
A Hybrid High-Order method for the incompressible
Navier-Stokes problem robust for large irrotational body forces

Daniel Castanon Quiroz∗1 and Daniele A. Di Pietro†1

1IMAG, Univ Montpellier, CNRS, Montpellier, France

June 7, 2019

Abstract

Wedevelop a novel HybridHigh-Ordermethod for the incompressibleNavier–Stokes problem
robust for large irrotational body forces. The key ingredients of themethod are discrete versions of
the body force and convective terms in the momentum equation formulated in terms of a globally
divergence-free velocity reconstruction. Denoting by λ the L2-norm of the irrotational part of
the body force, the method is designed so as to mimick two key properties of the continuous
problem at the discrete level, namely the invariance of the velocity with respect to λ and the non-
dissipativity of the convective term. The convergence analysis shows that, when polynomials of
total degree ≤ k are used as discrete unknowns, the energy norm of the error converges as hk+1

(with h denoting, as usual, the meshsize), and the error estimate on the velocity is uniform in
λ and independent of the pressure. The performance of the method is illustrated by a complete
panel of numerical tests, including comparisons that highlight the benefits with respect to more
standard HHO formulations.
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1 Introduction

Let Ω ⊂ R3 denote an open, bounded, simply connected polyhedral domain with Lipschitz boundary
∂Ω. Let ν > 0 be a real number representing the kinematic viscosity of the fluid, and let f ∈ L2(Ω)3 be
a given vector field representing a body force. SettingU B H1

0 (Ω)
3 and P B

{
q ∈ L2(Ω) :

∫
Ω

q = 0
}
,

we consider the steady incompressible Navier–Stokes problem: Find (u, p) ∈ U × P such that

νa(u, v) + t(u, u, v) + b(v, p) = `( f , v) ∀v ∈ U, (1a)

−b(u, q) = 0 ∀q ∈ L2(Ω), (1b)

with bilinear forms a : U × U → R, b : U × L2(Ω) → R, and ` : L2(Ω)d × U → R defined by

a(w, v) B
∫
Ω

∇w : ∇v, b(v, q) B −
∫
Ω

(∇ · v)q, `( f , v) B

∫
Ω

f · v, (2)
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and trilinear form t : U × U × U → R such that

t(w, v, z) B
∫
Ω

(∇×w) × v · z. (3)

Above, ∇· and ∇× denote, respectively, the divergence and curl operators, while × is the cross product
of two vectors. The convective term in (3) is expressed in rotational form, so p is here the so-called
Bernoulli pressure, which is related to the kinematic pressure pkin by the equation p = pkin + 1

2 |u |
2.

The domain Ω being simply connected, its first Betti number is zero, and we have the following
(Helmholtz–)Hodge decomposition of the body force (see, e.g., [2, Section 4.3]):

f = g + λ∇ψ, (4)

where g is the curl of an element of H0(curl;Ω) B
{
v ∈ H(curl;Ω) : γτv = 0

}
with γτ denoting

the tangent trace operator on ∂Ω, ψ ∈ H1(Ω) is such that ‖∇ψ‖L2(Ω)3 = 1, and λ ∈ R+. The goal
of this paper is to design a Hybrid High-Order (HHO) discretization method for problem (1) robust
with respect to large irrotational body forces, that is, for which velocity error estimates uniform in λ
and independent of the pressure can be established. The robustness property should additionally be
obtained without relying on the Hodge decomposition (4) of f , which is typically not available and
whose numerical approximation may be computationally expensive to obtain.

The problem considered here is related to recent works pointing out the relevance of restoring
at the discrete level the L2-orthogonality between irrotational and discretely divergence-free vector
fields [30]; see also the bibliographic section therein for previous references on this subject. A lack
of this orthogonality property may indeed result in poor approximations of the velocity field, whose
error estimate has an adverse dependence on the pressure. In [30], the author proposes a modification
of the original Crouzeix–Raviart scheme [13] where the test function in the right-hand side is replaced
by an interpolate in the lowest-order Raviart–Thomas–Nédélec space [32, 34]. An extension of these
ideas to arbitrary order HHO approximations of the Stokes problem is proposed in [16], where the
authors derive error estimates for the velocity that are independent of the pressure and uniform in
the kinematic viscosity. These ideas are further developed in [29], where the notion of discrete
Helmholtz projector is introduced to achieve a similar goal in the context of classical Finite Element
discretisations of the Stokes and Navier–Stokes problems; see also the recent paper [1].

In this work we extend the construction of [16] to the fully nonlinear Navier–Stokes problem
by introducing a novel HHO discretisation of the convective trilinear form based on an H(div;Ω)
velocity reconstruction in the Raviart–Thomas–Nédélec space obtained working element by element.
We prove, for the proposed method, novel error estimates for the velocity that are robust with respect
to large irrotational body forces in the sense made precise above, that is, they are uniform in λ and
do not depend on the pressure. This result is achieved by mimicking at the discrete level two key
properties of the continuous problem, namely the invariance of the velocity with respect to λ and the
non-dissipativity of the convective term, and leveraging an a priori bound on the velocity uniform in λ.
Specifically, we show that, when polynomials of total degree ≤ k at mesh elements and faces are used
as velocity unknowns and polynomials of degree ≤ k inside elements are used as pressure unknowns,
the energy norm of the velocity error converges as hk+1 (with h denoting, as usual, the meshsize).
A crucial point is that this error estimate is obtained under a data smallness assumption which
only involves g, and therefore persists in the limit λ → ∞. An intermediate result of independent
interest used in the analysis are novel Sobolev inequalities for the Raviart–Thomas–Nédélec velocity
reconstruction. The proposed ideas apply to other hybrid methods for incompressible flows; see,
e.g., [7, 9, 12, 18, 23, 33, 36] and references therein. Replicating similar properties with virtually
divergence-free numerical methods [4, 5] (see also [3, 10]) may constitute an interesting path for
future research.

2



The rest of the paper is organised as follows. In Section 2 we discuss three properties of the
continuous problem that will play a key role at the discrete level. In Section 3 we introduce the discrete
setting, including the local reconstructions at the core of the HHO method. Section 4 contains the
formulation of the discrete problem and includes, in particular, the definition and properties of the
novel discrete convective trilinear form. The convergence analysis is carried out in Section 5, while a
complete panel of numerical tests is provided in Section 6, including a comparison with the standard
HHO scheme of [7].

2 Three key remarks

We start by highlighting three properties of the continuous problem that will play a key role in the
design and analysis of the method.

2.1 Velocity invariance

Denote by nΩ the unit outward normal vector to ∂Ω. Recalling the Hodge decomposition (4), the
first property is expressed by the following relation: For all v ∈ U ,

`(g + λ∇ψ, v) = `(g, v) +

∫
Ω

λ∇ψ · v

= `(g, v) −

∫
Ω

λψ (∇ · v) +
���

���
��

∫
∂Ω
λψ (v · nΩ) = `(g, v) + b(v, λψ),

(5)

where we have used the linearity of ` along with its definition in the first equality, an integration
by parts together with the strongly enforced wall boundary condition in U to cancel the boundary
term in the second equality, and we have concluded using the definition (2) of the bilinear form b.
A straightforward consequence of (5) is that the velocity field is unaffected by the irrotational part
of the body force, which is why we refer to this property as velocity invariance (with respect to
λ). Mimicking (5) at the discrete level will be crucial to cancel the pressure contribution from the
discretization error in Theorem 10 below; see, in particular, (76). This is, in turn, a key point to
achieve robustness in λ.

2.2 Non-dissipativity of the convective term

The integration by parts formula in the following proposition generalizes [25, Lemma 6.7].

Proposition 1 (Integration by parts). Let X denote a simply connected open polyhedral subset of Ω.
For all v, w, z ∈ H1(X)3, it holds∫

X

(∇×w) × v · z =

∫
X

∇wv · z −

∫
X

∇wz · v, (6)

where we recall that, if y = (yj)1≤ j≤3 ∈ R
3, ∇wy =

∑3
j=1 yj∂jw.

Writing (6) for X = Ω and recalling the definition (3) of the trilinear form t, we obtain the second
key property, namely: For any w, v ∈ H1(Ω)3,

t(w, v, v) =
∫
Ω

∇wv · v −

∫
Ω

∇wv · v = 0, (7)

which expresses the fact that the convective term is non-dissipative, i.e., it does not contribute to the
kinetic energy balance obtained taking v = u in (1a). In Section 4.4, we will leverage (6) with X
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successively equal to the mesh elements to derive a reformulation of the convective term that will
inspire the design of a consistent and non-dissipative discrete trilinear form. The discrete counterpart
of (7), expressed by (46) below, will play a key role both in deriving an a priori bound on the discrete
velocity uniform in λ (see Lemma 7) and in proving the error estimate of Theorem 10. For the sake
of completeness, before proceeding, we give a proof of Proposition 1.

Proof of Proposition 1. First of all, observe that all the integrals in (6) are well-defined with the
assumed regularity (use generalized Hölder inequalities with exponents (2, 4, 4) and the embedding
H1(X) ↪→ L4(X)). It then suffices to prove (6) for v, w, z ∈ D(X)3, the space of restrictions to X of
functions that are of class C∞0 in an open set containing X , and conclude by density.

Recalling the vector identity (∇×w) × v = ∇wv−∇(w · v)+ (∇v)ᵀw (see, e.g., [25, Eq. (3.158)]),
we can write∫

X

(∇×w) × v · z =

∫
X

∇wv · z −

∫
X

∇(w · v) · z +

∫
X

(∇v)ᵀw · z C

∫
X

∇wv · z − T2 + T3. (8)

For T2, applying integration by parts we arrive at

T2 =

∫
∂T
(w · v)(z · n) −

∫
X

(w · v)(∇ · z). (9)

For T3 we can write, denoting by ⊗ the tensor product of vectors in R3,

T3 =

3∑
i=1

3∑
j=1

∫
T

∂ivjwj zi =
∫
T

∇v : w ⊗ z = −

∫
T

∇ · (w ⊗ z) · v +

∫
∂T
(z · n)(w · v),

where the conclusion follows from an integration by parts. Using this last equation and the identity
∇ · (w ⊗ z) = (∇ · z)w + ∇wz, we obtain

T3 = −

∫
Ω

(∇ · z)(w · v) −

∫
Ω

∇wz · v +

∫
∂Ω
(z · n)(w · v). (10)

Plugging (9) and (10) into (8), we finally get (6). �

2.3 Uniform a priori bound on the velocity

The third property is an a priori bound on the continuous velocity uniform in λ. Taking v = u in (1a),
q = p + λψ in (1b), and summing the resulting relations, we can write

νa(u, u) + t(u, u, u) + b(u, p) − b(u, p + λψ) = `( f , u) = `(g, u) + b(u, λψ),

where we have used the Hodge decomposition (4) of f followed by the velocity-invariance property
(5) to conclude. Simplifying the terms involving the bilinear form b in the above expression, invoking
the non-dissipativity property (7) to write t(u, u, u) = 0, and recalling the definition (2) of the bilinear
form a, we can go on writing

ν |u |2
H1(Ω)d

= νa(u, u) = `(g, u) ≤ ‖g‖L2(Ω)d ‖u‖L2(Ω)d ≤ CP‖g‖L2(Ω)d |u |H1(Ω)d,

where CP denotes a Poincaré constant in Ω. Simplifying, we arrive at

|u|H1(Ω)3 ≤ ν
−1CP‖g‖L2(Ω)3 . (11)

A crucial point is that, contrary to the classical estimate |u|H1(Ω)3 ≤ ν
−1CP‖ f ‖L2(Ω)3 obtained without

resorting to the velocity-invariance property (5), the a priori bound (11) persists in the limit λ→∞.
This bound, along with its discrete counterpart proved in Proposition 7, allows us to establish error
estimates under the smallness assumption (68), which only concerns the solenoidal part g of the body
force (see (4)).
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Remark 2 (A priori bound on the pressure). It cannot be expected, in general, to have an a priori
bound on the ‖p‖L2(Ω) uniform in λ.

3 Discrete setting

In this section we establish the discrete setting.

3.1 Mesh

We consider a refined mesh sequence (Th)h>0 where, for a given h > 0, Th is a matching simplicial
mesh characterized by the scalar h B maxT ∈Th hT , with hT denoting the diameter of the element
T ∈ Th. The mesh sequence is assumed to be shape-regular in the usual sense; see, e.g., [11, Eq.
(3.1.43)]. We denote by Fh the set collecting the faces of Th, partitioned as Fh = F i

h
∪ F b

h
, with F i

h

collecting the interfaces contained in Ω and F b
h
the boundary faces contained in ∂Ω. For any T ∈ Th,

we denote by FT the set collecting the faces of Fh that lie on the boundary ∂T of T and, for any
F ∈ FT , we will refer with nTF to the normal unit vector to F pointing outwards with respect to T .

To prevent the proliferation of generic constants we write, whenever possible, a . b in place of
a ≤ Cb with C > 0 independent of ν, λ, h and, for local inequalities, also on the mesh element or
face. The dependencies of the hidden constant will be further specified when relevant.

3.2 Local and broken spaces and projectors

Let X denote a mesh element or face and, for an integer l ≥ 0, denote by Pl(X) the space spanned
by the restrictions to X of polynomials in the space variables of total degree ≤ l. The L2-orthogonal
projector πlX : L1(X) → Pl(X) is such that, for all v ∈ L1(X),∫

X

(v − πlXv)w = 0 ∀w ∈ Pl(X). (12)

Vector and matrix versions of the L2-orthogonal projector are obtained by applying πlX component-
wise, and will both denoted with the bold symbol πl

X in what follows. Optimal approximation
properties for the L2-orthogonal projector are proved in [17, Appendix A.2] using the classical theory
of [19] (cf. also [8, Chapter 4]). Specifically, let s ∈ {0, . . . , l + 1} and r ∈ [1,+∞]. Then, it holds
with hidden constant only depending on l, s, r , and the mesh regularity parameter: For all T ∈ Th, all
v ∈ W s,r (T), and all m ∈ {0, . . . , s},

|v − πlT v |Wm,r (T ) . hs−m
T |v |W s,r (T ), (13a)

and, if s ≥ 1 and m ≤ s − 1,

h
1
p

T |v − π
l
T v |Wm,r (FT ) . hs−m

T |v |W s,r (T ), (13b)

where Wm,p(FT ) is the space spanned by functions that are in Wm,p(F) for all F ∈ FT , endowed with
the corresponding broken norm.

At the global level, the space of broken polynomial functions onTh of total degree ≤ l is denoted by
Pl(Th), and πlh is the corresponding L2-orthogonal projector such that, for all v ∈ L1(Ω), (πl

h
v) |T B

πkT v |T for all T ∈ Th. Broken polynomial spaces form subspaces of the broken Sobolev spaces
W s,r (Th) B

{
v ∈ Lr (Ω) : v |T ∈ W s,r (T) ∀T ∈ Th

}
, which will be used to express the regularity

requirements in consistency estimates. We additionally set, as usual, Hs(Th) B W s,2(Th).
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3.3 Discrete spaces and norms

Let a polynomial degree k ≥ 0 be fixed. We define the following global space of discrete velocity
unknowns:

Uk
h B

{
vh = ((vT )T ∈Th, (vF )F ∈Fh ) : vT ∈ Pk(T)3 for all T ∈ Th and vF ∈ P

k(F)3 for all F ∈ Fh
}
.

For all vh ∈ U
k
h, we denote by vh ∈ P

k
h
(Th)

3 the vector-valued broken polynomial function obtained
patching element-based unkowns, that is

(vh) |T B vT ∀T ∈ Th .

The restrictions ofUk
h and vh ∈ U

k
h to a generic mesh element T ∈ Th are respectively denoted byUk

T

and vT = (vT , (vF )F ∈FT ). The vector of discrete variables corresponding to a smooth function over
Ω is obtained via the global interpolation operator Ikh : H1(Ω)3 → Uk

h such that, for all v ∈ H1(Ω)3,

Ikhv B ((π
k
T v |T )T ∈Th, (π

k
F v |F )F ∈Fh ).

Its restriction to a generic mesh element T ∈ Th is IkT : H1(T)3 → Uk
T such that, for all v ∈ H1(T)3,

IkT v = (π
k
T v, (π

k
F v |F )F ∈FT ).

We furnish Uk
h with the discrete H1-like seminorm such that, for all vh ∈ U

k
h,

‖vh ‖1,h B

( ∑
T ∈Th

‖vT ‖
2
1,T

) 1
2

, (14)

where, for all T ∈ Th,

‖vT ‖1,T B
(
‖∇vT ‖

2
L2(T )3×3 + |vT |

2
1,∂T

) 1
2 with |vT |1,∂T B

( ∑
F ∈FT

h−1
F ‖vF − vT ‖

2
L2(F)3

) 1
2

. (15)

For further use, we note the following boundedness property of the global interpolator: For all
v ∈ H1(Ω)3,

‖Ikhv‖1,h ≤ CI |v |H1(Ω)3, (16)

with real number CI > 0 independent of both h and v. Its proof relies on the stability properties of
the L2-projectors on elements and faces proved in [17, Proposition 7.1].

The global spaces of discrete unknowns for the velocity and the pressure, respectively accounting
for the wall boundary condition and the zero-average condition, are

Uk
h,0 B

{
vh = ((vT )T ∈Th, (vF )F ∈Fh ) ∈ U

k
h : vF = 0 ∀F ∈ F b

h

}
, Pk

h B P
k(Th) ∩ P. (17)

In the analysis, we need the following discrete Sobolev embeddings in Uk
h,0 (see [17, Proposition

5.4]): For all r ∈ [1, 6], it holds for all vh ∈ U
k
h

‖vh ‖Lr (Ω)3 . ‖vh ‖1,h, (18)

where the hidden constant is independent of both h and vh, but possibly depends on Ω, k, r , and
the mesh regularity parameter. It follows from (18) that the map ‖·‖1,h defines a norm on Uk

h,0.
Classically, the corresponding dual norm of a linear form Lh : Uk

h,0 → R is given by

‖Lh ‖1,h,∗ B sup
vh ∈U

k
h,0, ‖vh ‖1,h=1

��Lh(vh)
�� . (19)
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3.4 Velocity reconstruction

Robustness with respect to λ hinges on the usage of a divergence-preserving velocity reconstruction
in the discretization of the body force and convective terms. Let an element T ∈ Th be fixed, and
denote by RTNk(T) B Pk(T)3 + xPk(T) the local Raviart–Thomas–Nédélec space of degree k; see
[32, 34]. We define the local velocity reconstruction operator Rk

T : Uk
T → RTN

k(T) such that, for all
vT ∈ U

k
T , ∫

T

Rk
T vT · w =

∫
T

vT · w, ∀w ∈ Pk−1(T)3, (20a)

Rk
T vT · nTF = vF · nTF ∀F ∈ FT . (20b)

Classically, the relations (20) identify Rk
T uniquely; see, e.g., [6, Proposition 2.3.4]. Moreover, for

any v ∈ H1(T)3, a direct computation shows that Rk
T I

k
T v = IkRTN,T v, where IkRTN,T is the local

Raviart–Thomas–Nédélec interpolator. Finally, for all vT ∈ U
k
T , we have that

‖Rk
T vT −vT ‖L2(T )3 .

∑
F ∈FT

h
1
2
F ‖(vF−vT )·nTF ‖L2(F) ≤

∑
F ∈FT

h
1
2
F ‖vF−vT ‖L2(F)3 ≤ hT |vT |1,∂T , (21)

where the first bound follows from [16, Lemma 2], the second from aHölder inequality with exponents
(2,∞) along with ‖nTF ‖L∞(F)3 = 1, and the third from the definition (15) of the |·|1,∂T -seminorm
together with hF ≤ hT .

Let nowRTNk(Th) B
{
v ∈ H(div;Ω) : v |T ∈ RTNk(T) for all T ∈ Th

}
denote the globalRaviart–

Thomas–Nédélec space on Th. A global velocity reconstruction Rk
h : Uk

h → RTN
k(Th) is obtained

patching the local contributions: For all vh ∈ U
k
h,

(Rk
hvh) |T B Rk

T vT ∀T ∈ Th .

Observe that Rk
hvh is well-defined, since its normal components across each mesh interface are

continuous as a consequence of (20b) combined with the single-valuedness of interface unknowns,
and it holds, for any v ∈ H1

0 (Ω)
3, Rk

hI
k
hv = IkRTN,hv. The following proposition contains novel

Sobolev inequalities for the velocity reconstruction.

Proposition 3 (Sobolev inequalities for the velocity reconstruction). It holds, for all r ∈ [1, 6] and
all vh ∈ U

k
h,0,

‖Rk
hvh ‖Lr (Ω)3 . ‖vh ‖1,h, (22)

where the hidden constant is independent of both h and vh, but possibly depends on Ω, k, r , and the
mesh regularity parameter.

Proof. Let a mesh element T ∈ Th be fixed. Inserting ±vT into the norm and using a triangle
inequality, we can write

‖Rk
T vT ‖Lr (T )3 ≤ ‖R

k
T vT − vT ‖Lr (T )3 + ‖vT ‖Lr (T )3 . (23)

Let now an integer l ≥ 0 be fixed. From the discrete Lebesgue embeddings proved in [17, Lemma
5.1], it follows that, for all (α, β) ∈ [1,+∞], all T ∈ Th, and all v ∈ Pl(T),

‖v‖Lα(T ) . h
3
α−

3
β

T ‖v‖Lβ (T ), (24)

with hidden constant independent of h, T , and v, but possibly depending on l, α, β, and the mesh
regularity parameter. Then, in the first term of (23) we get that

‖Rk
T vT − vT ‖Lr (T )3 . h

3
r −

3
2

T ‖Rk
T vT − vT ‖L2(T )3 . h

3
r −

1
2

T |vT |1,∂T ,
(25)
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where we have used (24) with (α, β) = (r, 2) in the first inequality and the bound (21) in the second.
Thus, plugging (25) into (23), raising the resulting inequality to the rth power, using the inequality
(a + b)r . ar + br valid for any nonnegative real numbers a and b, and summing over T ∈ Th, we get

‖Rk
T vT ‖

r
Lr (Ω)3

.
∑
T ∈Th

h
6−r

2
T |vT |

r
1,∂T + ‖vh ‖

r
Lr (Ω)3

C T1 + T2. (26)

To estimate the first term, we distinguish two cases. If r ∈ [1, 2), denoting by hΩ the diameter of Ω,
we write

T1 =
∑
T ∈Th

hrT h
3(2−r )

2
T |vT |

r
1,∂T

≤ hr
Ω

∑
T ∈Th

h
3(2−r )

2
T |vT |

r
1,∂T

≤ hr
Ω

( ∑
T ∈Th

h3
T

) 2−r
2

( ∑
T ∈Th

|vT |
2
1,∂T

) r
2

. hr
Ω
|Ω|

2−r
2 ‖vT ‖

r
1,h . ‖vT ‖

r
1,h,

(27)

where we have used the fact that hT ≤ hΩ to pass to the second line, a Hölder inequality with
exponents

(
2
r ,

2
2−r

)
on the sum over T ∈ Th to pass to the third line, the mesh regularity to infer∑

T ∈Th h3
T .

∑
T ∈Th |T | ≤ |Ω| along with the definitions (14) and (15) of the local and global discrete

norms to pass to the fourth line, and hr
Ω
|Ω|

2−r
2 . 1 to conclude. If r ∈ [2, 6], on the other hand, we

write

T2 =
∑
T ∈Th

h
6−r

2
T |vT |

r−2
1,∂T |vT |

2
1,∂T ≤ h

6−r
2

Ω
‖vh ‖

r−2
1,h

( ∑
T ∈Th

|vT |
2
1,∂T

)
. ‖vh ‖

r
1,h, (28)

where we have used hT ≤ hΩ along with 6−r
2 ≥ 0 and |vT |1,∂T ≤ ‖vh ‖1,h along with r − 2 ≥ 0 in

the first bound, and the definitions (14) and (15) of the local and global discrete norms together with
hΩ . 1 to conclude. For the second term, on the other hand, the discrete Sobolev embeddings (18)
readily give

T2 . ‖vh ‖1,h . (29)

Plugging (29) and, depending on r , either (27) or (28) into (26), the conclusion follows. �

3.5 Gradient reconstruction

Let an element T ∈ Th be fixed. For any polyomial degree l ≥ 0, we define the local gradient
reconstruction operator Gl

T : Uk
T → P

l(T)3×3 such that, for all vT ∈ U
k
T and all τ ∈ Pl(T)3×3,∫

T

Gl
T vT : τ = −

∫
T

vT · (∇ · τ) +
∑
F ∈FT

∫
F

vF · τnTF . (30)

In (30), the right hand side is designed to resemble an integration by parts formula where the role
of the function represented by vT is played by vT in the volumetric term and by vF in the boundary
term. This gradient reconstruction will be used with l = k in the viscous term (see Section 4.1) and
with l = 2(k + 1) in the convective terms (see Section 4.4). The following properties hold (see [18,
Proposition 1]):

(i) Boundedness. For all vT ∈ U
k
T , it holds

‖Gl
T vT ‖L2(T )3×3 . ‖vT ‖1,T . (31)

8



(ii) Consistency. For all v ∈ Hm(T)3 with m = l + 2 if l ≤ k, m = k + 1 otherwise,

‖Gl
T I

k
T v − ∇v‖L2(T )3×3 + h

1
2
T ‖G

l
T I

k
T vT − ∇v‖L2(∂T )3×3 . hm−1

T |v |Hm(T )3 . (32)

A global gradient reconstruction Gl
h : Uk

h → P
l(Th)

3×3 can be defined setting, for all vh ∈ Uk
h,

(Gk
hvh) |T B Gk

T vT for all T ∈ Th.

4 Discrete problem

In this section we discuss the discretization of the various term appearing in (1) along with the
corresponding properties relevant for the analysis, we formulate the discrete problem, andwe establish
an a priori bound on the discrete velocity uniform in λ.

4.1 Viscous term

The viscous term is discretized by means of the bilinear form ah: Uk
h × Uk

h → R such that, for all
wh, vh, ∈ U

k
h,

ah(wh, vh) B

∫
Ω

Gk
hwh : Gk

hvh +
∑
T ∈Th

sT (wT , vT ), (33)

where, for any T ∈ Th, sT : Uk
T × Uk

T → R denotes a local stabilization bilinear form designed
according to the principles of [15, Section 4.3.1.4], so that the following properties hold:

(i) Stability and boundedness. There exists Ca > 0 independent of h (and, clearly, also of ν and λ)
such that, for all vh ∈ U

k
h,

Ca‖vh ‖
2
1,h ≤ ah(vh, vh) ≤ C−1

a ‖vh ‖
2
1,h . (34)

(ii) Consistency. For all w ∈ H1
0 (Ω)

3 ∩ Hk+2(Th)
3 such that ∆w ∈ L2(Ω)3, it holds

‖Ea,h(w; ·)‖1,h,∗ . hk+1 |w |Hk+2(Th )3
, (35)

where the linear form Ea,h(w; ·) : Uk
h → R representing the consistency error is such that

Ea,h(w; vh) B −
∫
Ω

∆w · vh − ah(Ikhw, vh). (36)

A classical example of stabilization bilinear form along with the proofs of properties (34) and (35)
can be found in [18], to which we refer for further details.
Remark 4 (Alternative formulation). An alternative formulation with analogous properties is obtained
expressing the consistent contribution in (33) in terms of a local velocity reconstruction in Pk+1(T).
For further details on this choice, considered in the numerical tests of Section 6, we refer to [7].

4.2 Pressure-velocity coupling

The pressure-velocity coupling hinges on the bilinear form bh : Uk
h × P

k(Th) → R such that, for all
(vh, qh) ∈ U

k
h × P

k(Th),

bh(vh, qh) B −
∫
Ω

(∇ · Rk
hvh) qh . (37)

The bilinear form bh enjoys the following properties:

9



(i) Consistency. It holds, for all v ∈ H1
0 (Ω)

3,

bh(Ikhv, qh) = b(v, qh) ∀qh ∈ Pk(Th). (38)

(ii) Stability. It holds, for all qh ∈ Pk
h
, with Pk

h
defined by (17),

‖qh ‖L2(Ω) . sup
vh ∈U

k
h,0, ‖vh ‖1,h=1

bh(vh, qh). (39)

Property (38) follows observing that, by construction, Rk
hI

k
hv = IkRTN,hv, hence ∇ · (R

k
hI

k
hv) =

∇ · (IkRTN,hv) = πk
h
(∇ · v) (see, e.g., [21, Lemma 3.7]), and the projector πk

h
can be removed since

qh ∈ Pk(Th). Property (39) classically follows from (38) using Fortin’s argument (see, e.g., [21,
Lemma 2.6]) after recalling the boundedness property (16) of the interpolator.

4.3 Body force

Denote by `h : L2(Ω)3 × Uk
h → R the bilinear form such that, for any φ ∈ L2(Ω)3 and any vh ∈ U

k
h,

`h(φ, vh) B

∫
Ω

φ · Rk
hvh . (40)

This bilinear form has the following properties:

(i) Velocity invariance. Recalling the Hodge decomposition (4) of f , it holds

`h(g + λ∇ψ, vh) = `h(g, vh) + bh(vh, λπ
k
hψ) ∀vh ∈ Uk

h,0. (41)

(ii) Consistency. For all φ ∈ L2(Ω)3 ∩ Hk(Th)
3,

‖E`,h(φ; ·)‖1,h,∗ . hk+1 |φ |Hk (Th )
3 . (42)

where the linear form E`,h(φ; ·) : Uk
h → R representing the consistency error is such that

E`,h(φ; vh) B `h(φ, vh) −

∫
Ω

φ · vh . (43)

The velocity invariance property can be proved writing

`h(g + λ∇ψ, vh) = `h(g, vh) +

∫
Ω

λ∇ψ · Rk
hvh

= `h(g, vh) −

∫
Ω

λψ (∇ · Rk
hvh) +

���
��

���
��∫

∂Ω
λψ (Rk

hvh · nΩ)

= `h(g, vh) −

∫
Ω

λπkhψ (∇ · R
k
hvh)

= `h(g, vh) + bh(vh, λπ
k
hψ),

where we have used the linearity of `h along with its definition (40) in the first line, we have integrated
by parts the second term and observed that the normal trace of Rk

hvh vanishes on ∂Ω as a consequence
of (20b) together with vF = 0 for all F ∈ F b

h
in the second line, we have used the definition of the

global L2-orthogonal projector πk
h
after observing that∇·Rk

hvh ∈ P
k
h
(Th) in the third line, and we have

recalled the definition (37) of the pressure-velocity coupling bilinear form bh to conclude. Property
(41) is the discrete counterpart of (5) and enables the cancellation of the terms involving the pressure
in the expression (76) of the discretization error. For the proof of the consistency property (43), we
refer the reader to [14, Chapter 8].
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4.4 Convective term

The discrete counterpart of the convective trilinear form t defined by (3) is designed so as to approx-
imate, for any w ∈ U , the quantity

`h((∇×w) × w, z
h
) =

∫
Ω

(∇×w) × w · Rk
h zh,

which naturally appears, with w = u, in the discretization error; see (76) below. Applying Proposition
1 with X successively equal to the mesh elements T ∈ Th, we can reformulate this quantity as follows:

`h((∇×w) × w, z
h
) =

∑
T ∈Th

∫
T

(∇×w) × w · Rk
T zT =

∑
T ∈Th

∫
T

(
∇ww · Rk

T zT − ∇wRk
T zT · w

)
. (44)

Starting from this expression, we obtain a discrete counterpart of t by replacing inside each element
the continuous velocity and gradient by the corresponding reconstructions introduced in Sections 3.4
and 3.5, respectively. Thus, we introduce the global trilinear form th : Uk

h ×U
k
h ×U

k
h → R such that

th(wh, vh, zh) B
∑
T ∈Th

tT (wT , vT , zT ), (45a)

where, for any T ∈ Th, tT : Uk
T × U

k
T × U

k
T → R is defined as

tT (wT , vT , zT ) B

∫
T

G2(k+1)
T wTR

k
T vT · R

k
T zT −

∫
T

G2(k+1)
T wTR

k
T zT · R

k
T vT . (45b)

The choice of the polynomial degree l = 2(k + 1) for the gradient reconstruction is justified in the
following remark.

Remark 5 (Reformulation of th). In the practical implementation, one does not need to compute the
gradient reconstruction operators G2(k+1)

T to evaluate th. As a matter of fact, expanding this operator
in (45) according to its definition (30), we have that

th(wh, vh, zh) =
∑
T ∈Th

[∫
T

∇wTR
k
T vT · R

k
T zT −

∫
T

∇wTR
k
T zT · R

k
T vT

]
+

∑
T ∈Th

∑
F ∈FT

∫
F

(wF − wT ) · R
k
T zT

(
Rk
T vT · nTF

)
−

∑
T ∈Th

∑
F ∈FT

∫
F

(wF − wT ) · R
k
T vT

(
Rk
T zT · nTF

)
.

The properties relevant for the analysis are summarized in the following lemma.

Lemma 6 (Properties of th). The trilinear form th has the following properties:

(i) Non-dissipativity. For all wh, vh ∈ U
k
h, it holds that

th(wh, vh, vh) = 0. (46)

(ii) Boundedness. There exists a real number Ct > 0 independent of h (and, clearly, also of ν and
λ) such that, for all wh, vh, zh ∈ U

k
h,

|th(wh, vh, zh)| ≤ Ct ‖wh ‖1,h ‖vh ‖1,h ‖ zh ‖1,h . (47)
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(iii) Consistency. It holds, for all w ∈ U ∩Wk+1,4(Th)
3 and all z

h
∈ Uk

h,

‖Et,h(w; ·)‖1,h,∗ . hk+1‖w‖W 1,4(Ω)3 |w |W k+1,4(Th )3
, (48)

where the linear form Et,h(w; ·) : Uk
h → R representing the consistency error is such that, for

all z
h
∈ Uk

h,
Et,h(w; z

h
) B `h((∇×w) × w, z

h
) − th(Ikhw, I

k
hw, zh). (49)

Proof. (i) Non-dissipativity. Immediate consequence of the definition (45) of th.

(ii) Boundedness. By (45), it suffices to prove that it holds, for all wh, vh, zh ∈ U
k
h,

T B

����� ∑
T ∈Th

∫
T

G2(k+1)
T wTR

k
T vT · R

k
T zT

����� . ‖wh ‖1,h ‖vh ‖1,h ‖ zh ‖1,h .

Using Hölder inequalities with exponents (2, 4, 4), the bound (31), and again a discrete Hölder
inequality on the sum over T ∈ Th, we have that

T .
∑
T ∈Th

‖G2(k+1)
T wT ‖L2(T )3×3 ‖Rk

T vT ‖L4(T )3 ‖R
k
T zT ‖L4(T )3

.
∑
T ∈Th

‖wT ‖1,T ‖R
k
T vT ‖L4(T )3 ‖R

k
T zT ‖L4(T )3

. ‖wh ‖1,h ‖R
k
hvh ‖L4(Ω)3 ‖R

k
h zh ‖L4(Ω)3 . ‖wh ‖1,h ‖vh ‖1,h ‖ zh ‖1,h,

(50)

where, to bound the last two factors, we have invoked the discrete Sobolev embeddings (22) with
r = 4.

(iii) Consistency. First of all, let us verify that the first term on the right hand side of (49) is well
defined. By the assumed regularity, w ∈ W1,4(Ω)3 (combine the fact that the jumps of w vanish
across interfaces since w ∈ H1

0 (Ω)
3 and the regularity w ∈ W1,4(Th)

3), and we can write

‖(∇×w) × w‖L2(Ω)3 ≤ ‖∇×w‖L4(Ω)3 ‖w‖L4(Ω)3 . ‖w‖W 1,4(Ω)3 ‖w‖H1(Ω)3,

where we have concluded using the embedding H1(Ω) ↪→ L4(T). This shows that (∇×w) × w ∈
L2(Ω)3, so this quantity legitimately appear in the first argument of `h.
Let now ŵh B Ikhw. Using (44) and the definition (45) of th, we have that

Et,h(w; vh) =
∑
T ∈Th

∫
T

(
∇ww · Rk

T zT − ∇wRk
T zT · w

)
+

∑
T ∈Th

(
−

∫
T

G2(k+1)
T ŵTR

k
T ŵT · R

k
T zT +

∫
T

G2(k+1)
T ŵTR

k
T zT · R

k
T ŵT

)
.

Inserting into the right-hand side of this last equation the quantity

±
∑
T ∈Th

∫
T

(
G2(k+1)
T ŵTw · R

k
T zT + G2(k+1)

T ŵTR
k
T zT · w

)
,
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we arrive at

Et,h(w; vh) =
∑
T ∈Th

∫
T

(G2(k+1)
T ŵT − ∇w)R

k
T zT · w︸                                         ︷︷                                         ︸

T1

+
∑
T ∈Th

∫
T

(∇w − G2(k+1)
T ŵT )w · R

k
T zT︸                                         ︷︷                                         ︸

T2

+
∑
T ∈Th

∫
T

G2(k+1)
T ŵT (w − Rk

T ŵT ) · R
k
T zT︸                                              ︷︷                                              ︸

T3

+
∑
T ∈Th

∫
T

G2(k+1)
T ŵTR

k
T zT · (R

k
T ŵT − w).︸                                               ︷︷                                               ︸

T4
(51)

We next proceed to estimate the terms T1, · · · ,T4.

(iii.A) Estimate of T1. For the term T1, we add ±π0
Tw in the third factor, so we have that

T1 =
∑
T ∈Th

∫
T

(G2(k+1)
T ŵT − ∇w)R

k
T zT · (w − π

0
Tw) +

∑
T ∈Th

∫
T

(G2(k+1)
T ŵT − ∇w)R

k
T zT · π

0
Tw

C T1,1 + T1,2.

To bound T1,1, we use Hölder inequalities with exponents (2, 4, 4), the approximation properties (32)
of G2(k+1)

T with l = 2(k + 1) and m = k + 1, and (13a) of the L2-projector with l = 0, m = 0, r = 4,
and s = 1, so it holds that

|T1,1 | .
∑
T ∈Th

‖G2(k+1)
T ŵT − ∇w‖L2(T )3×3 ‖Rk

T zT ‖L4(T )3 ‖w − π
0
Tw‖L4(T )3

. hk+1 |w |Hk+1(Th )3
‖Rk

h zh ‖L4(Ω)3 |w |W 1,4(Ω)3

. hk+1 |w |Hk+1(Th )3
‖ z

T
‖1,h |w |W 1,4(Ω)3,

(52)

where, in the last step, we have used the discrete Sobolev embedding (22) with r = 4 and recalled
that the assumed regularity implies w ∈ W1,4(Ω)3.

For T1,2, we start by observing that

T1,2 =
∑
T ∈Th

∫
T

(G2(k+1)
T ŵT − ∇w) : π0

Tw ⊗ Rk
T zT .

Integrating by parts the term involving ∇w and using, for each element T ∈ Th, the definition (30) of
G2(k+1)
T with vT = ŵT and τ = π0

Tw ⊗ Rk
T zT (this is possible since π0

Tw ⊗ Rk
T zT ∈ P

k+1(T)3×3 ⊂

P2(k+1)(T)3×3), we get

T1,2 = −
∑
T ∈Th

∫
T

(πk
Tw−w) ·∇ · (π

0
Tw⊗R

k
T zT )+

∑
T ∈Th

∑
F ∈FT

∫
F

(πk
Fw−w) · (π

0
Tw⊗R

k
T zT nTF ). (53)

We have ∇ · (π0
Tw ⊗R

k
T zT ) = π0

Tw(∇ ·R
k
T zT ) ∈ P

k(T)3. Then, recalling the definition (12) of πk
T , the

first term of the right hand side of (53) vanishes. Moreover, π0
Tw ⊗R

k
T zT nTF = π0

Tw(R
k
T zT · nTF ) ∈

Pk(F)3 (see (20b)). Then, by definition (12) of πk
F , the second term of the right hand side of (53)

vanishes as well, giving
T1,2 = 0.

Combining this result with (52), we conclude that

|T1 | ≤ hk+1 |w |Hk+1(Th )3
‖ z

T
‖1,h |w |W 1,4(Ω)3 . (54)
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(iii.B) Estimate of T2. For the term T2 in (51), we insert ±π0
Tw into the second factor, so we can write

T2 =
∑
T ∈Th

∫
T

(∇w − G2(k+1)
T ŵT )(w − π

0
Tw) · R

k
T zT +

∑
T ∈Th

∫
T

(∇w − G2(k+1)
T ŵT )π

0
Tw · R

k
T zT

C T2,1 + T2,2.

(55)

We bound T2,1 similarly as done with T1,1 in (52), that is, we use Hölder inequalities with exponents
(2, 4, 4), the approximation properties of G2(k+1)

T and π0
T , and (22) with r = 4, so it is inferred that

|T2,1 | . hk+1 |w |Hk+1(Th )3
|w |W 1,4(Ω)3 ‖ zT ‖1,h, (56)

To estimate T2,2 in (55), we integrate by parts the term involving ∇w and we use, for each element
T ∈ Th, the definition (30) of G2(k+1)

T with vT = ŵT and τ = Rk
T zT ⊗ π0

Tw (this is possible since
Rk
T zT ⊗ π0

Tw ∈ P
k+1(T)3×3 ⊂ P2(k+1)(T)3×3) to write

T2,2 = −
∑
T ∈Th

((((
(((

((((
(((

((∫
T

(w − πk
Tw) · ∇ · (R

k
T zT ⊗ π0

Tw) +
∑
T ∈Th

∑
F ∈FT

∫
F

(w − πk
Fw) · (R

k
T zT ⊗ π0

Tw)nTF,

(57)
where we have cancelled the first integral in (57) observing that ∇ · (Rk

T zT ⊗ π0
Tw) = ∇R

k
T zTπ

0
Tw +

���
���

��
Rk
T zT (∇ · π

0
Tw) ∈ P

k(T)d and using the definition (12) of πk
T . To bound the second term in (57), we

add the quantity ±π0
TR

k
T zT in its second factor, so we get that∫

F

(w − πk
Fw) · (R

k
T zT ⊗ π0

Tw)nTF =

∫
F

(w − πk
Fw) ·

[
(Rk

T zT − π
0
TR

k
T zT ) ⊗ π0

Tw
]
nTF

+
((((

((((
(((

((((
(((∫

F

(w − πk
Fw) · (π

0
TR

k
T zT ⊗ π0

Tw)nTF ,

(58)

where we have cancelled the second integral of the right hand side of (58) using the definition (12) of
πk
F after observing that (π0

TR
k
T zT ⊗ π

0
Tw) |FnTF ∈ P

0(F)3 ⊂ Pk(F)3. So, plugging (58) into (57) and
applying Hölder inequalities with exponents (4, 2, 4,∞) along with ‖nTF ‖L∞(F)3 = 1, we can write

|T2,2 | ≤
∑
T ∈Th

∑
F ∈FT

‖w − πk
Fw‖L4(F)3 ‖R

k
T zT − π

0
TR

k
T zT ‖L2(F)3 ‖π

0
Tw‖L4(F)3 . (59)

To estimate the first term in (59), we add ±πk
Tw, so we can write

‖w − πk
Fw‖L4(F)3 ≤ ‖π

k
Tw − π

k
Fw‖L4(F)3 + ‖w − π

k
Tw‖L4(F)3

≤ ‖πk
F (π

k
Tw − w)‖L4(F)3 + ‖w − π

k
Tw‖L4(F)3 . ‖w − π

k
Tw‖L4(F)3,

where, in the last line, we have used the L4-boundedness of πk
F (see [17, Lemma 3.2]). Thus, using

this last inequality in (59), we get

|T2,2 | .
∑
T ∈Th

∑
F ∈FT

‖w − πk
Tw‖L4(F)3 ‖R

k
T zT − π

0
TR

k
T zT ‖L2(F)3 ‖π

0
Tw‖L4(F)3

.
∑
T ∈Th

hk+1
T |w |W k+1,4(T )3 |R

k
T zT |H1(T )3 ‖w‖W 1,4(T )3 .

(60)

To pass from the first to the second line, we have used the approximation properties (13b) of the
L2-orthogonal projector, with l = k, m = 0, r = 4, and s = k + 1 for the first factor and with m = 0,
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r = 2, and s = 1 for the second factor. For the third factor, we have used the L4-boundedness of
π0
T and a local trace inequality (see, e.g., [17, Eq. (A.10)]) together with hT ≤ hΩ . 1 to write
‖π0

Tw‖L4(F)3 . ‖w‖L4(F)3 . ‖w‖W 1,4(T )3 . To further bound the second factor in (60), observe that
we can write

|Rk
T zT |H1(T )3 ≤ |R

k
T zT − zT |H1(T )3 + |zT |H1(T )3 . (61)

For the first term in the right-hand side, we can proceed to write

|Rk
T zT − zT |H1(T )3 . h−1

T ‖R
k
T zT − zT ‖L2(T )3 . |zT |1,∂T ,

where we have used the uniform local inverse inequality ‖∇v‖L2(T )3 . h−1
T ‖v‖L2(T ) valid for any

polynomial function v and the bound (21) in the second inequality. Thus, plugging the above
inequality into (61) and recalling the definition (15) of the ‖·‖1,T seminorm, we get

|Rk
T zT |H1(T )3 . ‖ zT ‖1,T .

Plugging the above bound into (60), using a discrete Hölder inequality with exponents (4, 2, 4) on the
sum over T ∈ Th, and recalling the definition (14) of the ‖·‖1,h-norm, we arrive at

|T2,2 | . hk+1 |w |W k+1,4(Th )3
‖ z

T
‖1,h ‖w‖W 1,4(Ω)3 .

Combining this estimate with (56), we finally bound (55) as

|T2 | ≤ hk+1 |w |W k+1,4(Th )3
‖w‖W 1,4(Ω)3 ‖ zT ‖1,h . (62)

(iii.C) Estimate of T3 and T4. Moving to T3, we use continuous Hölder inequalities with exponents
(2, 4, 4), the boundedness (31) of G2(k+1)

T and (16) of Ikh to infer ‖G2(k+1)
T ŵT ‖L2(T )3×3 . |w |H1(T )3

for all T ∈ Th, discrete Hölder inequalities on the sum over T ∈ Th with exponents (2, 4, 4), and the
Sobolev inequality (22) with r = 4 to obtain

|T3 | . |w |H1(Ω)3

( ∑
T ∈Th

‖w − Rk
T ŵT ‖

4
L4(T )3

) 1
4

‖ z
h
‖1,h .

To bound the addends in the second factor, recall that Rk
T ŵT = Rk

T I
k
Tw = IkRTN,Tw and use the

approximation results of [21, Lemma 3.17] to write ‖w − IkRTN,Tw‖L4(T )3 . hk+1
T |w |W k+1,4(T )3 for all

T ∈ Th. In conclusion, we have that

|T3 | . hk+1 |w |H1(Ω)3 |w |W k+1,4(Th )3
‖ z

T
‖1,h . (63)

Using similar arguments as for T3, we have for the last term

|T4 | . hk+1 |w |H1(Ω)3 ‖ zT ‖1,h |w |W k+1,4(Th )3
. (64)

(iii.D) Conclusion. Taking absolute values in (51), recalling the definition (19) of the dual norm, and
invoking the estimates (54), (62), (63), and (64), the conclusion follows. �
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4.5 Discrete problem

The HHO discretization of problem (1) then reads: Find (uh, ph) ∈ Uk
h,0 × Pk

h
such that

νah(uh, vh) + th(uh, uh, vh) + bh(vh, ph) = `h( f , vh) ∀vh ∈ Uh,0, (65a)

−bh(uh, qh) = 0 ∀qh ∈ Pk(Th). (65b)

The existence of a solution to (65) for any f ∈ L2(Ω)3 along with a priori estimates for ‖uh ‖1,h
and ‖ph ‖L2(Ω) can be proved using a topological degree argument as in [18, Theorem 1]. Similarly,
uniqueness can be proved along the lines of Theorem 2 therein. These arguments will not be repeated
here for the sake of conciseness, and we will limit ourselves to proving the discrete counterpart of the
uniform a priori bound (11) on the velocity, which will be needed in the convergence analysis.

Proposition 7 (Uniform a priori bound on the discrete velocity). Let (uh, ph) ∈ Uk
h,0 × Pk

h
be a

solution to (65). Then, recalling the Hodge decomposition (4) of f , we have the following uniform a
priori bound for the velocity:

‖uh ‖1,h . ν
−1‖g‖L2(Ω)3 . (66)

Proof. We use similar arguments as for the continuous problem; see Section 2.3. Taking vh = uh in
(65a), qh = ph + λπkhψ in (65b), and summing the resulting relations, we get

νah(uh, uh) + th(uh, uh, uh) + bh(uh, ph) − bh(uh, ph + λπkhψ)

= `h( f , vh) = `h(g, uh) + bh(uh, λπ
k
hψ),

where we have used the discrete velocity invariance property (41) to conclude. Simplifying the terms
involving the bilinear form bh in the above expression, invoking the non-dissipativity property (46)
to write th(uh, uh, uh) = 0, we arrive at

νah(uh, uh) = `(g, uh).

Using the stability of ah expressed by the first inequality in (34) in the left-hand side along with the
Cauchy–Schwarz inequality and discrete Poincaré inequality corresponding to (22) with r = 2 in the
right-hand side, we get

νCa‖uh ‖
2
1,h ≤ νah(uh, uh) = `h(g, uh) ≤ ‖g‖L2(Ω)3 ‖R

k
huh ‖L2(Ω)3 ≤ ‖g‖L2(Ω)3 ‖uh ‖1,h .

Simplifying by ‖uh ‖1,h yields the desired result. �

Remark 8 (Efficient implementation). When solving the system of nonlinear algebraic equations
corresponding to (65) by a first-order algorithm, all element-based velocity unknowns and all but one
pressure unknown per element can be statically condensed as described for the Stokes problem in [16,
Section 6.2]. As a result, after strongly enforcing the Dirichlet boundary condition on the velocity,
we end up solving at each iteration a linear system of size

d card(F i
h)

(
k + d − 1

d − 1

)
+ card(Th).

Remark 9 (The two-dimensional case). The two-dimensional version of the method (65) will be
considered numerically in Section 6. Denoting by ui, i = 1, . . . , 3, the component of the velocity field
along the Cartesian axis xi, the two-dimensional plane velocity problem can be recovered from (1)
setting u3 = 0 and assuming that u1 and u2 do not depend on x3. In practice, the expression (45) of
the discrete trilinear form naturally lends itself to two-dimensional implementations, since we have
removed the (inherently three-dimensional) curl operator exploiting Proposition 1.
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5 Convergence analysis

We estimate the error defined as the difference between the solution to the HHO scheme and the
interpolate of the exact solution, denoted by

(ûh, p̂h) B (Ikhu, π
k
hp) ∈ Uk

h,0 × Pk
h . (67)

Theorem 10 (Error estimate for small data). Recalling the Hodge decomposition (4) of the forcing
term f , we assume that it holds, for some α ∈ (0, 1),

‖g‖L2(Ω)3 ≤ α
ν2Ca

CtCICP
, (68)

whereCa,Ct , andCI are defined in (34), (47) and (16), respectively, whileCP is the Poincaré constant
appearing in (11). Let (u, p) ∈ U×P and (uh, ph) ∈ Uk

h×Pk
h
solve (1) and (65), respectively. Assume

the additional regularity u ∈ Hk+2(Th)
3 and p ∈ H1(Ω) ∩ Hk+1(Th), and let (ûh, p̂h) be defined by

(67). Then, it holds:

‖uh−ûh ‖1,h+ν
−1‖ph−p̂h ‖L2(Ω) . hk+1(1−α)−1

(
|u |Hk+2(Th )3

+ ν−1‖u‖W 1,4(Ω)3 |u |W k+1,4(Th )3

)
, (69)

where the hidden constant is independent of ν, λ, h as well as (u, p).

Before proving Theorem 10, some remarks are in order.
Remark 11 (Robustness with respect to irrotational body forces). Crucially, the error estimate in
Theorem 10:
(i) is established under a data smallness condition which only involves the solenoidal part of the

body force, and is thus valid for arbitrary λ in (4);
(ii) is uniform in λ, meaning that the right-hand side does not depend on this parameter and is

independent of the pressure. The latter point is crucial since, recalling Remark 2, one cannot
expect that the pressure remains bounded as λ→∞.

These properties are obtained without requiring an explicit (exact or approximate) knowledge of
the Hodge decomposition (4) of the body force. Instead, they result from the careful design of the
discretizations of the body force itself and of the convective term. In both cases, a key role is played
by the H(div;Ω)-conforming velocity reconstruction of Section 3.4.
Remark 12 (Comparison with the exact solution). Starting from (69) and proceeding as in [18,
Corollary 16], one can derive the following error estimates that explicitly compare the discrete and
exact solutions (hidden constants have the same dependencies as in Theorem 10):

‖Gk
huh − ∇u‖L2(Ω)3×3 . hk+1(1 − α)−1

(
|u |Hk+2(Th )3

+ ν−1‖u‖W 1,4(Ω)3 |u |W k+1,4(Th )3

)
(70)

and

‖ph − p‖L2(Ω) . hk+1 1 + ν
1 − α

(
|u |Hk+2(Th )3

+ ν−1‖u‖W 1,4(Ω)3 |u |W k+1,4(Th )3
+ |p|Hk+1(Th )

)
. (71)

Notice that the estimate (70) on the velocity remains uniform in λ, while a dependence on λ appears
in the estimate (71) for the pressure through the term |p|Hk+1(Th )

(see Remark 2).

Proof of Theorem 10. (i) Estimate on the velocity. Set (eh, εh) B (uh − ûh, ph − p̂h) and define the
consistency error linear form Eh : Uk

h → R such that, for all vh ∈ U
k
h,0,

Eh(vh) B `h( f , vh) − νah(ûh, vh) − th(ûh, ûh, vh) − bh(vh, p̂h). (72)
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We next proceed to establish a stability property and an upper bound for Eh.

(i.A) Stability. Substituting `h( f , vh) from (65a) in (72), we get

Eh(vh) = νah(eh, vh) + th(uh, uh, vh) − th(ûh, ûh, vh) + bh(vh, εh). (73)

Choose vh = eh. Using the skew-symmetry property (46) of th together with linearity in its second
argument yields

0 = th(uh, eh, eh) = th(uh, uh, eh) − th(uh, ûh, eh)

and then, using boundedness (47),

|th(uh, uh, eh) − th(ûh, ûh, eh)| = |th(uh, ûh, eh) − th(ûh, ûh, eh)|

= |th(eh, ûh, eh)| ≤ Ct ‖eh ‖
2
1,h ‖ ûh ‖1,h .

By (65b) and (38) with qh = εh along with (1b) with q = εh, it is readily inferred that

bh(eh, εh) = 0.

Therefore, returning to (73) with vh = eh and using the coercivity (34) of ah,

Eh(eh) ≥
(
νCa − Ct ‖ ûh ‖1,h

)
‖eh ‖

2
1,h

≥

(
νCa − ν

−1CtCICP ‖g‖L2(Ω)3

)
‖eh ‖

2
1,h ≥ (1 − α)νCa‖eh ‖

2
1,h,

(74)

where we have used the boundedness property (16) of the interpolator along with the continuous a
priori estimate (11) on the velocity and the data-smallness assumption (68) to write

‖ ûh ‖1,h ≤ CI |u |H1(Ω)3 ≤ ν
−1CICP‖g‖L2(Ω)3 . (75)

(i.B) Upper bound. To bound Eh(vh) from above, starting from (72), we use the fact that f =
−ν∆u + (∇×u) × u + ∇p almost everywhere in Ω, the linearity of `h in its first argument, add and
subtract

∫
Ω
ν∆u · vh, and recall definitions (36), (43), and (49) of the consistency error linear forms

to write
Eh(vh) = −

∫
Ω

ν∆u · vh − νah(Ikhu, vh)︸                                 ︷︷                                 ︸
νEa,h (u;vh )

+ `h(−ν∆u, vh) +

∫
Ω

ν∆u · vh︸                               ︷︷                               ︸
E`,h (−ν∆u;vh )

(((
((((

(((
((

−bh(vh, p̂h) + `h(∇p, vh) + `h((∇×u) × u, vh) − th(ûh, ûh, vh)︸                                       ︷︷                                       ︸
Et,h (u;vh )

,

(76)

where we have used (41) with g = 0 and ψ replaced by p in the cancellation. Thus, taking absolute
values and using the consistency properties (35) of ah, (42) of `h, and (48) of th, we arrive at

|Eh(vh)| . hk+1
(
ν |u |Hk+2(Th )3

+ ‖u‖W 1,4(Ω)3 |u |W k+1,4(Th )3

)
‖vh ‖1,h . (77)

(i.C) Estimate on the velocity. Making vh = eh in (77) and combining with (74) proves the estimate
on the velocity error in (69).

(ii) Estimate on the pressure. Let us now estimate the error on the pressure. Starting from the stability
property (39) of bh and using the error equation (73), we write

‖εh ‖L2(Ω) . sup
vh ∈U

k
h,0, ‖vh ‖1,h=1

[
Eh(vh) − νah(eh, vh) − th(uh, uh, vh) + th(ûh, ûh, vh)

]
. (78)
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By trilinearity of th, it holds

th(uh, uh, vh) − th(ûh, ûh, vh) = th(eh, uh, vh) + th(ûh, eh, vh).

Plugging this equation into (78), using the bounds (77), (34), and (47), and multiplying the resulting
inequality by ν−1, we obtain

ν−1‖εh ‖L2(Ω) . hk+1
(
|u |Hk+2(Th )3

+ ν−1‖u‖W 1,4(Ω)3 |u |W k+1,4(Th )3

)
+ ‖eh ‖1,h + ν

−1‖eh ‖1,h
(
‖uh ‖1,h + ‖ ûh ‖1,h

)
.

We conclude using the estimate on ‖eh ‖1,h already established in (69) and combining the a priori
estimates (66) and (75) with the data smallness assumption (68) to write

‖uh ‖1,h + ‖ ûh ‖1,h . ν
−1‖g‖L2(Ω)3 . ν. �

6 Numerical tests

In this section we propose an extensive numerical validation of the proposed method, including
comparisons with the original HHO method of [7]. Our implementation is based on the SpaFEDTe
library1 and makes extensive use of the linear algebra Eigen open-source library [24]. All the steady-
state computations presented hereafter are performed by means of the pseudo-transient-continuation
algorithm analyzed by [26] employing the Selective Evolution Relaxation (SER) strategy [31] for
evolving the pseudo-time step according to the Newton’s equations residual. Convergence to steady-
state is achieved when the Euclidean norm of the residual for the momentum equation drops below
10−12. At each pseudo-time step, the linearised equations are exactly solved by means of the direct
solver Pardiso [35], distributed as part of the Intel Math Kernel Library (Intel MKL). Accordingly,
the Euclidean norm of the residual for the continuity equation is comparable to the machine epsilon
at all pseudo-time steps.

6.1 Kovasznay flow

The first numerical example is meant to assess the convergence rates of the method. Let Ω =
(−0.5, 1.5) × (0, 2). We solve the Dirichlet problem corresponding to the exact solution (u, p) of [27]
such that, defining the global Reynolds number Re = 1

2ν and letting λ B Re −
(
Re2 + 4π2) 1

2 , the
velocity components are given by

u1(x) B 1 − exp(λx1) cos(2πx2), u2(x) B
λ

2π
exp(λx1) sin(2πx2),

while the pressure is given by

p(x) B −
1
2

exp(2λx1) +
λ

2
(exp(4λ) − 1) .

We take here ν = 0.025, corresponding to Re = 20, and consider computations with polynomial
degrees k ∈ {0, . . . , 3} over a sequence of uniformly h-refined simplicial grids. Recall the notation
of Theorem 10 and let, for the sake of brevity,

eh B uh − ûh, εh B ph − p̂h .

1http://spafedte.github.io
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We monitor the following quantities in Table 1: Ndof and Nnz denoting, respectively, the number of
discrete unknowns and nonzero entries of the statically condensed linearized problem; ‖eh ‖ν,h B
(νah(eh, eh))

1
2 , the energy norm of the error on the velocity. By virtue of the global norm equivalence

(34), an estimate in hk+1 for this quantity is readily inferred from (69); ‖eh ‖L2(Ω)d and ‖εh ‖L2(Ω), the
L2-errors on the velocity and the pressure, respectively. Each error measure is accompanied by the
Estimated Order of Convergence (EOC) which, denoting by ei an error on the ith mesh refinement
characterized by the meshsize hi, is computed as

EOC =
log ei − log ei+1

log hi − log hi+1
.

The results collected in Table 1 show that both the energy norm of the error on the velocity and
the L2-norm of error on the pressure converge as hk+1 as expected. Additionally, the L2-norm of the
error of the velocity converges as hk+2. This numerical observation is coherent with the theoretical
results for the Stokes problem; see, in particular, [16, Theorem 7].

6.2 Robustness of the velocity error estimate

The second numerical example, inspired by [28, Benchmark 3.3], is meant to demonstrate the
robustness of the proposed method for large irrotational body forces. Specifically, we want to assess
numerically the fact that the approximation of the velocity is independent of both λ and p. Letting
Ω = (0, 1)2 and λ ≥ 0, we solve the Dirichlet problem corresponding to the exact solution (u, p) in
(1) with velocity components given by

u1(x) B −y, u2(x) B x,

and pressure given by

p(x) B λx3
1 +

x2
1 + x2

2
2

−
1
4
.

We set ν = 1, then observe that the force in (1a) is purely irrotational, i.e.,

f1(x) = 3λx2
1, f2(x) = 0.

In the computations, we take λ ∈ {10, 106} and consider polynomial degrees k ∈ {0, . . . , 3} over a
sequence of uniformly h-refined simplicial grids. Tables 2 and 4 collect the numerical results for
λ = 10 and λ = 106, respectively, obtained using the formulation (65). For the sake of comparison,
we also report in Tables 3 and 5 the corresponding results obtained using the original HHO method
of [7].

A first important difference highlighted by the numerical results is that the velocity field is exactly
reproduced by the formulation (65) proposed in this work, whereas this is not the case for the original
HHO method of [7]; compare the third and fifth columns of Tables 2–5. This is a consequence of the
pressure-independence of the error estimate (69) together with the fact that the we are considering
an affine velocity field. A second, related, remark is that the velocity approximation for the present
method is independent of λ (for both of the values considered we have zero-machine error), whereas
increasing the value of λ has a strong impact on the velocity approximation for the classical HHO
method of [7]; compare the third and fifth columns of Tables 3 and 5.

6.3 Two-dimensional lid-driven cavity flow

The third numerical test is the two-dimensional lid-driven cavity problem. The computational domain
is the unit squareΩ = (0, 1)2 andwe set f = 0. Homogeneous (wall) boundary conditions are enforced

20



Ndof Nnz ‖eh ‖ν,h EOC ‖eh ‖L2(Ω)d EOC ‖εh ‖L2(Ω) EOC

k = 0

80 560 1.39e+00 – 6.75e-01 – 1.17e+00 –
352 2464 6.65e-01 1.06 3.20e-01 1.08 3.54e-01 1.72
1472 10304 4.02e-01 0.73 1.17e-01 1.46 1.58e-01 1.17
6016 42112 2.13e-01 0.91 3.37e-02 1.80 6.00e-02 1.40
24320 170240 1.09e-01 0.97 8.85e-03 1.93 2.52e-02 1.25

k = 1

160 1920 6.84e-01 – 3.98e-01 – 4.35e-01 –
704 8448 1.56e-01 2.13 4.85e-02 3.04 6.26e-02 2.80
2944 35328 4.21e-02 1.89 5.07e-03 3.26 1.19e-02 2.40
12032 144384 1.10e-02 1.94 6.27e-04 3.01 2.84e-03 2.06
48640 583680 2.80e-03 1.97 7.91e-05 2.99 7.04e-04 2.01

k = 2

240 4080 1.47e-01 – 7.28e-02 – 1.16e-01 –
1056 17952 2.22e-02 2.73 3.65e-03 4.32 7.54e-03 3.95
4416 75072 2.95e-03 2.91 2.49e-04 3.88 8.18e-04 3.20
18048 306816 3.74e-04 2.98 1.65e-05 3.92 9.96e-05 3.04
72960 1240320 4.70e-05 2.99 1.05e-06 3.97 1.24e-05 3.01

k = 3

320 7040 4.42e-02 – 1.44e-02 – 1.77e-02 –
1408 30976 2.29e-03 4.27 3.50e-04 5.36 7.60e-04 4.54
5888 129536 1.46e-04 3.97 1.09e-05 5.01 4.85e-05 3.97
24064 529408 9.38e-06 3.96 3.57e-07 4.93 3.04e-06 3.99
97280 2140160 5.94e-07 3.98 1.14e-08 4.97 1.90e-07 4.00

Table 1: Convergence rates for the numerical test of Section 6.1.
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Ndof Nnz ‖eh ‖ν,h EOC ‖eh ‖L2(Ω)d EOC ‖εh ‖L2(Ω) EOC

k = 0

113 1072 2.30e-15 – 1.60e-16 – 4.94e-02 –
481 4944 4.70e-15 -1.03 2.15e-16 -0.42 2.50e-02 0.98
1985 21136 1.05e-14 -1.16 5.04e-16 -1.23 1.25e-02 1.00
8065 87312 2.23e-14 -1.08 9.44e-16 -0.90 6.27e-03 1.00
32513 354832 1.05e-13 -2.23 1.25e-14 -3.72 3.14e-03 1.00

k = 1

193 3456 6.32e-15 – 4.86e-16 – 1.45e-02 –
833 16192 1.39e-14 -1.14 6.10e-16 -0.33 3.64e-03 1.99
3457 69696 3.31e-14 -1.25 1.76e-15 -1.53 9.12e-04 2.00
14081 288832 7.26e-14 -1.14 3.09e-15 -0.82 2.28e-04 2.00
56833 1175616 1.85e-13 -1.35 1.07e-14 -1.79 5.70e-05 2.00

k = 2

273 7216 1.14e-14 – 5.57e-16 – 5.28e-04 –
1185 34000 2.79e-14 -1.29 1.14e-15 -1.03 6.60e-05 3.00
4929 146704 6.76e-14 -1.28 3.01e-15 -1.41 8.25e-06 3.00
20097 608656 1.46e-13 -1.11 7.58e-15 -1.33 1.03e-06 3.00
81153 2478736 4.06e-13 -1.48 2.99e-14 -1.98 1.29e-07 3.00

k = 3

353 12352 2.33e-14 – 1.26e-15 – 6.36e-14 –
1537 58368 5.46e-14 -1.23 2.54e-15 -1.01 8.78e-14 -0.46
6401 252160 1.30e-13 -1.25 6.06e-15 -1.25 1.94e-13 -1.15
26113 1046784 2.97e-13 -1.20 1.33e-14 -1.13 5.33e-13 -1.46
105473 4264192 6.79e-13 -1.19 3.52e-14 -1.41 9.00e-13 -0.76

Table 2: Convergence results for the numerical test of Section 6.2, λ = 10, present formulation (65).
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Ndof Nnz ‖eh ‖ν,h EOC ‖eh ‖L2(Ω)d EOC ‖εh ‖L2(Ω) EOC

k = 0

113 1072 1.61e+00 – 1.94e-01 – 3.65e-01 –
481 4944 8.38e-01 0.94 5.28e-02 1.88 1.74e-01 1.07
1985 21136 4.26e-01 0.98 1.37e-02 1.95 6.66e-02 1.38
8065 87312 2.14e-01 0.99 3.48e-03 1.98 2.25e-02 1.57
32513 354832 1.07e-01 1.00 8.75e-04 1.99 7.02e-03 1.68

k = 1

193 3456 1.69e-01 – 1.25e-02 – 3.69e-02 –
833 16192 4.31e-02 1.97 1.61e-03 2.96 8.58e-03 2.11
3457 69696 1.09e-02 1.99 2.04e-04 2.98 2.12e-03 2.01
14081 288832 2.73e-03 1.99 2.58e-05 2.99 5.34e-04 1.99
56833 1175616 6.85e-04 2.00 3.23e-06 2.99 1.34e-04 1.99

k = 2

273 7216 7.10e-03 – 4.25e-04 – 1.89e-03 –
1185 34000 8.98e-04 2.98 2.70e-05 3.98 2.39e-04 2.99
4929 146704 1.13e-04 2.99 1.70e-06 3.99 3.00e-05 2.99
20097 608656 1.42e-05 3.00 1.07e-07 3.99 3.76e-06 3.00
81153 2478736 1.77e-06 3.00 6.69e-09 4.00 4.70e-07 3.00

k = 3

353 12352 2.46e-14 – 1.61e-15 – 3.69e-14 –
1537 58368 6.00e-14 -1.29 3.81e-15 -1.24 1.01e-13 -1.45
6401 252160 1.41e-13 -1.23 7.21e-15 -0.92 1.78e-13 -0.82
26113 1046784 3.29e-13 -1.22 1.67e-14 -1.21 5.41e-13 -1.60
105473 4264192 7.27e-13 -1.14 4.75e-14 -1.51 1.01e-12 -0.90

Table 3: Convergence results for the numerical test of Section 6.2, λ = 10, original HHO formulation
of [7].
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Ndof Nnz ‖eh ‖ν,h EOC ‖eh ‖L2(Ω)d EOC ‖εh ‖L2(Ω) EOC

k = 0

113 1072 2.66e-11 – 2.15e-12 – 3.93e+03 –
481 4944 3.62e-11 -0.44 2.28e-12 -0.08 2.00e+03 0.98
1985 21136 3.34e-11 0.12 1.58e-12 0.52 1.00e+03 0.99
8065 87312 4.69e-11 -0.49 1.24e-12 0.35 5.02e+02 1.00
32513 354832 4.50e-11 0.06 1.03e-12 0.27 2.51e+02 1.00

k = 1

193 3456 2.52e-11 – 2.69e-12 – 1.35e+03 –
833 16192 3.92e-11 -0.64 2.32e-12 0.21 3.41e+02 1.99
3457 69696 4.38e-11 -0.16 3.62e-12 -0.64 8.53e+01 2.00
14081 288832 7.99e-11 -0.87 7.83e-12 -1.11 2.13e+01 2.00
56833 1175616 1.52e-10 -0.93 1.74e-11 -1.15 5.33e+00 2.00

k = 2

273 7216 4.76e-11 – 2.80e-12 – 5.28e+01 –
1185 34000 4.82e-11 -0.02 3.44e-12 -0.30 6.60e+00 3.00
4929 146704 8.69e-11 -0.85 7.34e-12 -1.10 8.25e-01 3.00
20097 608656 1.60e-10 -0.88 9.00e-12 -0.29 1.03e-01 3.00
81153 2478736 2.77e-10 -0.79 2.10e-11 -1.22 1.29e-02 3.00

k = 3

353 12352 2.14e-11 – 9.25e-13 – 1.62e-10 –
1537 58368 3.61e-11 -0.75 2.09e-12 -1.18 1.48e-10 0.13
6401 252160 5.94e-11 -0.72 3.94e-12 -0.92 1.89e-10 -0.35
26113 1046784 6.17e-11 -0.06 2.10e-12 0.91 1.46e-10 0.38
105473 4264192 1.01e-10 -0.71 9.28e-12 -2.14 3.91e-10 -1.43

Table 4: Convergence results for the numerical test of Section 6.2, λ = 106, present formulation (65).
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Ndof Nnz ‖eh ‖ν,h EOC ‖eh ‖L2(Ω)d EOC ‖εh ‖L2(Ω) EOC

k = 0

113 1072 1.53e+05 – 1.80e+04 – 4.55e+04 –
481 4944 2.57e+06 -4.08 1.17e+05 -2.70 1.21e+06 -4.73
1985 21136 2.62e+05 3.30 6.29e+03 4.22 1.05e+05 3.53
8065 87312 2.05e+04 3.67 3.25e+02 4.27 4.53e+03 4.53
32513 354832 1.05e+04 0.97 8.48e+01 1.94 8.67e+02 2.39

k = 1

193 3456 Not converged
833 16192 Not converged
3457 69696 1.05e+03 – 2.01e+01 – 2.27e+02 –
14081 288832 2.67e+02 1.98 2.52e+00 2.99 5.34e+01 2.09
56833 1175616 6.69e+01 2.00 3.16e-01 3.00 1.34e+01 2.00

k = 2

273 7216 4.73e+02 – 2.71e+01 – 3.19e+02 –
1185 34000 8.98e+01 2.40 2.70e+00 3.33 2.39e+01 3.74
4929 146704 1.13e+01 2.99 1.70e-01 3.99 3.00e+00 3.00
20097 608656 1.42e+00 3.00 1.07e-02 3.99 3.76e-01 3.00
81153 2478736 1.77e-01 3.00 6.69e-04 4.00 4.70e-02 3.00

k = 3

353 12352 2.62e-11 – 1.65e-12 – 1.63e-10 –
1537 58368 4.67e-11 -0.84 4.45e-12 -1.43 1.72e-10 -0.08
6401 252160 6.57e-11 -0.49 5.10e-12 -0.20 1.54e-10 0.16
26113 1046784 7.23e-11 -0.14 3.48e-12 0.55 1.65e-10 -0.10
105473 4264192 1.21e-10 -0.74 1.01e-11 -1.54 2.41e-10 -0.54

Table 5: Convergence results for the numerical test of Section 6.2, λ = 106, original HHO formulation
of [7].
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at all but the top horizontal wall (at x2 = 1), where we enforce a unit tangential velocity u = (1, 0). In
passing, notice that, in this classical test, the boundary condition is incompatible with the formulation
(1) since the solution does not belong to H1(Ω)d.

In Figures 1, and 2, we report the horizontal component u1 of the velocity along the vertical
centerline x1 =

1
2 and the vertical component u2 of the velocity along the horizontal centerline

x2 =
1
2 for the two dimensional flow at global Reynolds numbers Re B 1

ν respectively equal to 1,000,
and 5,000. The reference computation is carried out setting k = 1 and using a uniform structured
simplicial mesh obtained starting from a 64 × 64 decomposition of the domain. For the sake of
comparison, we also include very high-order computations with k = 5 on structured simplicial
meshes obtained starting from 16 × 16 and 32 × 32 decompositions of the domain for Re = 1,000
and Re = 5,000, respectively. References solutions from the literature [20, 22] are also included for
the sake of comparison. The numerical solution obtained using the proposed method is in excellent
agreement with the reference results for both values of the Reynolds number. For Re = 5,000, the
very high-order computation gives sharper transitions close to the walls which, as noticed in [7], seem
more physically sound.

To check the robustness of the method with respect to irrotational body forces, we then run the
same test case but with

f = λ∇ψ,

where ψ = 1
3 (x

3 + y3). Observe that this body force is completely irrotational, so the velocity
approximation obtained using the proposed method (65) should not be affected (and, therefore,
should not depend on λ). To verify this, we report in Figure 3 computations for Re = 1,000 and
λ ∈ {103, 106}, using k = 1, and the simplicial mesh obtained starting from a 64× 64 decomposition
of the domain. As expected, the velocity profiles are not affected by the value of λ. The same plot
also contains the results obtained with the original HHO formulation of [7], but only for λ = 103

(convergence was not achieved for λ = 106). In this case, the velocity profiles are clearly affected by
the presence of the body force, and large oscillations are observed with this value of λ.
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Figure 1: Two-dimensional lid-driven cavity flow, horizontal component u1 of the velocity along the
vertical centerline x1 =

1
2 and the vertical component u2 of the velocity along the horizontal centerline

x2 =
1
2 for Re = 1,000.
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Figure 2: Two-dimensional lid-driven cavity flow, horizontal component u1 of the velocity along the
vertical centerline x1 =

1
2 and the vertical component u2 of the velocity along the horizontal centerline

x2 =
1
2 for Re = 5,000
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Figure 3: Two-dimensional lid-driven cavity flow with irrotational force f = λ∇ψ with λ ∈

{103, 106}. Comparison between the present method and the original HHO formulation of [7].
The plot represents the horizontal component u1 of the velocity along the vertical centerline x1 =

1
2

and the vertical component u2 of the velocity along the horizontal centerline x2 =
1
2 for Re = 1,000.
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