N
N

N

HAL

open science

A Multilevel Schwarz Preconditioner Based on a
Hierarchy of Robust Coarse Spaces

Hussam Al Daas, Laura Grigori, Pierre Jolivet, Pierre-Henri Tournier

» To cite this version:

Hussam Al Daas, Laura Grigori, Pierre Jolivet, Pierre-Henri Tournier. A Multilevel Schwarz Precon-
ditioner Based on a Hierarchy of Robust Coarse Spaces. STAM Journal on Scientific Computing, 2021,

43 (3), pp-A1907-A1928. 10.1137/19M1266964 . hal-02151184v2

HAL Id: hal-02151184
https://hal.science/hal-02151184v2
Submitted on 7 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02151184v2
https://hal.archives-ouvertes.fr

16
17

18

19

A MULTILEVEL SCHWARZ PRECONDITIONER BASED ON A
HIERARCHY OF ROBUST COARSE SPACES*

HUSSAM AL DAAST, LAURA GRIGORI', PIERRE JOLIVET}, AND PIERRE-HENRI
TOURNIER!

Abstract. In this paper we present a multilevel preconditioner based on overlapping Schwarz
methods for symmetric positive definite (SPD) matrices. Robust two-level Schwarz preconditioners
exist in the literature to guarantee fast convergence of Krylov methods. As long as the dimension of
the coarse space is reasonable, that is, exact solvers can be used efficiently, two-level methods scale
well on parallel architectures. However, the factorization of the coarse space matrix may become
costly at scale. An alternative is then to use an iterative method on the second level, combined with
an algebraic preconditioner, such as a one-level additive Schwarz preconditioner. Nevertheless, the
condition number of the resulting preconditioned coarse space matrix may still be large. One of the
difficulties of using more advanced methods, like algebraic multigrid or even two-level overlapping
Schwarz methods, to solve the coarse problem is that the matrix does not arise from a partial
differential equation (PDE) anymore. We introduce in this paper a robust multilevel additive Schwarz
preconditioner where at each level the condition number is bounded, ensuring a fast convergence for
each nested solver. Furthermore, our construction does not require any additional information than
for building a two-level method, and may thus be seen as an algebraic extension.

Key words. domain decomposition, multilevel, elliptic problems, subspace correction

AMS subject classifications. 65F08, 65F10, 65N55

1. Introduction. We consider the solution of a linear system of equations
(1.1) Az = b,

where A € R™*™ is a symmetric positive definite (SPD) matrix, b € R™ is the right-
hand side, and € R"™ is the vector of unknowns. To enhance convergence, it is
common to solve the preconditioned system

M~'Ax = M.

Standard domain decomposition preconditioners such as block Jacobi, additive
Schwarz, and restricted additive Schwarz methods are widely used [32, 9, 8]. In a
parallel framework, such preconditioners have the advantage of relatively low com-
munication costs. However, their role in lowering the condition number of the sys-
tem typically deteriorates when the number of subdomains increases. Multilevel ap-
proaches have shown a large impact on enhancing the convergence of Krylov methods
[33, 12, 7, 25, 20, 10, 21, 1, 15, 23, 34, 30]. In multigrid and domain decomposition
communities, multilevel methods have proven their capacity of scaling up to large
numbers of processors and tackling ill-conditioned systems [37, 4, 19]. While some
preconditioners are purely algebraic [7, 20, 10, 26, 29, 16, 1], several multilevel meth-
ods are based on hierarchical meshing in both multigrid and domain decomposition
communities [35, 9, 25, 15, 23]. Mesh coarsening depends on the geometry of the
problem. One has to be careful when choosing a hierarchical structure since it can
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2 H. AL DAAS, L. GRIGORI, P. JOLIVET, AND P.-H. TOURNIER

have a significant impact on the iteration count [23, 25]. In [23], the authors propose
a multilevel Schwarz domain decomposition solver for the elasticity problem. Based
on a heuristic approach and following the maximum independent set method [2], they
coarsen the fine mesh while preserving the boundary in order to obtain a two-level
method. This strategy is repeated recursively to build several levels. However, they
do not provide a bound on the condition number of the preconditioned matrix of the
multilevel method. Multilevel domain decomposition methods are mostly based on
non-overlapping approaches [35, 9, 25, 23, 37, 4, 30, 34]. Two-level overlapping domain
decomposition methods are well studied and provide robust convergence estimates
[33, 12, 5]. However, extending such a construction to more than two levels while
preserving robustness is not straightforward. In [6], the authors propose an algebraic
multilevel additive Schwarz method. Their approach is inspired by algebraic multigrid
strategies. One drawback of it is that it is sensitive to the number of subdomains. In
[15], the authors suggest applying the two-level Generalized Dryja—Smith-Widlund
preconditioner recursively to build a multilevel method. In this case, the condition
number bound of the two-level approach depends on the width of the overlap, the
diameter of discretization elements, and the diameter of the subdomains. They focus
on the preconditioner for the three-level case. One drawback of their approach is that
the three-level preconditioner requires more iterations than the two-level variant. In
this paper, the only information from the PDE needed for the construction of the
preconditioner consists of the local Neumann matrices at the fine level. These ma-
trices correspond to the integration of the bilinear form in the weak formulation of
the studied PDE on the subdomain-decomposed input mesh. No further information
is necessary: except on the fine level, our method is algebraic and does not depend
on any coarsened mesh or auxiliary discretized operator. For problems not arising
from PDE discretization, one needs to supply the local SPSD matrices on the finest
level. In [3], a subset of the authors propose a fully algebraic approximation for such
matrices. However, their approximation strategy is heuristic and may not be effective
in some cases.

Our preconditioner is based on a hierarchy of coarse spaces and is defined as fol-
lowing. At the first level, the set of unknowns is partitioned into N7 subdomains and
each subdomain has an associated matrix A ; = Ry, jARI ; obtained by using appro-
priate restriction and prolongation operators R; ; and RI ; respectively, defined in the
following section. The preconditioner is formed as an additive Schwarz preconditioner
coupled with an additive coarse space correction, defined as,

Ny
M~ =M =ViA;'VT + ) RIATIR
j=1
where V7 is a tall-and-skinny matrix spanning a coarse space obtained by solving for
each subdomain j = 1 to N; a generalized eigenvalue problem involving the matrix
Ay ; and the Neumann matrix associated with subdomain j. The coarse space matrix
is Ay = V;T AV;. This is equivalent to the GenEO preconditioner, and is described
in detail in [33] and recalled briefly in section 2. The dimension of the coarse space
is proportional to the number of subdomains N;. When it increases, factorizing As
by using a direct method becomes prohibitive, and hence the application of A5 Lto a
vector should also be performed through an iterative method.
Our multilevel approach defines a hierarchy of coarse spaces V; and coarse space
matrices A; for i = 2 to any depth L+ 1, and defines a preconditioner MZ-_1 such that
the condition number of Mi_lAi is bounded. The depth L + 1 is chosen such that the
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HIERARCHICAL ROBUST COARSE SPACES 3

coarse space matrix Ay.1 can be factorized efficiently by using a direct method. At
each level 7, the graph of the coarse space matrix A; is partitioned into N; subdomains,

and each subdomain j is associated with a local matrix A; ; = Ri’inRZ J obtained by
T

;.j» respectively.

using appropriate restriction and prolongation operators R; ; and R
The preconditioner at level i is defined as,

N;
M= VALV + Z RiT,in_,leiJv

Jj=1

where the coarse space matrix is A;1 = ViTAiVi.

One of the main contributions of the paper concerns the construction of the
hierarchy of coarse spaces V; for levels ¢ going from 2 to L, that are built algebraically
from the coarse space of the previous level V;_;. This construction is based on the
definition of local symmetric positive semi-definite (SPSD) matrices associated with
each subdomain j at each level ¢ that we introduce in this paper. These matrices are
obtained by using the local SPSD matrices of the previous level ¢ — 1 and the previous
coarse space V;_i. They are then involved, with the local matrices A; ;, in concurrent
generalized eigenvalue problems solved for each subdomain j that allows to compute
the local eigenvectors contributing to the coarse space V;.

We show in Theorem 5.3, section 5, that the condition number of Mi_lAi is
bounded and depends on the maximum number of subdomains at the first level that
share an unknown, the number of distinct colors required to color the graph of A; so
that {span{R;':j}}l <N, of the same color are mutually A;-orthogonal, and a user

defined tolerance 7. It is thus independent of the number of subdomains V;.

The main contribution of this paper is based on the combination of two previous
works on two-level additive Schwarz methods [3, 33]. The coarse space proposed in
[33] guarantees an upper bound on the condition number that can be prescribed by
the user. The SPSD splitting in the context of domain decomposition presented in
[3] provides an algebraic view for the construction of coarse spaces. The combination
of these two works leads to a robust multilevel additive Schwarz method. Here,
robustness refers to the fact that at each level, an upper bound on the condition
number of the associated matrix can be prescribed by the user a priori. The rest
of the paper is organized as follows. In the next section, we present the notations
used throughout the paper. In section 2, we present a brief review of the theory of
one- and two-level additive Schwarz methods. We extend in section 3 the class of
SPSD splitting matrices presented in [3] in order to make it suitable for multilevel
methods. Afterwards, we define the coarse space at level i based on the extended
class of local SPSD splitting matrices associated with this level. Section 4 describes
the partitioning of the domain at level ¢ + 1 from the partitioning at level i. In
Section 5, we explain the computation of the local SPSD matrices associated with each
subdomain at level ¢ + 1. We compute them using those associated with subdomains
at level 7. Section 6 presents numerical experiments on highly challenging diffusion
and linear elasticity problems in two- and three-dimensional problems. We illustrate
the theoretical robustness and practical usage of our proposed method by performing
strong scalability tests up to 8,192 processes.

Context and notation. By convention, the finest level, on which (1.1) is de-
fined, is the first level. A subscript index is used in order to specify which level
an entity is defined on. In the case where additional subscripts are used, the first
subscript always denotes the level. For the sake of clarity, we omit the subscript cor-
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responding to level 1 when it is clear from context, e.g., matrix A. Furthermore, the
subscripts ¢ and j always refer to a specific level ¢ and its subdomain j, respectively.
The number of levels is L + 1. Let A; € R™*™ denote symmetric positive definite
matrices, each corresponding to level i = 1,..., L+1. We suppose that a direct solver
can be used at level L 4+ 1 to compute an exact factorization of Ay 1.

Let B € RP*? be a matrix. Let P C [1;p] and @ C [1;¢] be two sets of
indices. The concatenation of P and @ is represented by [P, Q]. We note that the
order of the concatenation is important. B(P,:) is the submatrix of B formed by
the rows whose indices belong to P. B(:, Q) is the submatrix of B formed by the
columns whose indices belong to Q. B(P,Q) = (B(P,:)) (:,Q). The identity matrix
of size p is denoted I,. We suppose that the graph of A; is partitioned into N; non-
overlapping subdomains, where N; < n; and N; 11 < N; fori =1,..., L. We note that
partitioning at level 1 can be performed by using a graph partitioning library such as
ParMETIS [22] or PT-SCOTCH [11]. Partitioning at greater levels will be described
later in section 4. In the following, we define for each level ¢ = 1,..., L notations
for subsets and restriction operators that are associated with the partitioning. Let
Q; = [1;n;] be the set of unknowns at level ¢ and let Q; ; ; for j = 1,..., N; be the
subset of €); that represents the unknowns in subdomain j. We refer to €); ; ; as the
interior unknowns of subdomain j. Let I'; ; for j = 1,..., N; be the subset of §2; that
represents the neighbor unknowns of subdomain j, i.e., the unknowns at distance 1
from subdomain j through the graph of A;. We refer to I'; ; as the overlapping
unknowns of subdomain j. We denote ;; = [Q; s, I;,], for j = 1,...,N;, the
concatenation of interior and overlapping unknowns of subdomain j. We denote
A, 4, for j = 1,...,N;, the complementary of €; ; in Q;, ie, A;; = @\ ;. In
Figure 1.1, a triangular mesh is used to discretize a square domain. The set of
nodes of the mesh is partitioned into 16 disjoint subsets €2y ;r, which represent a
non-overlapping decomposition, for j = 1,...,16 (left). On the left, a matrix A
whose connectivity graph corresponds to the mesh is illustrated. The submatrix
A1 (15,1, 5,1) is associated with the non-overlapping subdomain j. Each submatrix
A1(Q,5,1,5,1) is colored with a distinct color. The same color is used to color the
region that contains the nodes in the non-overlapping subdomain €; ; ;. Note that
if two subdomains ji, jo are neighbors, the submatrix A;(Q4 ;7,4 j, 1) has nonzero
elements. For j =1,...,NV;, we denote by n; ; 1, 7;,; and n; ; the cardinality of €2, ; r,
I';,; and Q; ; respectively.

Let R; ;1 € R™3:1%™ be defined as R; j 1 = In, (s 5.1,1).

Let Rl"j’p € R743%" be defined as Ri,j,F = Im (Fi’ﬁ )

Let R; ; € R™*™ be defined as R; ; = I, (€ ,:).

Let R; ja € ROv=m3)%ni he defined as R ja = In, (A j,1).

Let P;; = I, (1,14, 5],:) € R"*™  be a permutation matrix associated
with the subdomain j, for j = 1,..., N;. The matrix of the overlapping subdomain j,
Ri,jAZ—RT is denoted A; ;. We denote D;; € R"3-*"ui j = 1,..., N;, any set of

e
non-negative diagonal matrices such that

N;
I, => R/ Di;R;;.
j=1
We refer to {D; i}, <y, as the algebraic partition of unity. Let V; € R""*™+1 be
a tall-and-skinny matrix of full rank. We denote S; the subspace spanned by the
columns of V;. This subspace will stand for the coarse space associated with level i.
By convention, we refer to S; as subdomain 0 at level i. Thus, we have n; g = n;41.
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HIERARCHICAL ROBUST COARSE SPACES 5

Q1,12,1 Q1,15,1

Fic. 1.1. Left: a triangular mesh is used to discretize the unit square. The set of nodes of the
mesh is partitioned into 16 disjoint subsets, non-overlapping subdomains, Q1 ;1 for j =1,...,16.
Right: Illustration of the matriz A1 whose connectivity graph corresponds to the mesh on the left.
The diagonal block j of A1 corresponds to the non-overlapping subdomain Qy ; 1. Each submatric
A1(Q5,1,Q1,5,1) is colored with a distinct color. The same color is used to color the region of the
square that contains nodes in Qy ;1.

The interpolation operator at level i is defined as:

N;
Hig: [[R™ —R™
=0
(1.2) .
(u4)ogjcn, = ZRIJ‘“J"
=0

Finally, we denote V; ; the set of neighboring subdomains of each subdomain j at
level i for (,7) € [1; L] x [1; Ny].

Vij=A{ke[L;N;]: Q; N Qi #0}.

As previously mentioned, partitioning at level 1 can be performed by graph parti-
tioning libraries such as ParMETIS [22] or PT-SCOTCH [11]. Partitioning at further
levels will be defined later: the sets €; ; 1, Qi jr, €5, and A; ; for ¢ > 1 are defined
in subsection 4.2. The coarse spaces S; as well as the projection and prolongation
operators V," and V; are defined in subsection 3.2. We suppose that the connectivity
graph between the subdomains on each level is sparse. This assumption is not true in
general, however, it is valid in structures based on locally constructed coarse spaces
in domain decomposition as we show in this paper, see [18, Section 4.1 p.81] for the
case of two levels.

2. Background. In this section, we review briefly several theoretical results
related to additive Schwarz preconditioners. We introduce them for the sake of com-
pleteness.

LEMMA 2.1 (fictitious subspace lemma). Let A € R"4*"4 B € R"BX"B pe two

This manuscript is for review purposes only.
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symmetric positive definite matrices. Let Z be an operator defined as

Z:R"B — R"A
v = R,

and let Z7 be its transpose. Suppose that the following conditions hold:
1. The operator Z is surjective.
2. There exists ¢, > 0 such that

(%v)" A(%v) < cyv! Bv, YveR".

3. There exists ¢; > 0 such that for all v,, € R" Jv,, € R"B|v,, = Zv,,
and

clv;BanB < (%’vnB)TA(%vnB) = U;AAvnA.

Then, the spectrum of the operator ZB~*#" A is contained in the segment [c;, c,].
Proof. We refer the reader to [12, Lemma 7.4 p.164] or [28, 27, 13] for a detailed

proof. 0
LEMMA 2.2. The operator %, » as defined in (1.2) is surjective.
Proof. The proof follows from the definition of %; 2 (1.2). a0
LEMMA 2.3. Let k; . fori =1,...,L be the minimum number of distinct colors

so that {span{R;;
have

}}1<j<Nv of the same color are mutually A;-orthogonal. Then, we

(e@mul&-)T A; (% 2uB,)

N; N
< (ki,c + 1) Zu;— (Rz,]AzRZJ) Uyj, V’U,Bi = (“j)ogjgNi € H R™d
j=0 7=0
Proof. We refer the reader to [9, Theorem 12 p.93] for a detailed proof. |

We note that at level ¢, the number k; . is smaller than the maximum number of
neighbors over the set of subdomains [1; V;]

ki < 1%12}1(\[1- #Vij-
Due to the sparse structure of the connectivity graph between the subdomains at

level 4, the maximum number of neighbors over the set of subdomains [1;N;] is
independent of the number of subdomains N;. Then, so is k; ..

LEMMA 2.4, Let ua, € R™ andup, = {u;}toc;cn, € H;V:io R™ such that uy, =
Rioup;. The additive Schwarz operator without any other restriction on the coarse
space S; verifies the following inequality

N; N;
Z’LL;— (Rl’JAZRZTJ) U < ZU-LA,L’LLAI + (2]%"5 + 1) Z U;—Ri’inRZjUj,
j=0 j=1

where k; . is defined in Lemma 2.3.

This manuscript is for review purposes only.



233
234
235
236
237
238

239
240
241

HIERARCHICAL ROBUST COARSE SPACES 7

Proof. We refer the reader to [12, Lemma 7.12, p. 175] to view the proof in
detail. 0

LEMMA 2.5. Let A, B € R™*™ be two symmetric positive semi-definite matrices.
Let ker(A), range(A) denote the null space and the range of A respectively. Let Py
be an orthogonal projection on range(A). Let T be a positive real number. Consider
the generalized eigenvalue problem,

PyBPyuy = A\ Auy,
(ug, A\) € range(A) x R.
Let P. be an orthogonal projection on the subspace
Z = ker(A) @ span{ug| A, > 7},
then, the following inequality holds:

(2.1) (u—Pu)" B(u—Pru) <7u' Au, YueR™.
Proof. We refer the reader to [3, Lemma 2.4] and [12, Lemma 7.7] for a detailed
proof. 0

2.1. GenEO coarse space. In [33, 12] the authors present the GenEO coarse
space which relies on defining appropriate symmetric positive semi-definite (SPSD)
matrices Aj € R™*™ for j =1,..., N. These are the unassembled Neumann matrices,
corresponding to the integration on each subdomain of the operator defined in the
variational form of the PDE. These matrices are local, i.e., R;, Aflj = 0. Furthermore,
they verify the relations

uT[lju <u'Au, YueR",
N

ul Zflju < kgengou | Au, Vu € R”,
j=1

where kgeneo < N is the maximum number of subdomains that share an unknown.

2.2. Local SPSD splitting of an SPD matrix. In [3], the authors present
the local SPSD splitting of an SPD matrix. Given the permutation matrix P;, a local
SPSD splitting matrix A; of A associated with subdomain j is defined as

R;;AR], R;/AR].
(2.2) P;A;P = R;rAR], Al ,
0

where /IJF € R *7% satisfies the two following conditions: For all u € R
L] UT (R]}FAR;":I) (Rj,[AR;I)_l (Rj)[AR;:F) u < ulejyu
o uTAlu<u” ((RirAR]L) — (RirAR] ) (Ria AR )™ (RyaAR]L) ) w.

The authors prove that the matrices flj defined in such a way verify the following
relations:

(2.3) RjaA; =0,

(2.4) u' Aju<u'Au, Yu € R,
N

(2.5) u' ZAJ'U < ku'Au, Vu € R",
j=1

This manuscript is for review purposes only.
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where k is a number that depends on the local SPSD splitting matrices and can be
at most equal to the number of subdomains k£ < N. The authors also show that the
local matrices defined in GenEO [33, 12] can be seen as a local SPSD splitting.

In [3], the authors highlight that the key idea to construct a coarse space relies
on the ability to identify the so-called local SPSD splitting matrices. They present
a class of algebraically constructed coarse spaces based on the local SPSD splitting
matrices. Moreover, this class can be extended to a larger variety of local SPSD
matrices. This extension has the advantage of allowing to construct efficient coarse
spaces for a multilevel structure in a practical way. This is discussed in the following
section.

3. Extension of the class of coarse spaces. In this section we extend the
class of coarse spaces presented in [3]. To do so, we present a class of matrices, that is
larger than the class of local SPSD splitting matrices. This will be our main building
block in the construction of efficient coarse spaces. Furthermore, this extension can
lead to a straightforward construction of hierarchical coarse spaces in a multilevel
Schwarz preconditioner setting.

3.1. Extension of the class of local SPSD splitting matrices. Regarding
the two-level additive Schwarz method, the authors of [3] introduced the local SPSD
splitting related to a subdomain as defined in (2.2). As it can be seen from the theory
presented in that paper, it is not necessary to have the exact matrices R; IARII,
RjJAR;':F, and RjIAR;I in the definition of the local SPSD splitting in order to
build an efficient coarse space. Indeed, the one and only necessary condition is to
define for each subdomain j an SPSD matrix flj for j =1,..., N such that:

RjaA; =0,

(3.1) SR .
U ZAﬂLé ku' Au,Vu € R",
j=1

where k is a number that depends on the local SPSD matrices flj forj=1,...,N.
The first condition means that A; has the local SPSD structure associated with sub-
domain j, i.e., it has the following form:

where /E r € R®>™_ The second condition is associated with the stable decom-
position ﬁroperty [36, 12]. Note that with regard to the local SPSD matrices, the
authors in [33] only use these two conditions. That is to say, with matrices that verify
conditions (3.1) the construction of the coarse space is straightforward through the
theory presented in either [33] or [3]. To this end, we define in the following the local
SPSD (LSPSD) matrix associated with subdomain j as well as the associated local
filtering subspace that contributes to the coarse space.

DEFINITION 3.1 (local SPSD matrices). An SPSD matriz A; ; € R™*™ is called
local SPSD (LSPSD) with respect to subdomain j if
o Rijadi;=0,
o ul Zjvz’l fli,ju < ku' A,
where k; > 0.

This manuscript is for review purposes only.
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HIERARCHICAL ROBUST COARSE SPACES 9

We note that the local SPSD splitting matrices form a subset of the local SPSD
matrices.

3.2. Multilevel coarse spaces. This section summarizes the steps to be per-
formed in order to construct the coarse space at level i once we have the LSPSD
matrices associated with each subdomain at that level.

DEFINITION 3.2 (coarse space based on LSPSD matrices). Let fl” € R™*™ for
j=1,...,N; be LSPSD matrices. Let D; ; € R™ for j =1,...,N; be the partition
of unity. Let 7; > 0 be a given number. For a subdomain j € [1; N;], let

Giyj - Di’j (R,LJAZRIJ ) Di,j~
Let P, j be the projection on mnge(Ri,jfljR;':j) parallel to ker(Ri,jfljRZj). Let K; ; =
ker(Ri,in,jRIj). Consider the generalized eigenvalue problem:

D D 1 T
P jGi i Pijui e = Nij B jAi R, jui gk,

(3.2) I5e
(Ui, jks Nijj k) € Tange(R; jA; jR; ;) x R.

Set

(3.3) Zij = Kij @ span{u jrlNijr > i}

Then, the coarse space associated with LSPSD matrices /LJ forj=1,...,N; at level
is defined as:

N;
(3.4) Si=DRI;Di;jZi;.
j=1

Following notations from section 1, the columns of V; span the coarse space S;. The
matriz A;1 is defined as:

(3.5) Aipr =V, AV

The local SPSD splitting matrices at level 1 will play an important role in the
construction of the LSPSD matrices at subsequent levels. In the following, we present
an efficient approach for computing LSPSD matrices for levels greater than 1.

4. Partitioning for levels strictly greater than 1. In this section, we ex-
plain how to obtain the partitioning sets §; ; ; for (i,7) € [2; L] x [1; N;]. Once the
sets €); ;1 for j =1,..., N; are defined at level i, the following elements are readily
available: sets I'; ;, A; ;, and ); ;; restriction operators R; j 1, Ri jr, Rija, and R; ;;
permutation matrices P; ; for j = 1,..., N;. The partition of unity is constructed in
an algebraic way. The mth diagonal element of D; ; is 1 if m < n; ;1 and 0 otherwise.

4.1. Superdomains as unions of several subdomains. In this section, we
introduce the notion of a superdomain. It refers to the union of several neighboring
subdomains. Let G;1,...,G; n,., be disjoint subsets of [1; N;], where Ujvzﬁl Gij =
[1; N;]. We call the union of the subdomains {k € [1; N;] : k € G; ; } superdomain j,
for j =1,...,N;y1. Figure 4.1 gives an example of how to set superdomains. Though
this definition of superdomains may look somehow related to the fine mesh, it is in
practice done at the algebraic level, as explained later on. Note that the indices of
columns and rows of A;;1 are associated with the vectors contributed by the subdo-
mains at level ¢ in order to build the coarse space S;, see Figure 4.2. Hence, defining
subdomains on the structure of A;;; is natural once we have the subsets G; ;, for
Jj= 17"'7Ni+1~

This manuscript is for review purposes only.



w
—

2

~

w
ot Ut Ut Ut Ot
w

w

ot

w
[S5

57
8
9
360

0O W

w
ot Ot

10 H. AL DAAS, L. GRIGORI, P. JOLIVET, AND P.-H. TOURNIER

Qg1 Q13,1

Q1,12,1 Q1,15,1

F1G. 4.1. Left: 16 subdomains at level 1. Right: 4 superdomains at level 1. G1 ; = [4(7 — 1) +
1,43 — 1) +4].

(RLDI:.1Z¢,1)TA7',(RLDMZM)

(R]

1,3

D;3Zi3) T Ai(R] 4 DiaZ; 4)

Fic. 4.2. Ilustration of the correspondence of indices between the columns of V; (left) and the
rows and columns of A;41 (right). Having no overlap in V; is possible through a non-overlapping
partition of unity.

4.2. Heritage from superdomains. Let e; ; be the set of indices of the vectors
that span RIjDi,jZi,j in the matrix V; for some (¢,7) € [1;L — 1] x [1; V;], see
Figure 4.2. We define Q;11 ;1 = Ukeg, ;€ik, for j = 1,..., Niy1. We denote Q; 11 ;r
the subset of [1;7;11]\ Q41,51 whose elements are at distance 1 from ;1 ; ; through
the graph of A;,1. We note that

Qit1,5r C U U €i k>
PEGi,j kEVip

where V; ; represents the set of subdomains that are neighbors of subdomain j at
level ¢ for j =1,..., N;. The overlapping subdomain j is defined by the set ;11 ; =
(Qit1,5,1,Q+1,5r). The rest of the sets, restriction, and prolongation operators can
be defined as given in section 1.
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361 5. LSPSD matrices for levels strictly greater than 1. In [33, 12, 3], differ-
362  ent methods are suggested to obtain local SPSD splitting matrices at level 1. These
363 matrices are used to construct efficient two-level additive Schwarz preconditioners.
364 Here in this section, we do not discuss the construction of these matrices at level 1. We
365 suppose that we have the local SPSD matrices Al,j e R™>™ for j =1,...,N;. We
366 focus on computing LSPSD matrices A, ; € R™*™ for (i, ) € [2; L] x [1; N;]. We also
367 suppose that the coarse space 87 is available, i.e., the matrices V] and Ay = VlTAlVl
368 are known explicitly.

369 PROPOSITION 5.1. Let i be a fized level index, and let A; j be an LSPSD of A;,
370 (see Definition 3.1), associated with subdomain j, forj =1,...,N;. LetG;1,...,Gi N,
371 be a set of superdomains at level i associated with the partitioning at level i + 1, see

372 subsection 4.1. Let V,T be the restriction matriz to the coarse space at level i. Then,
373 the matriz A;y1,; which is defined as:

o 3 _ T 7
374 Aipr,j = Z Vit A1 Vi,
keg;. ;

375 satisfies the conditions in Definition 3.1. That 1is, fL‘H,j is LSPSD of A;11 with

376 respect to subdomain j for j=1,..., Nit1.

377 Proof. To prove that fliHJ is LSPSD of A;;1 with respect to subdomain j, we
378 have to prove the following:

379 ° Ri+1,j,AAi+1,j =0

380 o ul Zjv;_*l—l Ai+1,ju < ki+1uTAi+1u for all u € R™i+1,

381  First, note that Ri,kfli,j = 0 for all non-neighboring subdomains & of subdomain j.
382  This yields Z;,rkDi,kRi,kAz‘,j = 0 for these subdomains k.

383 Now, let m € [1;1;41] \ Qit1,;. We will show that the mth row of AiJrl’j is zero.
384 Following the partitioning of subdomains at level ¢ 4- 1, there exists a subdomain 2,
385 such that the mth column of V; is part of R;. poPipoZi,p,- We denote this column
386 vector by v,,. Furthermore, the subdomain pg is not a neighbor of any subdomain
387 that is a part of the superdomain G; ;. Hence, U;Ai,k =0 for k € G; ;. The mth row
388 of A;41,; is given as v,), Zkegu A; 1 V;. Then, v, Zkegw A; r =0, and the mth row

380 of Ajy1,; is zero.

390 To prove the second condition, we have

Nijt1 Nit1
391 uT E Ai+1,ju = UT E E V;TAZ'JCV;U.
392 i=1 J=1 k€Gi,;

393 Since {gi,j}lgj@m form a disjoint partitioning of [1; N;], we can write

Niy1 N;
394 ’UJT Z Ai+17ju = UT Z ‘/iTALkV;‘U,
j=1 k=1
N;
395 = uTViT Z fli,kViu.
396 k=1
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A; i, is an LSPSD matrix of 4; for k =1,..., N;. Hence, we have

Nii1
UT Z /L‘+1’ju < kiuTV;TAiV;‘u,
j=1
S kiUTAH_lu.
We finish the proof by setting k;+1 = k;. 0

Figure 5.1 gives an illustration of the LSPSD construction provided by Proposi-
tion 5.1. Figure 5.1 (top left) represents the matrix A;. The graph of A4; is partitioned
into 16 subdomains. Each subdomain is represented by a different color. Figure 5.1
(top right) represents the matrix V; whose column vectors form a basis of the coarse
space S;. Colors of columns of V; correspond to those of subdomains in A;. Figure 5.1
(bottom left) represents the matrix A, = V;" A4, V. Note that column and row indices
of Ay are associated with column indices of V;. Four subdomains are used at level 2.
The partitioning at level 2 is related to the superdomain G ; = [4(j—1)+1;4(j—1)+4]
for j = 1,...,4. Figure 5.1 (bottom right) represents an LSPSD matrix of Ay with
respect to subdomain 1 at level 2.

Theorem 5.2 shows that the third condition of the fictitious subspace lemma
Lemma 2.1 holds at level ¢ for i =1,..., L.

THEOREM 5.2. Let A” be an LSPSD of A; associated with subdomain j, for
(i,§) € [1;L] x [1;N;]. Let 7; > 0, Z;; be the subspace associated with A; ;, and
P; ; be the projection on Z;; as defined in Lemma 2.5. Let u; € R™ and let u; ; =
(Di’j (Ini,j - Pi,j) Ri,jui) for (i,7) € [1; L] x [1; N;]. Let u; o be defined as,

N;
wio= (V' Vi) VT > R!;D; ;PR ju;
=1
Let m; = (24 (2k; . + 1)ki7'i)_1. Then,

N;
T
U; = E Ri,jui’j,
Jj=0

and
N;
T T T
(5.1) m; Zui’jRi,inRi’jui’j < u; Aiui.
3=0

Proof. We have

N; N; N;
S Rlui;=Vi (Vi) VT SORT D PR | + Y R jui
i=1 =1

(]
Jj=0
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(R{ 11D1,11Z1,11) " A1 (R §D1,6Z16)
(R{1D11Z11) " A1(R{ D11 71,1)

L)

Fig. 5.1.

Illustration of the LSPSD construction provided by Proposition

13

5.1. Top left:

the matriz Ay, top right: Vi, bottom left: the matric Az = VlTA1V1, bottom right: A1 =

Zjegl,l VlTALth where G11 =1,...,4

Since for all y € S;, V; (ViTVi)_1 V.Ty =y, we have

Rl ui; =Y R.D;;Pi;R; ju;
i Ui = ij i g i jui +
=0

=

‘Zb

i

-
R; ;iD; ;R; jui,
1

<.
I

Il
e

7.

N;
ZRZ'T»J' (Di’j (Im.,j - Pi,j) Ri,jui) )
j=1

To prove the inequality (5.1), we start with the inequality from Lemma 2.4. We

have
N;
(52) Z quRi,inRiTjuiJ § QUZTA,‘ui + (
3=0 j=1

N;
2]4}1'70 + 1) Z quRi7inRiT,jui,j,

where we chose ug, in Lemma 2.4 to be (u; j)j=0,....n, and ua, = u,. In Definition 3.2,
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14 H. AL DAAS, L. GRIGORI, P. JOLIVET, AND P.-H. TOURNIER
we defined Z; ;, such that for all w € R™*J we have

((Tnwy, = Pig)w) " (D Rig AiRT; D) (i, = Pig)w) < mw” (RigAiiR] ) w.
Hence, in the special case w = R; ju;, we can write

((In,, = Pug)Rijwr) " (DigRig ARI;Dis) ((In, ) = Pi)Rigus)

< i(Riju) " (Ri7in,jRZj) (Ri jus).
Equivalently,
quRi,inRiTjui,j < Ti(Ri,jui)TR@in,jRZ]’(Riyjui).

Plugging this inequality in (5.2) gives

=

N; i
ZquRi’inRZjuivj < 2’U,;|—Aiui + (2]{51"6 + 1) Ti (Ri,jui)TRi’in’jRZj(Ri,jui).
1

<.
Il

7=0
Since A; ; is local, we have
(Ri,jui)TRi,jflmRZj(Ri’jui) = ujfli)jui, for ] = 1, ceey Ni.

By using the fact that fli,j is LSPSD of A; for j =1,..., N;, we obtain the following:

N;
ZquRi,inRZjui’j < QU;FA/LLZ + (Qk‘i’c + 1) k’ﬂlu;rAzuZ
=0

Multiplying both sides with m; ends the proof, i.e.,

N;
T T T
mi Y u iR AR jui g < uy Agug. 0

J=0

In [3], the authors presented the minimal subspace that replaces Z; ; (defined in (3.3)
and used in Theorem 5.2) that is required to prove Theorem 5.2. The main difference
with respect to the subspace that we define in (3.3) is that it is not necessary to include
the entire kernel of the LSPSD matrix, K; ;, in Z; ;, see Definition 3.2. Nevertheless,
in this work, we include the entire kernel of the LSPSD matrix in the definition of
Z;,5. This allows us to ensure that the kernels of Neumann matrices are transferred
across the levels, see Theorem 5.4. And in addition, this corresponds to the definition
used in GenEO [12, Lemma 7.7] and to its implementation in the HPDDM library
[19].

Theorem 5.3 provides an upper bound on the condition number of the precondi-
tioned matrix Mi_lAi fori=1,...,L.

THEOREM 5.3. Let M; be the additive Schwarz preconditioner at level i combined
with the coarse space correction induced by S; defined in (3.4). The following inequality
holds,

KR (Mi_lAi) < (ki,c + 1) (2 + (Qki@ + 1)]4317'1) .

This manuscript is for review purposes only.
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Proof. Lemma 2.2, Lemma 2.3, and Theorem 5.2 prove that the multilevel precon-
ditioner verifies the conditions in Lemma 2.1 at each level i. Hence, the spectrum of the
preconditioned matrix M[lAZ- is contained in the interval [(2 + (2k; . + 1)/@-7})71 JKi ot
1]. Equivalently, the condition number of the preconditioned matrix at level ¢ verifies
the following inequality

K (M;lAZ) < (ki,c + 1) (2 + (2ki,c + 1)]@’7}) . 0

Proposition 5.1 shows that the constant k; associated with the LSPSD matrices at
level 7 is independent of the number of levels and bounded by the number of subdo-
mains at level 1. Indeed,

klzkifori:l...,L.

Furthermore, in the case where the LSPSD matrices at the first level are the Neumann
matrices, k; is bounded by the maximum number of subdomains at level 1 that share
an unknown.

The constant k; . for ¢ =1,..., L is the minimum number of distinct colors so that
{span{R;': j}}l <N, of the same color are mutually A;-orthogonal. Both constants
k; and k; . are Ynaef)endent of the number of subdomains for each level 3.

The constant 7; can be chosen such that the condition number of the precondi-
tioned system at level ¢ is upper bounded by a prescribed value. Hence, this allows
to have a robust convergence of the preconditioned Krylov solver at each level.

Algorithm 5.1 presents the construction of the multilevel additive Schwarz method
by using GenEQO. The algorithm iterates over the levels. At each level, three main
operations are performed. First, the construction of the LSPSD matrices. At level 1,
the LSPSD matrices are the Neumann matrices, otherwise, Proposition 5.1 is used
to compute them. Once the LSPSD matrix is available, the generalized eigenvalue
problem in (3.2) has to be solved concurrently. Given the prescribed upper bound on
the condition number, Z; ; can be set. Finally, the coarse space is available and the
coarse matrix is assembled.

The following Theorem 5.4, describes how the kernel of Neumann matrices are
transferred across the levels.

THEOREM 5.4. Suppose that Al,j is the Neumann matrix associated with the sub-
domain 0 ; for j € [1;N1]. For (i,7) € [2; L] x [1;N;], let

) flm- be the LSPSD matrices associated with A; ; defined in Proposition 5.1,

o Gi_1; be the corresponding superdomains,

° Q}_Lj be the union of subdomains at level 1 which contribute hierarchically
to obtain G;_1 ;,

. flgifl’j be the Neumann matriz associated with g}_lyj (seeing G
subdomain),

o Ag, ,, be the restriction of A to the subdomain G

1

i1, 0s a

1
i1

- , _ , T
Then, the kernel of Ag,_, , is included in the kernel of ( ' Vl) A ( ' Vl) .

Proof. First, note that for any LSPSD matrix computed as in Proposition 5.1, we
have

() () () () 5 () (1)
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Algorithm 5.1 Multilevel GenEO

Require: A1 = A € R™*"™ SPD, L + 1 number of levels, N; number of subdomains
at each level, G; ; sets of superdomains

Ensure: preconditioner at each level 1, Mi_1 with bounded condition number of
Mt A;

1: fori=1,...,L do

2 for each subdomain j =1,...,N; do

3: A;ij = Ri jAiR]; (local matriz associated with subdomain j)

4: if i =1 then

5 local SPSD A, ; is Neumann matrix of subdomain j

6 else

7 compute local SPSD matrix as

Ai,j: Z VitlAi—LkVi—l

keg;. j

8: end if
9: solve the generalized eigenvalue problem (3.2), set Z; ; as in (3.3)
10:  end for
N; .

11: S; = ®j:1 Di,jRIjZi,jv V; basis of .5;
12:  coarse matrix A; 11 = V;TAZ'VZ', Aipq € R Xmid1
13: end for

-1 1T N; T »2-1
14: Mi = V;Aerl‘/z + Ej:l Ri,in,j Ri,j

Moreover, due to the fact that flgifl,j and 12117k are Neumann matrices, we have

uTﬁgFl’ju < u' Z fllyku < kluTAgi717ju.
keg; ;

On one hand, the kernels of ;11, , for k € Qi{ ; are included, by construction, in the im-
age of V1, see Definition 3.2. So is their intersection which is the kernel of 7, (o1 flLk.
¥

On the other hand, the previous two-sided inequality implies that the kernels of flgifl,j
and ) ,cq1 Ay are identical. Hence, the kernel of Ag,, ; is included in the image
7

of QQT, where Q = ( il Vl>. 0

Theorem 5.4 proves that the kernel of the Neumann matrix of a union of subdomains
at level 1 that hierarchically contribute to form a subdomain at level 7 is conserved by
the construction of the hierarchical coarse spaces. For example in the case of linear
elasticity, it is essential to include the rigid body motions in the coarse space in order
to have a fast convergence. As these are included in the kernel of the Neumann matrix
of the subdomain, the hierarchical coarse space includes them, consequently.

6. Numerical experiments. In this section, the developed theory is validated
numerically with FreeFEM [14] for finite element discretizations and HPDDM [19]
for domain decomposition methods. We present numerical experiments on two highly
challenging problems illustrating the efficiency and practical usage of the proposed
method. For both problems, we use N1 = 2,048 MPI processes (equal to the number
of subdomains at level 1), and the domain partitioning is performed using ParMETIS

This manuscript is for review purposes only.
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[22], with no control on the alignments of subdomain interfaces. We compare the
two-level GenEO preconditioner and its multilevel extension by varying Ny between 4
and 256. For the two-level method, Na corresponds to the number of MPI processes
that solve the coarse problem in a distributed fashion using MKL CPARDISO [17].
For the multilevel method, N3 is set to 1, i.e., a three-level method is used. The goal
of these numerical experiments is to show that when one switches from a two-level
method with an exact coarse solver, to our proposed multilevel method, the number
of outer iterations is not impacted. Thus, three levels are sufficient. As an outer
solver, since all levels but the coarsest are solved approximately, the flexible GMRES
[31] is used. It is stopped when relative unpreconditioned residuals are lower than
10~%. Subdomain matrices {A4;;}, <i<a.1<j<n, are factorized concurrently using MKL
PARDISO, and eigenvalue problems are solved using ARPACK [24]. In both, two-
and three-level GenEO, we factorize the local matrices A, ; for j € [1; N1] and solve
the generalized eigenvalue problems concurrently at the first level. For this reason,
we do not take into account the time needed for these two steps which are performed
without any communication between MPI processes. We compare the time needed
to assemble and factorize Ay in the two-level approach against the time needed to
assemble As and local SPSD matrices 12127]‘ for j € [1; N3], solve the generalized
eigenvalue problems concurrently on the second level, assemble, and factorize the
matrix Az in the three-level approach. We also compare the time spent in the outer
Krylov solver during the solution phase. Readers interested by a comparison of the
efficiency of GenEO and multigrid methods such as GAMG [1] are referred to [18].
FreeFEM scripts used to produce the following results are available at the following
URL: https://github.com/prj- /aldaas2019multi’.

6.1. Diffusion test cases. The scalar diffusion equation with highly heteroge-
neous coefficient « is solved in [0,1]¢ (d = 2 or 3). The strong formulation of the
equation is:

-V (kVu)=1 in Q,
u=0 onlp,

g% =0 on FN-

The exterior normal vector to the boundary of 2 is denoted n. I'p is the subset
of the boundary of Q corresponding to x = 0 in 2D and 3D. I'y is defined as the
complementary of I'p with respect to the boundary of 2. We discretize the equation
using P and P4 finite elements in the 3D and 2D test cases, respectively. The number
of unknowns is 441 x 10% and 784 x 10°, with approximately 28 and 24 nonzero
elements per row in the 3D and 2D cases, respectively. The heterogeneity is due
to the jumps in the diffusion coefficient k, see Figure 6.1, which is modeled using
a combination of jumps and channels, cf. the file coefficients.idp from https:
//github.com/prj- /aldaas2019multi.

The results in two dimensions are reported in Table 6.1. The number of outer
iterations for both two- and three-level GenEQO is 32. The size of the level 2 operator
is ng = 25 x 2,048 = 51,200. In all numerical results, the number of eigenvectors per
subdomain, here 25, is fixed. This is because ARPACK cannot a priori compute all
eigenpairs below a certain threshold, and an upper bound has to be provided instead.

Inote to reviewers: the repository is now public
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1.7- 108

1-108

5-10°

Fic. 6.1. Variation of the coefficient k used for the diffusion test case

HPDDM is capable of filtering the eigenpairs for which eigenvalues are above the user-
specified GenEO threshold from Lemma 2.5. However, this means that the coarse
operator may be unevenly distributed. With a fixed number of eigenvectors per sub-
domain, it is possible to use highly optimized uniform MPI routines and block matrix
formats. Hence, for performance reasons, all eigenvectors computed by ARPACK are
kept when building coarse operators. It is striking that the multilevel method does not
deteriorate the numerical performance of the outer solver. For the two-level method,
the first column corresponds to the time needed to assemble the Galerkin operator As
from (3.5) (assuming V; has already been computed by ARPACK), and to factorize it
using No MPI processes. For the three-level method, the first column corresponds to
the time needed to assemble level 2 local subdomain matrices {Az ;}, <j<N, level 2
local SPSD matrices, solve the generalized eigenvalue problem (3.2) concurrently, as-
semble the Galerkin operator Az and factorize it on a single process. The size of
the level 3 operator is ng = 20 x N». For both two- and three-level methods, the
second column is the time spent in the outer Krylov solver once the preconditioner
has been set up. In the last column of the three-level method, the number of inner
iterations for solving systems involving As, which is not inverted exactly anymore,
is reported. For all tables, this column is an average over all successive outer itera-
tions. Another important numerical property of our method is that, thanks to fully
controlled bounds at each level, the number of inner iterations is low, independently
of the number of superdomains Ny. Because this problem is not large enough, it is
still tractable by a two-level method, for which HPDDM was highly optimized for.
Thus, there is no performance gain to be expected at this scale. However, one can
notice that the construction of the coarse operator(s) scales nicely with Na for the
three-level method, whereas the performance of the direct solver MKL CPARDISO
quickly stagnates because of the finer and finer parallel workload granularity.

The results in three dimensions are reported in Table 6.2. The number of outer
iterations for both the two- and three-level GenEO is 19. The observations made
in two dimensions still hold, and the dimensions of As and A3 are the same. Once
again, it is important to note that the number of outer iterations is the same for both
methods.
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two-level GenEO three-level GenEO
Ny | CS solve % ofnnz As | CS  solve innerit. % of nnz As
4124 11.9 6.5 274 14 56.0
16 | 1.8 11.3 0.19 3.6 154 15 19.0
64 | 1.9 121 ’ 3.0 16.7 14 5.5
256 | 2.4 184 2.8 139 13 1.4
TABLE 6.1
Diffusion 2D test case, comparison between two- and
three-level GenEQO. The percentage of nonzero entries
n Aq is 0.3%.
two-level GenEO three-level GenEO
Ny | CS solve % ofnnz Ay | CS solve innerit. % of nnz As
4170 209 16.9 43.6 17 62.0
16 | 5.0 19.8 0.36 7.7 26.7 17 28.0
64 | 5.1 20.1 ' 5.8 32.7 15 8.9
256 | 5.2 24.1 5.3 22.6 14 2.6

) ) TABLE 6.2
Diffusion 3D test case, comparison between two- and

three-level GenEQ. The percentage of nonzero entries
in A1 is 0.5%.

6.2. Linear elasticity test cases. The system of linear elasticity with highly
heterogeneous elastic moduli is solved in 2D and 3D. The strong formulation of the
equation is given as:

divo(u)+ f=0 in €,
(6.1) u=0 onlIp,
o(w)-n=0 onTy.
The physical domain €2 is a beam of dimensions [0, 10] x [0, 1], extruded for z €

[0,1] in 3D. The Cauchy stress tensor o(-) is given by Hooke’s law: it can be expressed
in terms of Young’s modulus £ and Poisson’s ratio v.

i () = 2pei5(u) i # J
“ 2uei;(u) + Adiv(u) i=7,
where L /8 5 5 5
) = = [ Y - _ = B
fu(w) =3 (axﬁaxj)’“ 34wy AT T

The exterior normal vector to the boundary of 2 is denoted n. I'p is the subset
of the boundary of Q corresponding to x = 0 in 2D and 3D. I'y is defined as the
complementary of I'p with respect to the boundary of Q. We discretize (6.1) using
the following vectorial finite elements: (Pg,P2,P2) in 3D and (Ps,Ps) in 2D. The
number of unknowns is 146 x 10% and 847 x 109, with approximately 82 and 34
nonzero elements per row in the 3D and 2D cases, respectively. The heterogeneity is
due to the jumps in E and v. We consider discontinuous piecewise constant values
for E and v: (Ey,vq) = (2 x 1011,0.25), (E2,v2) = (107,0.45), see Figure 6.2.
Results in two (resp. three) dimensions are reported in Table 6.3 (resp. Table 6.4).
The number of outer iterations are 73 and 45 respectively. For these test cases, we
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Fic. 6.2. Variation of the structure coefficients used for the elasticity test case

two-level GenEO three-level GenEO
Ny | CS solve % ofnnz Ay | CS solve innerit. % of nnz As
4148 52.7 22.5 179.3 31 43.0
16 | 3.9 50.3 0.18 9.3 1249 57 17.0
64 | 4.0 53.1 ' 7.2 71.5 34 4.9
256 | 4.8 63.2 6.8 71.2 44 1.4
TABLE 6.3

FElasticity 2D test case, comparison between two- and
three-level GenEO. The percentage of nonzero entries
in A1 is 0.4%.

slightly relaxed the criterion for selecting eigenvectors in coarse spaces, which explains
why the iteration counts increase. However, the same observations as for the diffusion
test cases still hold. The dimension of the level 2 matrix is ny = 50 x 2,048 = 1.02-10°,
while for the level 3 matrix it is ng = 20 x Nz. This means that 50 (resp. 20)
eigenvectors are kept per level 1 (resp. level 2) subdomains. We observe that the
number of iterations of the inner solver increases slowly when increasing the number
of subdomains from 4 to 256 in the 2D case and remains almost constant in the 3D
case. In terms of runtime, the two-level GenEQ is faster than three-level GenEO for
these matrices of medium dimensions.

To show the potential of our method at larger scales, a three-dimensional linear
elasticity problem of size 593 x 10° is now solved on N; = 16,384 processes and
Ny = 256 superdomains. With the two-level method, As is assembled and factorized
in 40.8 seconds. With the three-level method, this step now takes 35.1 seconds, see
Table 6.5. There is a two iterations difference in the iteration count. Not taking
into account the preconditioner setup, the problem is solved in 222.5 seconds in the
two-level case and 90.1 seconds in the multilevel case. In this test case the cost of
applying the two-level preconditioner on a given vector is approximately twice the cost
of applying the multilevel variant. At this regime, it is clear that there are important
gains for the solution phase. At even greater scales, gains for the setup phase are
also expected. Moreover, another interesting fact to note regarding computation time
is that the generalized eigenvalue problems solved concurrently at the first level to
obtain V; actually represents a significant part of the total time of 377.6 seconds (resp.
244.8 seconds) with the two- (resp. three-)level method: 78.2 seconds. This cost can
be reduced by taking a larger number of (smaller) subdomains, with the drawback of
increasing the size of V; and thus A,. This drawback represents a clear bottleneck
for the two-level method but is alleviated by using the three-level method, making it
a good candidate for problems at greater scales.

7. Conclusion. In this paper, we reviewed general properties of overlapping
Schwarz preconditioners and presented a framework for its multilevel extension. We
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two-level GenEO three-level GenEO
Ny | CS solve % ofnnz Ay | CS solve innerit. % of nnz As
4| 28.5 46.9 78.9 296.7 23 43.0
16 | 17.3 354 0.38 24.5 124.5 23 19.0
64 | 15.0 33.2 ’ 154  62.2 21 7.9
256 | 13.6 40.7 10.6  50.7 23 2.5
TABLE 6.4

Elasticity 3D test case, comparison between two- and
three-level GenEQO. The percentage of nonzero entries
n Ar is 3.3%.

two-level GenEO three-level GenEO
Ny | CS solve CS solve inner it.
256 | 40.8 222.5 35.1  90.1 11
TABLE 6.5

Elasticity 3D test case, comparison between two- and three-level GenEQO

generalized the local SPSD splitting presented in [3] to cover a larger set of matrices
leading to more flexibility for building robust coarse spaces. Based on local SPSD
matrices on the first level, we presented how to compute local SPSD matrices for
coarser levels. The multilevel solver based on hierarchical local SPSD matrices is
robust and guarantees a bound on the condition number of the preconditioned matrix
at each level depending on predefined values. Numerical experiments illustrate the
theory and prove the efficiency of the method on challenging problems of large size
arising from heterogeneous linear elasticity and diffusion problems with jumps in the
coeflicients of multiple orders of magnitude.
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