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Lightweight manycores stand out for their performance, but lack on programmability and software portability. While these challenges may be tackled at Operating System (OS) level, existing systems that are narrowed for this context require some redesign, due to architectural intricacies that they do not completely handle. In this scenario, we introduce a Hardware Abstraction Layer (HAL) for lightweight manycores that cope with key issues that are often encountered when designing an OS for these processors. We present the interface exposed by our HAL, as well as a discussion about its implementation for the Kalray MPPA-256 manycore.

Introduction

Lightweight manycores differ from other high core count platforms in several architectural points. This next-generation of processors (i) integrate in a single die up to thousands of lowpower cores; (ii) are designed to cope with Multiple Instruction Multiple Data (MIMD) workloads; (iii) rely on a high-bandwidth Network-on-Chip (NoC) for fast and reliable messagepassing communication; (iv) present constrained memory systems; and (v) oftentimes feature a heterogeneous configuration. Some industry-successful examples of lightweight manycores are the Kalray MPPA-256 [START_REF] De Dinechin | A Distributed Run-Time Environment for the Kalray MPPA-256 Integrated Manycore Processor[END_REF]; the Adapteva Epiphany [START_REF] Olofsson | Kickstarting High-Performance Energy-Efficient Manycore Architectures with Epiphany[END_REF]; and the Sunway SW26010 [START_REF] Zheng | Cooperative Computing Techniques for a Deeply Fused and Heterogeneous Many-Core Processor Architecture[END_REF]. While the aforementioned architectural particularities granted lightweight manycores further performance scalability and energy efficiency, they introduced significant challenges in software development. For instance, due to the presence of rich NoCs, engineers are frequently required to adopt a message-passing programming model [START_REF] Kelly | AutoPilot: Message Passing Parallel Programming for a Cache Incoherent Embedded Manycore Processor[END_REF]. Additionally, the usually-missing hardware support for cache coherency forces programmers to handle it explicitly in software level and frequently calls out for a redesign in their applications [START_REF] Francesquini | On the Energy Efficiency and Performance of Irregular Application Executions on Multicore, NUMA and Manycore Platforms[END_REF]. Furthermore, the frequent presence of multiple physical address spaces and small local memories require data tiling and prefetching to be handled by the software [START_REF] Castro | Seismic wave propagation simulations on low-power and performance-centric manycores[END_REF]. Finally, the heterogeneous configuration turned the actual deployment of applications in lightweight manycores in a complex task [START_REF] Barbalace | Popcorn: Bridging the Programmability Gap in Heterogeneous-ISA Platforms[END_REF]. Indeed, this poor programmability support currently arises in application-level because lowerlevel software layers, which are the OS and runtime libraries, do not completely handle architectural particularities of lightweight manycores transparently [START_REF] Penna | Asynchronous One-Sided Communications and Synchronizations for a Clustered Manycore Processor[END_REF]. Due to this hotspot, sev-eral research efforts are currently focused on addressing this challenge [START_REF] Christgau | Exploring One-Sided Communication and Synchronization on a Non-Cache-Coherent Many-Core Architecture[END_REF][START_REF] Gamell | Exploring Cross-Layer Power Management for PGAS Applications on the SCC Platform[END_REF][START_REF] Serres | Experiences with UPC on TILE-64 Processor[END_REF]. For instance, to ease the portability of existing software, as well as to broaden the actual applicability of lightweight manycores, some investigations are narrowed to get fully featured OSs running on them [START_REF] Baumann | The Multikernel: A New OS Architecture for Scalable Multicore Systems[END_REF][START_REF] Kluge | An Operating System for Safety-Critical Applications on Manycore Processors[END_REF][START_REF] Nightingale | Helios: Het-Compas'2019 : Parallélisme/ Architecture / Système LIUPPA -IUT de Bayonne, France, du 24 au 28 juin 2019 erogeneous Multiprocessing with Satellite Kernels[END_REF][START_REF] Rhoden | Improving Per-Node Efficiency in the Datacenter with New OS Abstractions[END_REF]. Likewise, we target this long-term goal and also support the former research frontier, but we believe that important barriers are yet to be overcome before this scenario turns into reality. Architectural intricacies of lightweight manycores prevent commodity OSs to be simply ported, without undergoing through a heavy and complex re-design [START_REF] Baumann | The Multikernel: A New OS Architecture for Scalable Multicore Systems[END_REF][START_REF] Kluge | An Operating System for Safety-Critical Applications on Manycore Processors[END_REF][START_REF] Nightingale | Helios: Het-Compas'2019 : Parallélisme/ Architecture / Système LIUPPA -IUT de Bayonne, France, du 24 au 28 juin 2019 erogeneous Multiprocessing with Satellite Kernels[END_REF][START_REF] Rhoden | Improving Per-Node Efficiency in the Datacenter with New OS Abstractions[END_REF]. Furthermore, existing OSs that are narrowed to these emerging processors still do not account in their design for some architectural points, such as the constrained memory system [START_REF] Penna | Asynchronous One-Sided Communications and Synchronizations for a Clustered Manycore Processor[END_REF]. Overall, to enhance programmability for lightweight manycores and cope with software portability to them, we argue that an OS for next-generation processors should be redesigned from scratch around all their tight architectural constraints. Therefore, aiming towards this longterm objective, in this work we focus on addressing first-order programmability challenges that arise. More precisely, our goal is to introduce a generic and flexible HAL for lightweight manycores that cope with key issues that are often encountered when designing an OS for these processors. With this HAL, the development and deployment of a fully-featured OS becomes easier not only to a particular lightweight manycore, but also enables the portability of an OS across multiple of these emerging processors. Additionally, in this work we discuss: (i) the integration of this HAL with Nanvix [START_REF] Penna | Using the Nanvix Operating System in Undergraduate Operating System Courses[END_REF][START_REF] Penna | Using the Nanvix Operating System in Undergraduate Operating System Courses[END_REF][START_REF] Penna | Asynchronous One-Sided Communications and Synchronizations for a Clustered Manycore Processor[END_REF], the research OS for lightweight manycores that we are designing; and (ii) the deployment of our HAL on the Kalray MPPA-256. The remainder of this work is organized as follows. In Section 2, we present an architectural overview of the Kalray MPPA-256, as well as the programmability challenges that it features and we target. In Section 3, we discuss the implementation of the HAL that we propose for Kalray MPPA-256. In Section 4, we present related works and highlight our main contributions to them. In Section 5, we draw our conclusions and future our research roadmap.

Lightweight Manycores: Performance, Programmability and Portability

In this section, we present the architectural particularities of lightweight manycores that drove the design of the HAL that we propose. To guide our discussion, we take the Kalray MPPA-256 as example, present an architectural overview of this lightweight manycore, and then precisely state those points that motivated us. It should be noted that the following discussion also holds for other lightweight manycores that our HAL targets, like OpTiMSoC [START_REF] Wallentowitz | Open Tiled Manycore System-on-Chip[END_REF] and HERO [START_REF] Kurth | Hero: Heterogeneous embedded research platform for exploring risc-v manycore accelerators on fpga[END_REF].

The Kalray MPPA-256 Lightweight Manycore Processor

Figure 1 presents an architectural overview of the Kalray MPPA-256 [START_REF] De Dinechin | A Distributed Run-Time Environment for the Kalray MPPA-256 Integrated Manycore Processor[END_REF] processor, codenamed Bostan. It features 256 general-purpose cores, named Processing Elements (PEs), and 32 cores dedicated for system use, referred to as Resource Managers (RMs). The processor is built with 28 nm CMOS technology, and all cores (i.e., PEs and RMs) run at 500 MHz. Both RMs and PEs implement a 64-bit capable proprietary instruction set and present a 5-issue Very Long Instruction Word (VLIW) architecture. Furthermore, these cores feature level-1 private instruction and data caches, and a Memory Management Unit (MMU) with software-managed Translation Lookaside Buffers (TLBs) for virtual memory support. Overall, the 288 cores of the processor are grouped within 16 Compute Clusters, which are intended for computation, and 4 I/O Clusters, which are designed to provide connectivity to peripherals. Each Compute Cluster bundles 16 PEs, 1 RM and a 2 MB of local SRAM. In these clusters, level-1 data cache coherence is not supported by the hardware. On the other hand, each I/O Cluster features 4 RMs level-2 private instruction cache, level-2 shared data cache, and 4 MB of 

OS Development Challenges

Performance capabilities of Kalray MPPA-256 can be quickly drawn from the architectural overview that we presented previously. Therefore, in the paragraphs that follow, we turn our focus to further detail those architectural particularities that introduce challenges in OS implementation and portability for this lightweight manycore. In the next section, we discuss how these issues drove the design of the HAL that we propose.

VLIW Architecture PEs and RMs feature a VLIW pipeline. That is, they fetch and issue a bundle of instructions at once. Instructions in the same bundle are executed in parallel, thus they should not have neither data nor functional unit dependency among themselves. When writing assembly code, it is up to the kernel engineer to ensure this requirement.

Cache Coherency

In Compute Clusters, hardware-level coherency for memory caches is not supported. However, VLIW cores feature special machine instructions to invalidate, flush and reload data caches, and thus enable coherency to be implemented in software-level.

TLB Management Architectural TLBs are software-managed and feature a hierarchical design. They are formed by the union of a small fully associative TLB, called Locked TLB (LTLB); and a large 2-way set associative TLB, named Join TLB (JTLB). Entries of both TLBs may encode pages of arbitrary sizes, ranging from 4 kB to 512 kB. However, LTLB entries may be configured when powering on the processor, and JTLB entries may be dynamically programmed through privileged machine instructions.
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Direct Memory Access (DMA) Engines

To transfer data between the local memories and the NoC interfaces, clusters must rely on DMA engines. Each of these specialized microcores has 256 inputs and 8 outputs buffers for the D-NoC, and 128 inputs and 1 output buffers for the C-NoC. DMA engines may be programmed to perform either synchronous or asynchronous transfers, and in the latter case, up to 8 operations may be on-going at the same time. The number of DMA engines varies from one cluster to another: Compute Clusters have a single of these units, whereas I/O Clusters have 4.

A Hardware Abstraction Layer for Lightweight Manycores

Figure 2 presents an overview of the HAL that we propose. Our implementation of it is opensource 2 and currently supports the Kalray MPPA-256 and OpTiMSoC processors. Overall, this HAL fits in 150 kB and is structured in two major logic layers: one that abstracts the management of a single cluster, which is named Cluster Abstraction Layer; and another that encapsulates architectural features that spawn across multiple clusters, which is called Processor Abstraction Layer. In turn, each of these layers group several modules that abstract specific components of the underlying hardware: (i) the Memory Management module; (ii) the Core Management module;

(iii) the Inter-Cluster Communication module; and (iv) Debugging and Monitoring module. Due to space limitations, in the paragraphs that follow we discuss the first three of the modules mentioned above, which indeed summarize the contributions of our work. The Memory Management abstraction module exposes a uniform view of TLBs and paging structures of cores in a cluster. Furthermore, it exports routines for: (i) flushing, reloading and invalidating caches; (ii) encoding, writing and reading TLB entries; and (iii) looking up and changing paging structures. We relied on two great decisions to design this interface, and thus enable a fully featured and coherent-capable memory management system to be written on top of it. First, by providing a standard view of the TLBs and paging structures, as well as routines to operate on these, the memory management system of an OS kernel running on top of our HAL does not need to worry about the actual layout of these hardware components.

For instance, recall that in Kalray MPPA-256, the TLB is split into two smaller structures (i.e., JTLB and LTLB), with different lengths and associativity capabilities. If this complexity was handled to the overlying memory management system, then the kernel would be platformdependent -which is not what we aim at. Second, we chose to expose a software-managed view of the memory hierarchy, even though it may be fully-managed by the hardware in some targets. In summary, our motivation for this decision is two-fold. In architectural families that TLBs are software-managed, an important performance improvement can be achieved when the actual management takes place in higher software levels. Whereas in architectural families which manage caches and TLBs at the hardware level, no performance drawback is observed if such interface is exposed, because indeed the underlying implementation is linked to dummy wrappers (i.e., do nothing). Overall, our motivation to expose a software-managed view of the memory hierarchy comes from the following observation. To make this point clear, notice that with such abstraction module, an OS running on Kalray MPPA-256 may choose which of its internal structures shall be kept coherent or not. In Annex A we further discuss the HAL interface for managing the TLB. The Core Management abstraction module exposes routines for powering on/off, starting, stopping and suspending instruction execution in the cores of a cluster. Furthermore, it also provides a lightweight lock interface, and a uniform numbering scheme for hardware interrupts, exceptions and traps, as well as routines for registering handlers for them. Overall, this abstraction module was designed so that the following OS features could be directly built on its top, without requiring additional architecture-dependent code to be written: (i) a fully featured thread management and synchronization system and (ii) rich interrupt/exception handling, and (iii) a system call interface. Note that we decided to not expose routines specifically for saving and restoring the execution context of a core, but we rather chose to encapsulate these functionalities in the routines for stopping and (re)starting instruction execution. We were motivated to do so because we found out that if we decoupled this functionality, a thread system built on top of our HAL would need to implement some assembly routines. While this may enable performance to be slightly tuned, we argue that: (i) it would go against the conceptual idea of our HAL, which is to enable the overlying kernel to be platform-independent; and (ii) the actual development of efficient assembly code may be a complex task in some platforms.

For instance, in a VLIW architecture, such as Kalray MPPA-256, recall that it is up to the kernel engineer to ensure that instruction bundles are well composed. In Annex B we further detail the HAL interface for managing cores. The Inter-Cluster Communication module exports three major abstraction modules and operations on them, which all together enable clusters to exchange data: sync, mailbox, and portal. A sync enables a set of clusters to wait for a notification from a cluster, and thus provide the bare bones for inter-cluster synchronization. It is an analogous abstraction to POSIX signals, with the sole difference that a sync notification carries no other information but a wakeup one.

The mailbox abstraction enables clusters to exchange fixed-size messages with one another. A message is intended to encode small operations and system control signals, and can have one or many recipients. Finally, the portal abstraction enables dense data transfers between clusters, either synchronously or asynchronously (if supported by hardware). A portal can be opened just between a pair of clusters and it features a built-in flow control semantic, likewise POSIX pipes. Notice that in this design we decoupled small from large data transfers by exporting two abstractions (i.e., mailboxes and portals). We were motivated to do so because in this way we could expose some control over Quality of Service (QoS) to the overlying OS kernel. For instance, in lightweight manycores that feature multiple NoCs, with possibly different bandwidths, such as Kalray MPPA-256, one NoC may be exclusively used for syncs and mailboxes and another one for portals. In Annex C, we depict how an OS service for remote memory access may be implemented on top of this interface.
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Related Work

Several OS kernels were so far proposed to address programmability and portability challenges in lightweight manycores at system level [START_REF] Barbalace | Popcorn: Bridging the Programmability Gap in Heterogeneous-ISA Platforms[END_REF][START_REF] Baumann | The Multikernel: A New OS Architecture for Scalable Multicore Systems[END_REF][START_REF] Kluge | An Operating System for Safety-Critical Applications on Manycore Processors[END_REF][START_REF] Wisniewski | mOS: An Architecture for Extreme-Scale Operating Systems[END_REF]. Overall, these solutions focus on delivering to user-level applications high-level programming abstractions, such as threads and files, so that software development experience is improved. In contrast to these works, our HAL lies one level below, and focus on providing a uniform architectural of several lightweight manycores, so that the portability and implementation of an OS kernel becomes easier. Indeed, one can say that a HAL is the lowest-level layer of an OS kernel, and thus existing kernels narrowed for lightweight manycores may be contrasted to our solution. While this claim holds at firstinstance, we argue that these kernels overlook to some architectural features that are a trend in the next-generation of lightweight manycores [START_REF] Penna | Asynchronous One-Sided Communications and Synchronizations for a Clustered Manycore Processor[END_REF], such as VLIW cores, no support for cache coherency at the hardware level, complex hardware TLB structures and DMA engines for NoCbased communication. Nevertheless, it is worth noting that the design of the Core Management of our HAL borrowed Barrelfish [START_REF] Baumann | The Multikernel: A New OS Architecture for Scalable Multicore Systems[END_REF] such as the core driver. Furthermore, for the design of the Inter-Cluster Communication interface, we relied on ideas proposed along with the NodeOS distributed runtime system [START_REF] De Dinechin | A Distributed Run-Time Environment for the Kalray MPPA-256 Integrated Manycore Processor[END_REF], like NoC connectors. However, in contrast to this runtime environment, our HAL exposes flow control operations for NoC connectors, so that QoS and data transfers may be fully controlled by the overlying OS kernel. Overall, we designed a new HAL because the previous ones did not meet the unique features of lightweight manycores.

Conclusions

Lightweight manycores are well known for their performance, but currently lack on programmability and software portability. While these challenges are inherently introduced by architectural features of these processors, several efforts look at bridging them at OS level [START_REF] Barbalace | Popcorn: Bridging the Programmability Gap in Heterogeneous-ISA Platforms[END_REF][START_REF] Baumann | The Multikernel: A New OS Architecture for Scalable Multicore Systems[END_REF][START_REF] Kluge | An Operating System for Safety-Critical Applications on Manycore Processors[END_REF][START_REF] Wisniewski | mOS: An Architecture for Extreme-Scale Operating Systems[END_REF]. Likewise, we support this research frontier and target the same long-term goal, but we argue that important barriers are yet to be bridged before this scenario turns into reality. For instance, existing OSs do not account in their design for constrained memory systems of lightweight manycores nor their heterogeneous configuration [START_REF] Penna | Asynchronous One-Sided Communications and Synchronizations for a Clustered Manycore Processor[END_REF]. Indeed, we believe that in order to cope with these issues, an OS that addresses this next-generation of processors should be re-designed from scratch around all their tight architectural constraints. Therefore, targeting this long-term goal, in this work we aim at introducing a HAL for lightweight manycores that copes with key issues that emerge when designing OSs for these processors. With this HAL, the development and deployment of a fully-featured OS becomes easier not only to a particular lightweight manycore, but also enables the portability of its kernel across multiple processors. This work is actually inserted in the context of a larger joint-research project that aims at improving programmability and software portability in lightweight manycores by means of a fully-featured POSIX-compliant OS. This system, which we named Nanvix, features a multikernel design [START_REF] Baumann | The Multikernel: A New OS Architecture for Scalable Multicore Systems[END_REF] and it is being designed from scratch around architectural issues of lightweight manycores. In [START_REF] Penna | Asynchronous One-Sided Communications and Synchronizations for a Clustered Manycore Processor[END_REF] we presented a prototype of a memory service of Nanvix, which is indeed a core service in our system. We deployed this prototype on the Kalray MPPA-256 lightweight manycore and our experimental results motivated a bare metal implementation of our OS. The HAL that we presented in this work consists of the first building block towards this implementation. On top of it, we are currently designing and implementing a microkernel that shall run in each cluster of a lightweight manycore and provide bare bones system abstractions, such as thread management, thread synchronization, and virtual memory support. In future works, we intend to present a discussion and evaluation of our microkernel.
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 20191 Figure 1: Architectural overview of the Kalray MPPA-256 processor.
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 2 Figure 2: Structural overview of the proposed HAL.
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In Figure 3 we depict the architectural TLBs of the Kalray MPPA-256 (left) and OpTiMSoC (upper right) lightweight manycore processors, as well as the interface exposed by our HAL for managing hardware TLBs (bottom right). It is important to remark how much the hardware TLBs of these two processors differ, and how our HAL bridges this heterogeneity. Overall, TLBs of both processors are software-managed, but feature a different design. In Kalray MPPA-256, TLBs are formed by the union of a small fully associative (LTLB); and a large 2-way set associative TLB (JTLB). Entries of both, LTLB and JTLB, may hold address for data and instruction pages. In contrast, in OpTiMSoC, the TLB is split in a Instruction TLB (ITLB) and a Data TLB (DTLB). Both, ITLB and DTLB, feature a 2-way set associativity and have the same length, but the former may encode only pages that hold code (i.e., executable and readable, but not writable), and the latter pages that hold data (readable and/or executable, but not writable). An OS kernel running on both of these processors, would need to deal with the different organization, geometry and associativity, if not using our HAL. In contrast, our interface exposes to the overlying kernel a virtual TLB which features full associativity and each of its entries may encode either instruction or data pages. Snippet 1: API overview of the core interface of our HAL.

In Snippet 1, we present the programming interface exposed by our HAL to manage instruction execution in the cores a lightweight manycore. The core_startup() routine is the first one called when the core powers on, and it actually setups and initializes all architectural structures of underlying hardware, such as the interrupt vector tables, TLBs and page tables. In contrast, the core_shutdown() function carries the analogue operating, by deinitializing hardware structures that are needed, and then powering off the underlying core. The next three functions, which are core_start(), core_reset(), core_sleep() and core_wakeup() may be used to start, stop, suspend and resume instruction execution in a core, respectively; and thus they provide the bare bones infra-structure for implementing a fully-featured thread management system For instance, a high-level routine for creating a thread would invoke core_start(), supply as a parameter the identifier of the core in which instruction execution should start. Conversely, whenever the thread finishes its execution, it would call core_reset(). Finally, thread switching as well as sleep/wakeup synchronization primitives may be implemented on top of core_sleep() and core_wakeup(). In Figure 4 we present how the inter-cluster communication interface exposed by our HAL may be used to implement a protocol for accessing remote memory in a lightweight manycore [START_REF] Penna | Asynchronous One-Sided Communications and Synchronizations for a Clustered Manycore Processor[END_REF]. In this protocol, the IO Cluster is the server of remote memory, and the Compute Cluster is the client of this service. Aside from the details of the protocol itself, it is important to note how the mailbox, portal and sync connectors of our interface were used. Initially, the server is blocked, awaiting for a request to pop up in its input mailbox. As soon the client sends a request via an output mailbox (1), the server unblocks, processes the request, and blocks in a sync, until the remote client informs back that it is ready to receive data. As soon as data is ready to be received, the client unblocks the remote server [START_REF] Baumann | The Multikernel: A New OS Architecture for Scalable Multicore Systems[END_REF], which sends back to him the requested data through an output portal (3).