G is given by (3.2). Since
all expression of matrices only depend on the eigenvalues, it is not restrictive to assume that 7 is
diagonal with ordered eigenvalues 7 < --- < 7,.

We distinguish three cases.

2

Case I: If %(ﬁ + 7n) < 71, then according to (3.2), we have that 2ak < G(7) = ﬁ

The computation of the convex conjugate of H gives

H*(T) =sup sup t{T S (a®b) — 2akA,(a®b) : (a@b)}
t>0 |a|=[b|=1

= §1>1%) lalil‘lgl):lt {(Ta) b— \/2om(()\w + piw)(a - b)2 + uw)} .

In order to show that H*(r) = 400, it is enough to prove that

M := max {(Ta) -b— \/QQK((/\U, + pw)(a - b)2 + uw)} > 0.

la]=]b[=1

Taking a = e; and b = +e;, we deduce that
M > 11| — 2k (A + 2p4) > 0.

Case II: If
Aw + 2y
< 3.9
7'1_2(>\w+ w)(1+Tn)_Tn7 ( )
then according to (3.2)), we have that
(n—m)? (i +7)?
2ak < G(1) = .
( ) 4:uw 4(>‘w + Nw)
We will rewrite H*(7) in a more convenient form. Denoting by R the set of the diagonal n x n
matrices of the form £ = a ® b (a,b € R™) with ordered eigenvalues £ <0 =& =+ =&, =

0 <&, (see Lemmal|7.1)), we have

H*(1) > sup {7’ 1€ —V2arALE f} . (3.10)

£ER
Let us set
T i=Ta T, Tai=Ta T
so that 7 = (75 — 74) /2, T = (75 + 7a) /2, and (3.9)-(3.10) become
-2 72 “
2k < G(1) = —4 + = , v 7| < 74, 3.11
S TR e M DT (310
N T€s T, 1/2
H*(t) > sup { 25 + dng - 204/-@(()\,,, + 1 )2 + uwﬁg) } (3.12)
|€s1<&a

Changing the variables to

~ ~ TS
s = )\w + we sy = weds 7~—s =AY/ Td ‘= 57—
£s =/ Pwss,  &d = /Hwd e T e
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equations (3.11)) and (3.12) become

20k < P2+ 72, /%m < 7, (3.13)
w T Hw

- - N 1/2
H*(1) > sup {7:555 + Talqg — V 2an(§§ + {Z) } . (3.14)
V3P 1€s1<éa
Finally, introducing the vectors z,y € R? given as
€T = (%Sai—d)’ Yy = (él’aéd))
equations (3.13)), (3.14) reduce to

[l
2ak < x2, —— 71| < 29,
| | >\w+,uw| |
H*(1) > sup x-y—\/2an\y|} = 400,

Vit vl<y:

choosing y = tz, t > 0.

Case III: if 7,, < %(ﬁ + 7,,), then according to (3.2)), we have that 2ax < G(7) = ﬁ
Repeating the computations of Case I and taking a = e,, and b = +e,, we deduce that

M > |1p] — vV 2ak(Ay + 2py) > 0.
This concludes the proof. (I

4. THE TRIVIAL REGIME
We now treat the first of the endpoint cases.

Theorem 4.1. Let Q@ C R™ be a bounded open set and let A, As be fourth-order symmetric
elasticity tensors satisfying . If a = 0, then the functionals & T'-converge as € — 0 with
respect to the strong L'(Q; R™) x L1 (Q)-topology to the functional ®q : L1 (2;R™)x L*(Q) — [0, +o<]
defined by

0 if x =0 a.e. in,

+o00  otherwise.

(I)()(U, X) = {

Proof. Clearly, the lower bound &}(u,x) > ®(u,x) holds for all (u,x) € L*(;R?) x LY(Q).
On the other hand, it is enough to prove the upper bound &J(u,x) = 0 whenever x = 0 a.e.
in 2, since @ is infinite otherwise. We assume for simplicity by translating and rescaling that
QcC@:=(0,1)". We extend u by zero in @ \ Q so that the extension (still denoted by ) belongs
to LY(Q;R™).
Step 1. We first assume that u is (finitely) piecewise constant, i.e.,
u= Y unan (@)

ie{0,...,N—1}n
where u; € R” for all ¢ € {0,...,N —1}" and {Q;}ic{o,...n—1} is a subdivision of @ (up to an
L™-negligible set) into N™ open cubes

1
Qi = N(i +Q)

of side length 1/N with N € N, and ¢ € {0,..., N — 1}". Therefore, up to a set of zero Lebesgue
measure, we have
= U @

i€{0,... N1}
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Since 7. < ¢, one can find a sequence (J¢)e>0 such that n. < §. < €. We denote by Q1% =
(1 — 6.)Q the cube concentric with @, having side length 1 — d.. Let . € C°(R™;[0,1]) be a
cut-off function such that . = 1 on Q' %, p. = 0on R"\ Q, 0 < p. < 1 on Q\ Q1% and
V.| < C/5.. We then define the displacement u. € L'(Q;R™) by

ue(x) = Z uipe (Nz —1i) forall z € Q,
i€{0,...,N—-1}n

and the damaged set by

D, = U {xEQi: O<<p5(Nx—i)<1}.
i€f{0,...,N—1}n

Note that u. € H'(Q;R"), and since p. — x¢g in L'(R") we have u. — w in L'(Q;R™). In
addition,

e(ue)(z) =N Z u; @ Vo, (Nz —1i) forall x € Q,
i€{0,....N—1}n»

and since u, is constant in each connected component of @ \ D., we infer that
e(us)(z) =0 forallz e @\ D..

We also remark that

coy= 3 (5) (m0-ar) <o)

i€{0,...,N—1}n»

so that xp, — 0 in L1(Q).
We then compute the energy associated to u. and xp._:

E-(ue, xp,) = % /D Age(u) @ e(u) dz + gm(pg)

2
i€{0,....N=1}» ¢

<c<;’5+5€>+o

B £

|ui‘2 n K an
< Cne Z L (DE)JFEE (Ds)

where we used the fact that 7./0. — 0 and §./e — 0. As a consequence,

& (u,0) < limsup & (ue, xp, ) = 0.

e—0

Step 2. Next, if u € L'(Q;R") is arbitrary, then there exists a sequence (uy)nen of (finitely) piece-
wise constant functions as in (4.1 such that ux — v in L'(Q;R"). By the lower semicontinuity
of the I'-upper limit and the result of Step 1, we infer that

®( (u,0) < liminf ®f (uy,0) =0,

N—+o00

completing the proof. O
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5. THE ELASTICITY REGIME

Theorem 5.1. Let Q@ C R"™ be a bounded open set and let A, As be fourth-order symmetric
elasticity tensors satisfying . If a = oo, then the functionals E. T'-converge as ¢ — 0 with
respect to the strong L'(Q;R™) x LY(Q)-topology to the functional ®o, : L*(;R") x LY(Q) —
[0, +00] defined by

1

f/ Ae(u):e(u)dr if x =0 a.e. and u € H*(;R™),
Poo(u, x) =4 2 /o

+00 otherwise.

Proof. The upper bound &7 (u,x) < Poo(u,x) is obvious if the right-hand side is infinite. If
. (u, x) < 0o, then u € HY(;R™) and x = 0, and choosing u. := u and . := 0 for all £ > 0, we
get that
&Y (u,0) < liminf E. (u,0) = 1 Age(u) : e(u)dr = Do (u,0),
e—0 2 Q
as required.

The remainder of the proof consists in establishing the lower bound. Clearly, & (u,x) >
D (u, x) if the left-hand side is infinite, so that we can assume without loss of generality that
& (u,x) < oo, and, by Lemma that x = 0 and v € BD(f2). We start by improving the
compactness result in this particular regime by showing that, actually, u € H(£;R"). To this
aim, as in Lemma let us consider a subsequence ¢, — 07 and a sequence (ug, Xk )ken C
HY(Q;R™) x L>(Q;{0,1}) such that (ug,xx) — (u,0) in L1(Q;R™) x L}(Q) and

lim E., (ug, xx) = 5 (u,0) < +o0.

k—o0

According to the coercivity properties of the tensors A, and Ay, we have the following energy

bound:
1 K

My, = 5/ [Nercoxe + cs(1 = xi)] - le(ug)* dz + 7/ Xx dz < M. (5.1)

Q €k Ja
Step 1: The one-dimensional case. By outer regularity of the Lebesgue measure, we can assume
without loss of generality that the damaged set Dy, = {xr = 1} is open, and that it is actually a
finite union of pairwise disjoint open intervals, i.e.,

mg

Dy, = [ J(af, b),

i=1

where my, € N and af < b¥ < af ; for all 1 < i < my — 1. We observe that minimizing the

expression (5.1)) with respect to all x € L>(€; {0, 1}), one finds that the minimizer is given by the

indicator function of the set
2K
zeQ: |lu(z)| >/ —m8M8—— },
{ | k( )l (Csnskcw)ek}

which corresponds to the completely damaged part of the medium. It is therefore natural to expect
the singularities to nucleate inside this set, and the medium to remain elastic in the complementary
set.

We then modify the function uy inside each interval (ai»c , bf)7 where we distinguish two cases.
Let us define the sets of indices

I}, = {z e{l,...,mg}: |uk(bf) — u;'c(af)| > 2K }

and
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In the intervals (a¥,b¥) where i € I, it will be convenient to create a jump, while if i € J, the

values of uy(a¥) and uy(b¥) will be connected in an affine way. We therefore define

ug () if © & Dy,
k(af)—k(z—af)% if z € (aF,bF) with i € J,
vk(@) = up,(a¥) l if v € (ak, ™ +b with ¢ € Iy,
w(bF) if z € %bk) with i € I.

Clearly, vy € SBV?(Q) with jump set J,, = Uielk {a by } We denote by v, the approximately

continuous part of the derivative Duvy.
Let us compute each term of the energy. First,

icl(pk)zfz bk — ak) +— 3k~ ab)

€k ZEIk ZEJk
k ﬁskcw k |uk ¥) — uk(af)?

Z*Zb_a Zb (b/?_ak)Q
leIk i€J i i

- Z B ok "gkC” Z/ v, |2 da. (5.2)
ZEIk i€Jy,

Moreover, since vy, = uy in Q \ Dy, we get that

Cs Cs
== xp)|upPde = = vy |2 da. (5.3)
2 Jo 2 Jo\p,

Finally, owing to Jensen’s inequality,

e Cw 1, Cw e1, Cw u bk —u 2
77192 /kaluqux_nk Z/ \uk|2d >77k Zbk l | k(bg_ k)(2 )‘

S Uien = e S S NENL

i€y 1€Jy

Gathering (5.1), (5.2)), (5.3) and (5.4) and using that v}, = 0 a.e. in Uz‘elk (a¥,bF) yields

My, > % Z(bk )|Uk((b;2 — a’-“)(Q nskcw Z / vy, |? da

i€}, ? g i€Jy
+% |v§€|2dx+6£2(bk—a )+ nekcw Z/ vk da
Q\ Dy kicty =
2 Ko NepCo  un(0F) —ug(af)]* |
= v |“ dr + (b + —1.
3 2. o) [y e
i€l

Thanks to Young’s inequality we deduce that

2
M>—/| L do + | /= chnek Z\uk (bF) — up(ab)|

i€ly

2
= Ci/ |v§€|2dx+wiﬁcwn€k / loi — vy | dHO.
2 Q Ek Jvlc
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The previous formula implies that the sequence (vg)k>o is uniformly bounded in BV (), and
thus a subsequence converges weakly* in BV () to some v € BV(Q). In addition, since {uy #
vg} C Dy and L£Y(Dy) — 0 by (5.1), we infer that v € BV(f2) and that the whole sequence
converges weakly* to u. Since (v})ren is bounded in L?(2) and |D%vg|(©2) — 0 (since %’“ — 00),
we actually deduce that u € H(Q). Passing to the lower limit in the previous formula thus yields

lim inf M}, > c—s/ |u'|? da. (5.5)
k—o0 2 (9]

Moreover, since vy = uy a.e. in Q\ Dg, v, — u’ weakly in L*(Q) and xx — 0 strongly in L*(Q),
we also get that

liminf/(l—xk)|u§€|2 dxz/ |u'|? da. (5.6)
k—o0 Q 9]

Step 2: The n-dimensional case. The general case will be deduced from the one-dimensional case
via standard slicing techniques.

We start by introducing some notation. for v € S*~!, we denote by I, the hyperplane orthogonal
to v and passing through the origin. Given a set £ C R™, a scalar function g : E — R, and a
vector map f : £ — R", for all y € Il¢, we denote by

EZ::{teR:y—l—tueE}, gy t) =gy +tv), f/t):=fly+tv) v forteky

the sections of E, g and f, respectively, that pass through y in the direction v.
Using Fubini’s theorem, for all v € S"~!, there exists a subsequence (possibly depending on v),
denoted by (uj,x;) = (ux,, Xk, ), such that

liminf M, = lim M.
k—4o00 j—+oo 7

and

((uj)z, (XJ)Z) — (uZ,O) in Ll(QZ;Rd) X Ll(QZ) for H" t-ae. y €1I,. (5.7)
Using that for H" !-a.e. y € II,, we have

[((ug)y) (B)] = le(uy)(y + tv) : (v @ v)| < le(u;)(y + tv)|  Ll-ae. in Q,
Fatou’s Lemma leads to

Mz/ 1iminf{/
m, it L Jo

) [% (cwnEkj ()5 (1) + es(1 — (Xj);(t))) [((uy)) ()2
+ i(Xj)Z,(lt)] dt} dH" ' (y). (5.8)
(S

J

Thanks to the result in the one-dimensional case, in particular (5.5)), and (5.7), we get that u; €
H'(Qy) for H" '-a.e. y € II,, (in particular D*ul = 0), and

lim inf / [5 (cumee, G0+ sl = ()N (@) 0P + S o] d

v
Y

Integrating (5.9)) with respect to y € II,, and using (5.8]) gives

& / / () ()2 dt dH™ () < M.
2 Jn, Jay
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According to the structure theorem in BD (see [7, Theorem 4.5]) we have

{(uy) (t) =e(u)(y +tv) : (v@v) for H" '-ae. y € I, and for L'-a.e. t € QY,
[E*u: (v @v)|(Q) = [, [D*uy|(Qy) dH" " (y).

Therefore, Fubini’s theorem yields for all v € S~ 1,

/Q|e(u) c(vev)Pde < +oo, |Efu:(rev)|(Q)=0.

Choosing v = ¢; +¢; for all 1 <14, j < n, where {es,...,e,} stands for the canonical basis of R,
implies that e(u) € L?(Q; ML) and |E*u|(Q) = 0 which means that v € H'(Q;R").

Step 3: Weak convergence of the strain. According to (5.6) and Fatou’s Lemma, the previous
argument also shows that

hminf/ﬂ(l —xw)le(ur) : (v v)|*dx > /Q le(u) : (v @ v)|? da.

k—+oo

We can even reproduce the same method to establish that for all w € L?(Q),

liminf/ (1—xp)le(ur) : (v V) —w|*dr > / le(u) : (v ®v) —w|? da. (5.10)
k—+oo Jo Q
Indeed, the previous inequality clearly holds if w is piecewise constant on a Lipschitz partition of
Q, and the general case follows from a density argument.

Since the sequence ((1 — xx)e(ur))ren is bounded in L?(Q;MZ5") we can extract a subse-

quence (not relabeled) and find some A € L2(Q;M2X") such that (1 — xx)e(ur) — A weakly in

Sym
L2(; M), Applying (5.10) with w = A : (v ® v) — tz, where ¢t € R and z € L*(Q2), we infer
that

/ |(e(u) — A) : (1/®V)|2da:+2t/ z-(e(u) —A): (v®v)de
Q Q
< likrgior.}f/g(l —xi)le(ur) — A) : (vev)|*da,

where we used that (1 — xx)e(ux) — A weakly in L*(Q; M) and x, — 0 strongly in L*(Q).
Passing to the limit as ¢t — oo yields

/ z(e(u) —A): (v@v)de =0
Q
for all v € S"~! and all z € L*(Q), which implies that A = e(u) a.e. in 2. By uniqueness of the
weak limit, we infer that also for the full sequence (1 — xx)e(ur) — e(u) weakly in L*(Q; MZXT).
Finally, since
1
&L (u,x) = lim @, (ug, xx) > liminf = [ (1 — xx)Ase(ur) : e(uy) dz,
k—o0 k—oo 2 Q
we deduce that

EE /Q Ase(u) : e(u) dr = ®og (u,0),

which completes the proof of the lower bound. O
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6. THE TRESCA MODEL

In this section we consider a different scaling of the energy. The weak elastic tensor €A, will

be replaced by a new tensor Af, in which the small parameter 7. will not act on the divergence

term. We assume that A and A, are isotropic tensors, i.e., for all £ € M2 X"

sym
AL €= Ay (tr ) Id +2ep14,€,
A& = Xs(tr ) Td +2p4€,

where \; > 0 and p; > 0 are the Lamé coefficients, which satisfy A, < A,. For every u € H(2;R"),
X € L>®(Q;{0,1}) and any £ > 0, we define the following brittle damage energy functional:

1 K
E (u,x) := 7/ [XAfU +(1- X)As]e(u) ce(u)dx + f/ x dx.
2 Ja € Ja
We will show that the limit model remains of plasticity type but with a Tresca elasticity set

K = {reMpy" 7, — 11 <2¢/2kp0},

where 7y < --- < 7, are the ordered eigenvalues of 7. Contrary to the model obtained in Theo-
rem [3.1] here the stress constraint relates only to the deviatoric part of the stress.
It is convenient to introduce the Temam-—Strang space [37]

U(Q) :={ue BD(Q): divu € L*(Q)},

that is, the space of BD functions whose distributional divergence is absolutely continuous with
respect to Lebesgue measure with a square integrable density. This implies in particular that
E*u = E3}u, the deviatoric part of Fu. The space U(2) is a Banach space under the norm

lullo o) = llullBpo) + | divul|L2(q)-
The main result of the section is the following.

Theorem 6.1. Let Q CR™ (n =2 or n=3) be a bounded open set with Lipschitz boundary. For
every € > 0 define the functional & : L' (Q;R™) x L*(Q) — [0, +o0] by

E(ux) = LB i (wx) € HYQR™) x L= {0,1}),
X +o0 otherwise.

Then the functionals E. T-converge as € — 0 with respect to the strong L*(Q; R™) x L*(Q)-topology
to the functional & : L*(;R™) x LY(Q) — [0, +00] defined by

>\S S .
/ < + ﬂ) (divu)? dx
o\ 2 n ) {X =0 a.e.,
g
d|Epul

Eo(u, x) == —~ - (dE%u u e U(Q),
+ /Q W(ep(u)) dz —&—/Q 2kh (dEE,u)
400 otherwise,
where
n 2
F&) = nsl€l,  h(&) == pu (Z |fz'|> for all § € Mp*", (6.1)
i=1

with & < --- <&, the ordered eigenvalues of £, and W is defined on M'5™ via

W::fDVQ/JL.
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For all £ € MZX™ ) let

sym

W.(€) := min {;Asg €, %A;g a ’;} .

Denoting by S QWs the symmetric quasiconvex envelope of Ws, from [0 Proposition 5.2] we know
that it can be expressed as

SQW=(¢) = min F=(60,€),

where
~ 1 0 1 0 ~
F.(6,¢) := fAi)ézf—Fi—i—(l—Q) max {T:f—(AS—AfU)_lTZT—GE(T)}
2 € rEMIT 2 2e
1 62 1 0 ~
:fAfung—i-H——l—(l—G) max T:§—f(As—Afﬂ)7lT:T+—(QK—GE(T))
2 g TEM:;;;L 2 2e
and, if ; <-.- < 71, are the ordered eigenvalues of 7 € ngﬁf,
™ 0 Awt2epy
2/\w/;+gw ) if 2(Aw+2ﬁw) (11 +70) <714
~ — (T1—7n) (T1+7n) : Aw+2€ 1oy
Ge(7) = e e B oty (T +Ta) < 7o,
Tn 4 Aw+2€ ey
R if 7, < 72(/\1“%51”) (11 + 7).
Let us also denote by
_ 2
G(r) = LT

the pointwise limit of G¢(7) as e — 0, which in particular satisfies G(7) = G(7p), where 7 denotes
the deviatoric part of 7. -

We first compute the pointwise limit of the family (SQW.)c~¢ in order to get a candidate for
the effective bulk energy density.

Proposition 6.2. For all £ € M2X™ we have

sym 7

SQIL(©) - (e (5 + ) + Wieo),

where
W= (f*+1z)* in Mp"
with K = {r e Mp": é(T) < 2k} the Tresca elasticity set, and f defined in (6.1).

Proof. Fix & € M™X™. We will prove that (F.(-,£))s>0 [-converges in [0, 1] to the function Fy(-,¢)

Sym

defined by Fy(0,€) := (tr&)2 (3 + £) + W(¢p) if 6 = 0 and Fy(6,€) := +oc if 6 # 0.

Lower bound: Let (0:):>0 be a sequence in [0, 1]. If liminf, E(ee,g) = 400, there is nothing to
prove. Without loss of generality, we can therefore assume that lim inf. 155(05, €) < +o0. Moreover,
up to a subsequence we can also suppose that the previous lower limit is actually a limit, and that
. — 6 € [0,1]. Since F.(6.,¢) > 58 (choose T = 0), we deduce that 6 = 0. We next estimate

nxn

from below F. as follows: for all 7 € Mgs

A

Fu(.,6) > 5

(tr €)% + (1 - 6,) {T - %(As —AS) T Z? (Qn - 65(7))} . (6.2)
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We claim that for all 7 € MZ2X" with 7p € K and for all &€ > 0 small enough there exists

sym
7. € M 'such that Ge(1.) < 2k and 7. — 7. Indeed, on the one hand, if (7p); < (7p)n, since
(tp)i =7 — %tr 7, we deduce that 7 < 7,,. Thus, for £ small we have

Aw + 2€
<
= 2(Aw + i) (714 7o) S T
and
=~ (Tl - Tn) (Tl + Tn)
G.(1) = >0
S V7 1§ Wy ES
Setting
_ [G()
g - 65(7) b

we deduce that 7. — 7 since G.(7) — G(7). In addition, using the 2-homogeneity of G., we also
have G.(7.) < G(1) < 2.

On the other hand, if m, = 7,, then ég(T) — 0 as ¢ — 0 and in particular éE(TE) < 2k for
7. := 7 for ¢ > 0 sufficiently large. Writing with 7., and passing to the limit as € — 0 we
deduce that

Aw
2

_ (tr7)? 1 9
+ TD : gD 2n(n( |TD| :

t
(iré As = Aw) +2p5) A

lim_jglfﬁs(ﬁs,f) > )? + %

Here we used that for all 7 € M**™ & > 0,

sym

trr 1

A, —AS) Ir = Id + ™, 6.3
o (TR =) R TR e (03
which follows from a straightforward computation. Maximizing first with respect to tr7 € R and
then with respect to 7p € K we obtain

'l As s 1
liminf F (6,€) > (tr&)* ( 5> + B2t sup {rpiep— ITp|?
e—0 2 n - 4/1“;
TpEK

= (tr¢)? (2 + ‘;) + ([ +1g)"(€p)
= (tr¢)? (’\; + ’:) +W(¢p).

Upper bound: If 8 # 0, there is nothing to prove. We can thus assume without loss of generality
that 6 = 0. Let A > 0 and set 0. := A\e — 0. Then, using (6.3)) again,

R0, 6) = SALE: 4 N
(tr7)?

+ (1= Xe) sup 2n(n(As — M) + 2(tts — i)

nxXn
TEMEY

+7p:€&p —

{@”)(trf)

1 5 A ~
— —|m|" + = (26 — G (7 }
Tzl + 5 (2= Gel)
Notice that, since the supremum in the previous expression is nonnegative for every ¢, it is in fact

obtained on a compact subset of M, which is independent of ¢, as can be checked easily. Thus,
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we may pass to the limit as € — 0 and then take the infimum in A > 0 to obtain (using [23, Chapter
VI, Proposition 2.3] as in the proof of Proposition

tinsup F- (0, €) — 2 (1r6)?
c—0 2
<jo s {(t)n“) R v Em I RS 5“))}
- o {4 -G
2
" rex {th e 2us)} Ttk {TD o TD'Q} ’

from which we deduce that

imsup Fu(0,€) < (6 (542 ) 4+ (774 ) (€0) = (e (5 + 22 4 W)

e—0 ;
Convergence of minimizers. According to classical results on I'-convergence, we deduce that
— H 3 — 2 (2s s
SQWe(§) = min F.(6,() — min Fo(6,¢) = (tr¢) ( 5 + n) +W(¢p),
which completes the proof of the proposition. ([

We next identify the support function of the Tresca elasticity set K.

I5(6) = \/26h(8),

where h is defined in (6.1). In particular, W = fD % QIﬁJiL, where the inf-convolution is to be
understood in M7™.

Lemma 6.3. For all £ € MY*",

Proof. Arguing as in the proof of Lemma we only need to check that G*=h /4 in M'y*"™. For
all A >0 and all 7 € M?*". let

sym

2

i A2

if 3 (114 7n) < 71,

(A+2pw)2 ( ) 2(AFpw)
— T1—Tn Ti+Tn . A 204,
GA(T) =\ P + it 7S ey () < 7,
T . A+24t0
A2 if 7, < 2(A+pw) (Tl + Tn)’

and for all £ € MZLX"

sym )

h)\(f) = Haw <Z |§z|> + (>‘ + ,uw) <Z fz) .

Clearly, hy(€) = h(€) for any X > 0 if € € M'5*™. Thus, arguing as in the proof of Lemma we
have for all £ € M,*",

= = sup {T:f—G,\(T)},

4 4 TEMIR
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that is, the convex conjugate of G in the full space MZ:X". We compute

sym
P
4 = Sup sup {T.f— ,\(7')}— sup bup{T.f— ,\(T)}
A20 reMyir TeMiyE AZ0
= squn{T (€ — ;\ngG,\(T)} = SuEXn{T :E—G(1)}
TEMSym TEMm
= swp {r:&-G(n)}=a"(9),
TEMEPX™
which concludes the proof. O

The following result is the analogue of Proposition [3.6]in the present Tresca regime. The proof
is identical, therefore it will be omitted.

Proposition 6.4. The function W is convez,
1 ~
clg] = - = W) < Clg| - forall € € MB™,
for some ¢,C > 0, and

(W (1) — W (&) < L& — &|  forall &, & € M,
for some L > 0. In addition, its recession function, defined for all & € MIJ™ by

t—+400 t

b

exists and is given by
W (&) = \/2kh(£)  for all € € M.
Finally, for all a,b € R™ with a-b =0,
W™(a ®b) = 2\/kitg|a ® b|.
We are now in the position to prove Theorem [6.1

Proof of Theorem[6 1 Step 1: The upper bound. An analogous argument to that used in the
proof of Theorem [3.1] (employing [37, Remark II.3.4] and [30, Theorem 1.1] in place of [37, Propo-
sition 1.1.3] and [8, Corollary 1.10]) shows that it is enough to establish the upper bound for
u € WH(Q;R") and y = 0. According to the dominated convergence theorem, we infer that

/Q<A2+“> (divu)de—i—/QW(eD(u))dgg:;iLn SOW.(e(u)) da.

n 0Ja
For every € > 0,
v e WH (L R) — / SQW.(e(v)) dz
Q
is the L(2;R™)-lower semicontinuous envelope restricted to W11(€2;R") of

) LIQ:R" W.(e(v)) dz
ew m,R)H/QWs(())d,

see [10,[§]. It is thus possible to find a recovery sequence (u5)reny C WH(Q;R™) such that u§ — u
in LY(Q;R") as k — oo, and

/QSQWE(e(u))dm = kEI—ir-loo QWE(e(ui))dx.
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Using a diagonalization argument, we extract a subsequence k(¢) — oo as ¢ — 0 such that
Ve 1= Uj ) —> uin LY (2;R") and
)\s s . fipmgd . T
/ < + ’“‘) (dlvu)2dx+/ W(ep(w))de = lim | We(e(v.))dz.
Q Q

2 n e—=0 Jo

Then, defining the damaged sets as
2K
D, := {:17 €Q: (Ay— AS)e(ve)(z) = e(ve)(z) > E} ,
we obtain by construction that

limsup E-(ve, xp,) = lim [ We(e(v.)) da = Ey(u,0),

=0 e=0 Jo

which completes the proof of the upper bound.
Step 2: The lower bound. For all £ € My*™ we define

3:(€) == emlg® + .

Let (ue, Xe)eso be a sequence in L'(Q;R"™) x L'(Q) such that u. — u in L*(;R"), x. — 0 in
LY(Q) and liminf, Ea(us,xa) < 4o00. Up to a subsequence, we additionally have that u. — u
weakly* in BD(Q) and divu. — divu weakly in L?(£2), so that (1 — x.) divu. — divu weakly in
L?(Q). Moreover, the sequence v, := \/zu. is bounded in H!(;R"), so that v. — 0 weakly in
H'(Q;R") and divv. — 0 strongly in L?(Q2). By the weak lower semicontinuity of norms we have

lim inf B (uc, x) > /

(5 +2) taivp o+ it [ (0= xfep(u0) + xilep(ve) d
Q

2 n e— Q

Step 2a: The two-dimensional case. Since every matrix ¢ € M%5? satisfies det(¢) < 0, Lemma
ensures that £ = a ® b for some a and b € R%. Therefore, according to Young’s inequality,

3-(en(u2)) > 2y/Riiglen (uz)] = \/2xh(en (u.)).

Hence, since W= fD vV 2/—1?1,

. I >
lllgigglf Ee(usaXE) 7/

)\5 Hs . 2 1 g W
; ( + n) (divu)® dz + hgl_}(r)lf ; W(ep(ue)) dx

2
and we conclude by standard lower semicontinuity results for convex functionals of measures.

Step 2b: The three-dimensional case. We use the same notation and the same arguments as for
the three-dimensional case in Theorem We first note that since f = f and g. = g on I\\/JI?’DXB,
for all open sets w C Q, all ¢ € C.(w) with 0 < ¢ <1, and all A € conv(M), we have

/u—hmwwm+hm@wmm
Z/wW*mW@wm+%MmeMx
2/go(fD\/2/ihA)(eD(u€))dazf2suw/<pA:cof(eD(us))d:c.

We observe that
cof(ep(v.)) — cof (e(v.)) — 0 strongly in L*(Q; ngxrg) (6.4)
Indeed, if ¢ € M2X3, it can be written as ¢ = PAP~! with A = diag(&y, &2, &3) € M2X3 diagonal

sym? sym

and P € SO(3). Then {p = PApP~!, and Proposition shows that cof(¢) = Pcof(A)P~!
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and cof((p) = Pcof(Ap)P~t. Therefore cof(£) — cof (€p) = P(A — Ap)P~!, where the diagonal

elements of cof(A) are of the form &;{;, while those of cof(Ap) are of the form (& — M)(gj trg)

with ¢ # j. Specifying the previous expression to £ = e(v.) and observing that its eigenvalues are

bounded in L?(€) uniformly in & > 0, while divv. — 0 strongly in L?(92), we finally deduce (6.4)).
Arguing as in the proof of Theorem we conclude that

limsup/ pA:cof(ep(ve))da = limsup/ p A :cof(e(ve)) dx < 0.
w w

e—0 e—0

Moreover, by standard lower semicontinuity results for convex functionals of measures, we have

hmmf/ f/\\/m )(ep(ue))dx
—0
zumigf/@(fm\/%m)( (1)) dz
E—r w
dE?*
z/gp(fD\/?/ihA der/ V/2kh )™ (dE‘SZ|> d|E°u).

The remainder of the proof follows the lines of Theorem [3.1] Passing to the supremum over
¢ € Ce(w), 0 < <1, and over A € conv(M), we find in a similar fashion as before that

lim inf E. (u, X-) 2/9 (2 +‘;> (divu)? dx+/9(fu\/%)(e[>(u))dx
+/(fmx/ﬂ)°° (;g:;) d|Eu|
>/Q(A +'us>(d1vu) dx—i—/Q(fD V2rh)(ep(u)) dz

2 n

+/Q(fm VoK) ( dE"u ) d|E*4l

d|Esul

:/ (A+“> (divu)de+/W(€D(“))d$
o\ 2 n Q
~ . ( dE°u s
o [ (g el

Note that, in the first line the inf-convolutions are to be understood in the full space M

3x3

sym» While

in the second line the inf-convolutions are intended to be understood in M%X?’. Moreover, we have

used f(€) > f(€p) = f(Ep) and \/2kh(€) > \/2kh(Ep) = \/2kh(€p). The proof of the theorem is
complete. O

The following proposition is the corresponding of Proposition in the Tresca regime.
Proposition 6.5. We have

W = sup {go c M — R conve, p(€) < F(E) for all € € ML

©la®b) < \/2kA,(a@b): (a®b) for all a,b € R™ with a-b= O}.

Proof. The proof is very similar to that of Proposition hence we only sketch it. We only need
to check that the function H : M’y — [0, +oc] defined by

F(e) m {2.Ww|§| if € =a®be ME™ for some a,b € R" with a - b =0

400 otherwise,
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satisfies H*(7) = +oo for all 7 ¢ K. Let us fix 7 € K, i.e.

~ T — Tn 2
G(r) = (4/%) > 2K. (6.5)

It is not restrictive to assume that 7 is diagonal with ordered eigenvalues 7 < --- < 7,. We denote
by Rp the set of the diagonal rank-one symmetric deviatoric matrices with ordered eigenvalues

& =-& <0=-.-=0<¢&,. Then, by definition,
H*(1) > sup {r:€&-2yrualél}. (6.6)
£ERD
Setting 74 := 7, — 71, equations (6.5)) and become
2
~ T,
2k < G(1) = —4,
K (1) T
H*(7) > sup {Td&d - \/2K/Lw§d} = +o0.
g0 L 2
This concludes the proof. (I

7. APPENDIX

In this appendix we prove some useful (but perhaps non-standard) results of linear algebra. The
first lemma characterizes rank-one symmetric matrices in terms of their eigenvalues.

Lemma 7.1. Let a and b € R™. Then the matriz a ® b has at most rank 2, and in this case the
nonzero eigenvalues have opposite signs. Conversely, if £ € R™ has rank two and the two nonzero
etgenvalues have opposite signs, then there are a,b € R™ such that £ = a ®b.

Proof. If a and b are linearly dependent, then £ := a ® b is a rank-one matrix. We thus assume
that a and b are linearly independent. Let E be a two-dimensional subspace of R" spanned by a, b
and let E* be its orthogonal complement. For all z € E* we have éx = 1(a(b- x) +b(a-z)) =0,
which implies that E+ C ker(¢). Hence dimker(¢) > n — 2, and thus rank(¢) < 2.

Let D = diag(&1,...,&,) and P € SO(n) be such that ¢ = PTDP. Then,

a®b—|—b®a) pr

D:PgPTZP(a@b)PTZP( 5

_ ((Pa) ® (Pb) er (Pb) ® (Pa)) = (Pa) ® (Pb).

Let us set « := Pa and § := Pb. Then, since D is diagonal, we have

;B +a;B; =0 for all i # j,
§i = aifi for all 1 < i < n.

Since ¢ has at most two nonzero eigenvalues, we can assume that & = 0 for all 3 < i < n. If
& =0or & =0, then € has at most one nonzero eigenvalue, which shows that £ has at most rank
1. If & # 0 and & # 0, then necessarily a1, s, 81, B2 # 0. In particular we have 81 = & /o and
B2 = & /az, and thus §1& + 52§ = 0. Therefore,

aiés + a6 =0,
which shows that &; and & have opposite signs.
For the converse statement, it suffices to prove the statement for n = 2. By a diagonalization
argument we may assume § = diag(&1,&2) with & <0 < &. Then we define
0 (V& _ (V=&
Ve )’ Ve )’
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so that a © b = €. O

The following result states that in dimension n = 3 a symmetric matrix and its cofactor matrix
are diagonalizable in the same orthonormal basis.

Proposition 7.2. For all £ € ngxr,?;, the matriz cof (£) is diagonalizable in the same orthonormal

basis as &. In addition, if &1, &2, and &3 are the eigenvalues of &, then £€3, £1€3 and £1& are the
eigenvalues of cof(&).

Proof. We first observe that since £ is symmetric, cof(§) is symmetric as well, and we have

Ecof (&) = det(§) Id.
Let {e1, e2,e3} be an orthonormal basis of R? such that e; = &;e; for all i € {1,2,3}.

e If rank(§) = 0, then & = 0 and cof(¢) = 0.

e If rank(§) = 1, we assume & # 0 and & = &3 = 0, so that £ = £1e; ® e;. In this case, we
can easily check that cof(£) = 0.

o If rank(§) = 2, we assume & # 0, & # 0, and & = 0, so that the kernel of £ is spanned
by es. Since £ cof(§) = det(£)Id = 0, we deduce that the three columns of cof(£) belong
to ker(€), hence cof(§) = ces ® es for some ¢ € R (by symmetry). In particular, since
e1-e3 =ey-ez3 =0 and |es| = 1, then we have

cof(€)e; = cof(§)ea =0, cof(&)es = ces,

which shows that ej, e, and e are eigenvectors of cof(§). In addition, we have that
§1€3 = §263 = 0 and &€ = tr(cof(§)) = c.

e If rank(¢) = 3, then cof(§) = det(£)¢~t. Writing € = PDP~! where D = diag(&1, €2, &3)
and P € SO(3), we have cof(¢) = P(det(§)D~1)PT, which shows again that cof(§) is
diagonal in the basis {e1, e2,e3}. In addition, its eigenvalues are given by det(§)/& = &&5,

det(£)/& = &1€3 and det(€) /&3 = &1&o.

In every case we have thus proved that ey, ey, and ez are the eigenvectors of cof(£) and that

cof(§)e; = &&ze1, cof(§)ex = §1€zea,  cof (§)es = £1&aes.
This concludes the proof. O
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