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Abstract
Lightweight manycores stand out for their performance, but lack on programmability and soft-
ware portability. While these challenges may be tackled at Operating System (OS) level, ex-
isting systems that are narrowed for this context require some redesign, due to architectural
intricacies that they do not completely handle. In this scenario, we introduce a Hardware
Abstraction Layer (HAL) for lightweight manycores that cope with key issues that are often
encountered when designing an OS for these processors. We present the interface exposed by
our HAL, as well as a discussion about its implementation for the Kalray MPPA-256 manycore.

Keywords : HAL, Operating System, Lightweight Manycore, Kalray MPPA-256.

1. Introduction

Lightweight manycores differ from other high core count platforms in several architectural
points. This next-generation of processors (i) integrate in a single die up to thousands of low-
power cores; (ii) are designed to cope with Multiple Instruction Multiple Data (MIMD) work-
loads; (iii) rely on a high-bandwidth Network-on-Chip (NoC) for fast and reliable message-
passing communication; (iv) present constrained memory systems; and (v) oftentimes feature
a heterogeneous configuration. Some industry-successful examples of lightweight manycores
are the Kalray MPPA-256 [5]; the Adapteva Epiphany [12]; and the Sunway SW26010 [20].
While the aforementioned architectural particularities granted lightweight manycores further
performance scalability and energy efficiency, they introduced significant challenges in soft-
ware development. For instance, due to the presence of rich NoCs, engineers are frequently re-
quired to adopt a message-passing programming model [8]. Additionally, the usually-missing
hardware support for cache coherency forces programmers to handle it explicitly in software
level and frequently calls out for a redesign in their applications [6]. Furthermore, the frequent
presence of multiple physical address spaces and small local memories require data tiling and
prefetching to be handled by the software [3]. Finally, the heterogeneous configuration turned
the actual deployment of applications in lightweight manycores in a complex task [1].
Indeed, this poor programmability support currently arises in application- level because lower-
level software layers, which are the OS and runtime libraries, do not completely handle archi-
tectural particularities of lightweight manycores transparently [15]. Due to this hotspot, sev-
∗ This work was supervised by Márcio Castro, François Broquedis, Henrique Freitas and Jean-François Méhaut.
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eral research efforts are currently focused on addressing this challenge [4, 7, 17]. For instance,
to ease the portability of existing software, as well as to broaden the actual applicability of
lightweight manycores, some investigations are narrowed to get fully featured OSs running on
them [2, 9, 11, 16]. Likewise, we target this long-term goal and also support the former research
frontier, but we believe that important barriers are yet to be overcome before this scenario turns
into reality. Architectural intricacies of lightweight manycores prevent commodity OSs to be
simply ported, without undergoing through a heavy and complex re-design [2, 9, 11, 16]. Fur-
thermore, existing OSs that are narrowed to these emerging processors still do not account in
their design for some architectural points, such as the constrained memory system [15].
Overall, to enhance programmability for lightweight manycores and cope with software porta-
bility to them, we argue that an OS for next-generation processors should be redesigned from
scratch around all their tight architectural constraints. Therefore, aiming towards this long-
term objective, in this work we focus on addressing first-order programmability challenges
that arise. More precisely, our goal is to introduce a generic and flexible HAL for lightweight
manycores that cope with key issues that are often encountered when designing an OS for these
processors. With this HAL, the development and deployment of a fully-featured OS becomes
easier not only to a particular lightweight manycore, but also enables the portability of an OS
across multiple of these emerging processors. Additionally, in this work we discuss: (i) the
integration of this HAL with Nanvix [13, 14, 15], the research OS for lightweight manycores
that we are designing; and (ii) the deployment of our HAL on the Kalray MPPA-256.
The remainder of this work is organized as follows. In Section 2, we present an architectural
overview of the Kalray MPPA-256, as well as the programmability challenges that it features
and we target. In Section 3, we discuss the implementation of the HAL that we propose for
Kalray MPPA-256. In Section 4, we present related works and highlight our main contributions
to them. In Section 5, we draw our conclusions and future our research roadmap.

2. Lightweight Manycores: Performance, Programmability and Portability

In this section, we present the architectural particularities of lightweight manycores that drove
the design of the HAL that we propose. To guide our discussion, we take the Kalray MPPA-256
as example, present an architectural overview of this lightweight manycore, and then precisely
state those points that motivated us. It should be noted that the following discussion also holds
for other lightweight manycores that our HAL targets, like OpTiMSoC [18] and HERO [10].

2.1. The Kalray MPPA-256 Lightweight Manycore Processor
Figure 1 presents an architectural overview of the Kalray MPPA-256 [5] processor, codenamed
Bostan. It features 256 general-purpose cores, named Processing Elements (PEs), and 32 cores
dedicated for system use, referred to as Resource Managers (RMs). The processor is built with
28 nm CMOS technology, and all cores (i.e., PEs and RMs) run at 500 MHz. Both RMs and PEs
implement a 64-bit capable proprietary instruction set and present a 5-issue Very Long Instruc-
tion Word (VLIW) architecture. Furthermore, these cores feature level-1 private instruction
and data caches, and a Memory Management Unit (MMU) with software-managed Transla-
tion Lookaside Buffers (TLBs) for virtual memory support. Overall, the 288 cores of the proces-
sor are grouped within 16 Compute Clusters, which are intended for computation, and 4 I/O
Clusters, which are designed to provide connectivity to peripherals.
Each Compute Cluster bundles 16 PEs, 1 RM and a 2 MB of local SRAM. In these clusters,
level-1 data cache coherence is not supported by the hardware. On the other hand, each I/O
Cluster features 4 RMs level-2 private instruction cache, level-2 shared data cache, and 4 MB of
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Figure 1: Architectural overview of the Kalray MPPA-256 processor.

local SRAM. In contrast to Compute Clusters, these clusters support level-1 data cache coher-
ence, which may be disabled if required. The north and south I/O Clusters have a DDR3-1600
controller each, thereby enabling access to up to 64 GB of DRAM.
Clusters have a distinct physical address spaces, and they may communicate with one another
by explicitly exchanging messages via either one of two different interleaved 2-D torus NoCs:
(i) a Control NoC (C-NoC) that features low bandwidth and is intended for small data transfers;
and (ii) a Data NoC (D-NoC) that presents high bandwidth and is dedicated to dense data
transfers. Clusters are connected to C-NoC and D-NoC interfaces and have at their disposal
DMA engines to transfer data between these interfaces and the local memories.

2.2. OS Development Challenges
Performance capabilities of Kalray MPPA-256 can be quickly drawn from the architectural
overview that we presented previously. Therefore, in the paragraphs that follow, we turn our
focus to further detail those architectural particularities that introduce challenges in OS imple-
mentation and portability for this lightweight manycore. In the next section, we discuss how
these issues drove the design of the HAL that we propose.

VLIW Architecture PEs and RMs feature a VLIW pipeline. That is, they fetch and issue a bun-
dle of instructions at once. Instructions in the same bundle are executed in parallel, thus
they should not have neither data nor functional unit dependency among themselves.
When writing assembly code, it is up to the kernel engineer to ensure this requirement.

Cache Coherency In Compute Clusters, hardware-level coherency for memory caches is not
supported. However, VLIW cores feature special machine instructions to invalidate, flush
and reload data caches, and thus enable coherency to be implemented in software-level.

TLB Management Architectural TLBs are software-managed and feature a hierarchical de-
sign. They are formed by the union of a small fully associative TLB, called Locked TLB
(LTLB); and a large 2-way set associative TLB, named Join TLB (JTLB). Entries of both
TLBs may encode pages of arbitrary sizes, ranging from 4 kB to 512 kB. However, LTLB
entries may be configured when powering on the processor, and JTLB entries may be
dynamically programmed through privileged machine instructions.
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Direct Memory Access (DMA) Engines To transfer data between the local memories and the
NoC interfaces, clusters must rely on DMA engines. Each of these specialized micro-
cores has 256 inputs and 8 outputs buffers for the D-NoC, and 128 inputs and 1 output
buffers for the C-NoC. DMA engines may be programmed to perform either synchronous
or asynchronous transfers, and in the latter case, up to 8 operations may be on-going at
the same time. The number of DMA engines varies from one cluster to another: Compute
Clusters have a single of these units, whereas I/O Clusters have 4.

3. A Hardware Abstraction Layer for Lightweight Manycores

Figure 2 presents an overview of the HAL that we propose. Our implementation of it is open-
source 2 and currently supports the Kalray MPPA-256 and OpTiMSoC processors. Overall, this
HAL fits in 150 kB and is structured in two major logic layers: one that abstracts the manage-
ment of a single cluster, which is named Cluster Abstraction Layer; and another that encapsulates
architectural features that spawn across multiple clusters, which is called Processor Abstraction
Layer. In turn, each of these layers group several modules that abstract specific components of
the underlying hardware: (i) the Memory Management module; (ii) the Core Management module;
(iii) the Inter-Cluster Communication module; and (iv) Debugging and Monitoring module. Due
to space limitations, in the paragraphs that follow we discuss the first three of the modules
mentioned above, which indeed summarize the contributions of our work.
The Memory Management abstraction module exposes a uniform view of TLBs and paging struc-
tures of cores in a cluster. Furthermore, it exports routines for: (i) flushing, reloading and
invalidating caches; (ii) encoding, writing and reading TLB entries; and (iii) looking up and
changing paging structures. We relied on two great decisions to design this interface, and thus
enable a fully featured and coherent-capable memory management system to be written on
top of it. First, by providing a standard view of the TLBs and paging structures, as well as
routines to operate on these, the memory management system of an OS kernel running on top
of our HAL does not need to worry about the actual layout of these hardware components.
For instance, recall that in Kalray MPPA-256, the TLB is split into two smaller structures (i.e.,
JTLB and LTLB), with different lengths and associativity capabilities. If this complexity was
handled to the overlying memory management system, then the kernel would be platform-
dependent – which is not what we aim at. Second, we chose to expose a software-managed
view of the memory hierarchy, even though it may be fully-managed by the hardware in some
targets. In summary, our motivation for this decision is two-fold. In architectural families that
TLBs are software-managed, an important performance improvement can be achieved when
the actual management takes place in higher software levels. Whereas in architectural families
which manage caches and TLBs at the hardware level, no performance drawback is observed if
such interface is exposed, because indeed the underlying implementation is linked to dummy
wrappers (i.e., do nothing). Overall, our motivation to expose a software-managed view of
the memory hierarchy comes from the following observation. To make this point clear, notice
that with such abstraction module, an OS running on Kalray MPPA-256 may choose which of
its internal structures shall be kept coherent or not. In Annex A we further discuss the HAL
interface for managing the TLB.
The Core Management abstraction module exposes routines for powering on/off, starting, stop-
ping and suspending instruction execution in the cores of a cluster. Furthermore, it also pro-
vides a lightweight lock interface, and a uniform numbering scheme for hardware interrupts,

2 Publicly available under the MIT Licence at: https://github.com/nanvix/microkernel.

https://github.com/nanvix/microkernel
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Figure 2: Structural overview of the proposed HAL.

exceptions and traps, as well as routines for registering handlers for them. Overall, this abstrac-
tion module was designed so that the following OS features could be directly built on its top,
without requiring additional architecture-dependent code to be written: (i) a fully featured
thread management and synchronization system and (ii) rich interrupt/exception handling,
and (iii) a system call interface. Note that we decided to not expose routines specifically for
saving and restoring the execution context of a core, but we rather chose to encapsulate these
functionalities in the routines for stopping and (re)starting instruction execution. We were mo-
tivated to do so because we found out that if we decoupled this functionality, a thread system
built on top of our HAL would need to implement some assembly routines. While this may
enable performance to be slightly tuned, we argue that: (i) it would go against the conceptual
idea of our HAL, which is to enable the overlying kernel to be platform-independent; and (ii)
the actual development of efficient assembly code may be a complex task in some platforms.
For instance, in a VLIW architecture, such as Kalray MPPA-256, recall that it is up to the kernel
engineer to ensure that instruction bundles are well composed. In Annex B we further detail
the HAL interface for managing cores.
The Inter-Cluster Communication module exports three major abstraction modules and opera-
tions on them, which all together enable clusters to exchange data: sync, mailbox, and portal.
A sync enables a set of clusters to wait for a notification from a cluster, and thus provide the
bare bones for inter-cluster synchronization. It is an analogous abstraction to POSIX signals,
with the sole difference that a sync notification carries no other information but a wakeup one.
The mailbox abstraction enables clusters to exchange fixed-size messages with one another. A
message is intended to encode small operations and system control signals, and can have one
or many recipients. Finally, the portal abstraction enables dense data transfers between clusters,
either synchronously or asynchronously (if supported by hardware). A portal can be opened
just between a pair of clusters and it features a built-in flow control semantic, likewise POSIX
pipes. Notice that in this design we decoupled small from large data transfers by exporting
two abstractions (i.e., mailboxes and portals). We were motivated to do so because in this way
we could expose some control over Quality of Service (QoS) to the overlying OS kernel. For
instance, in lightweight manycores that feature multiple NoCs, with possibly different band-
widths, such as Kalray MPPA-256, one NoC may be exclusively used for syncs and mailboxes
and another one for portals. In Annex C, we depict how an OS service for remote memory
access may be implemented on top of this interface.
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4. Related Work

Several OS kernels were so far proposed to address programmability and portability challenges
in lightweight manycores at system level [1, 2, 9, 19]. Overall, these solutions focus on deliver-
ing to user-level applications high-level programming abstractions, such as threads and files,
so that software development experience is improved. In contrast to these works, our HAL lies
one level below, and focus on providing a uniform architectural of several lightweight many-
cores, so that the portability and implementation of an OS kernel becomes easier. Indeed, one
can say that a HAL is the lowest-level layer of an OS kernel, and thus existing kernels narrowed
for lightweight manycores may be contrasted to our solution. While this claim holds at first-
instance, we argue that these kernels overlook to some architectural features that are a trend in
the next-generation of lightweight manycores [15], such as VLIW cores, no support for cache
coherency at the hardware level, complex hardware TLB structures and DMA engines for NoC-
based communication. Nevertheless, it is worth noting that the design of the Core Management
of our HAL borrowed Barrelfish [2] such as the core driver. Furthermore, for the design of
the Inter-Cluster Communication interface, we relied on ideas proposed along with the NodeOS
distributed runtime system [5], like NoC connectors. However, in contrast to this runtime en-
vironment, our HAL exposes flow control operations for NoC connectors, so that QoS and data
transfers may be fully controlled by the overlying OS kernel. Overall, we designed a new HAL
because the previous ones did not meet the unique features of lightweight manycores.

5. Conclusions

Lightweight manycores are well known for their performance, but currently lack on programma-
bility and software portability. While these challenges are inherently introduced by architec-
tural features of these processors, several efforts look at bridging them at OS level [1, 2, 9, 19].
Likewise, we support this research frontier and target the same long-term goal, but we ar-
gue that important barriers are yet to be bridged before this scenario turns into reality. For
instance, existing OSs do not account in their design for constrained memory systems of light-
weight manycores nor their heterogeneous configuration [15]. Indeed, we believe that in order
to cope with these issues, an OS that addresses this next-generation of processors should be
re-designed from scratch around all their tight architectural constraints. Therefore, targeting
this long-term goal, in this work we aim at introducing a HAL for lightweight manycores that
copes with key issues that emerge when designing OSs for these processors. With this HAL,
the development and deployment of a fully-featured OS becomes easier not only to a particular
lightweight manycore, but also enables the portability of its kernel across multiple processors.
This work is actually inserted in the context of a larger joint-research project that aims at im-
proving programmability and software portability in lightweight manycores by means of a
fully-featured POSIX-compliant OS. This system, which we named Nanvix, features a multik-
ernel design [2] and it is being designed from scratch around architectural issues of lightweight
manycores. In [15] we presented a prototype of a memory service of Nanvix, which is indeed
a core service in our system. We deployed this prototype on the Kalray MPPA-256 lightweight
manycore and our experimental results motivated a bare metal implementation of our OS. The
HAL that we presented in this work consists of the first building block towards this implemen-
tation. On top of it, we are currently designing and implementing a microkernel that shall run
in each cluster of a lightweight manycore and provide bare bones system abstractions, such as
thread management, thread synchronization, and virtual memory support. In future works,
we intend to present a discussion and evaluation of our microkernel.
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Figure 3: TLBs of Kalray MPPA-256 and OpTiMSoC, and the interface exposed by our HAL.

In Figure 3 we depict the architectural TLBs of the Kalray MPPA-256 (left) and OpTiMSoC (up-
per right) lightweight manycore processors, as well as the interface exposed by our HAL for
managing hardware TLBs (bottom right). It is important to remark how much the hardware
TLBs of these two processors differ, and how our HAL bridges this heterogeneity. Overall, TLBs
of both processors are software-managed, but feature a different design. In Kalray MPPA-256,
TLBs are formed by the union of a small fully associative (LTLB); and a large 2-way set asso-
ciative TLB (JTLB). Entries of both, LTLB and JTLB, may hold address for data and instruction
pages. In contrast, in OpTiMSoC, the TLB is split in a Instruction TLB (ITLB) and a Data TLB
(DTLB). Both, ITLB and DTLB, feature a 2-way set associativity and have the same length,
but the former may encode only pages that hold code (i.e., executable and readable, but not
writable), and the latter pages that hold data (readable and/or executable, but not writable).
An OS kernel running on both of these processors, would need to deal with the different orga-
nization, geometry and associativity, if not using our HAL. In contrast, our interface exposes to
the overlying kernel a virtual TLB which features full associativity and each of its entries may
encode either instruction or data pages.
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B. HAL Core Interface

/*
* Powers on a core.

*/
extern void core_startup(void);

/*
* Shutdowns the underlying core.

* - status Shutdown status.

*/
extern void core_shutdown(int status);

/*
* Starts a core.

* - coreid ID of the target core.

* - start Starting routine to execute.

*/
extern void core_start(int coreid, void (*start)(void));

/*
* Stops and resets instruction execution in the underlying core.

*/
extern void core_reset(void);

/*
* Suspends instruction execution in the underling core.

*/
extern void core_sleep(void);

/*
* Resumes instruction execution on a sleeping core.

*/
extern void core_wakeup(int coreid);

Snippet 1: API overview of the core interface of our HAL.

In Snippet 1, we present the programming interface exposed by our HAL to manage instruc-
tion execution in the cores a lightweight manycore. The core_startup() routine is the
first one called when the core powers on, and it actually setups and initializes all architec-
tural structures of underlying hardware, such as the interrupt vector tables, TLBs and page
tables. In contrast, the core_shutdown() function carries the analogue operating, by de-
initializing hardware structures that are needed, and then powering off the underlying core.
The next three functions, which are core_start(), core_reset(), core_sleep() and
core_wakeup() may be used to start, stop, suspend and resume instruction execution in
a core, respectively; and thus they provide the bare bones infra-structure for implementing
a fully-featured thread management system For instance, a high-level routine for creating a
thread would invoke core_start(), supply as a parameter the identifier of the core in which
instruction execution should start. Conversely, whenever the thread finishes its execution, it
would call core_reset(). Finally, thread switching as well as sleep/wakeup synchroniza-
tion primitives may be implemented on top of core_sleep() and core_wakeup().
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C. HAL Inter-Cluster Communication Interface
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Figure 4: An OS protocol for remote memory accesses on top of the proposed HAL.

In Figure 4 we present how the inter-cluster communication interface exposed by our HAL may
be used to implement a protocol for accessing remote memory in a lightweight manycore [15].
In this protocol, the IO Cluster is the server of remote memory, and the Compute Cluster is
the client of this service. Aside from the details of the protocol itself, it is important to note
how the mailbox, portal and sync connectors of our interface were used. Initially, the server is
blocked, awaiting for a request to pop up in its input mailbox. As soon the client sends a request
via an output mailbox (1), the server unblocks, processes the request, and blocks in a sync, until
the remote client informs back that it is ready to receive data. As soon as data is ready to be
received, the client unblocks the remote server (2), which sends back to him the requested data
through an output portal (3).
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