
HAL Id: hal-02151138
https://hal.science/hal-02151138

Submitted on 7 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Teaching the first and only logic control course with
HOME I/O and Scratch 2.0
B. Riera, A. Philippot, D Annebicque

To cite this version:
B. Riera, A. Philippot, D Annebicque. Teaching the first and only logic control course with HOME
I/O and Scratch 2.0. IFAC Advances in Control Education Symposium (ACE), 2019, Philadelphia,
United States. pp.109-114, �10.1016/j.ifacol.2019.08.133�. �hal-02151138�

https://hal.science/hal-02151138
https://hal.archives-ouvertes.fr

Teaching the first and only logic control course with HOME I/O and Scratch 2.0

B. RIERA*, A. PHILIPPOT* and D. ANNEBICQUE*

* CReSTIC, UFR Sciences Exactes et Naturelles, University of Reims Champagne Ardenne,

Moulin de la Housse, BP 1039, 51687 Reims - France (bernard.riera@univ-reims.fr).

Abstract: This paper deals with teaching the first and only logic control course for 2nd year students (after

the high school diploma) in computer science by using HOME I/O, the virtual house for control and STEM

education and Scratch 2.0. HOME I/O is a fruitful collaboration between CReSTIC lab from the

University of Reims Champagne-Ardenne and Real Games, a Portuguese company. In this paper, it is

shown how HOME I/O combined with Scratch 2.0 has been used to present the main concepts of logic

control. From a pedagogical point of view, an original approach based on learning from errors have been

developed. After 2 years of experience, feedback from students and teachers have been very positive.

Keywords: logic control education, learning from errors, serious games.

1. INTRODUCTION

Since 2017, HOME I/O presented during the ACE conference

in 2016 (Riera et al., 2016), has been able to be used together

with Scratch 2 through scratch extensions. Even if Scratch is

seen as a way to initiate young people to programming, in

this paper we present how HOME I/O combined with Scratch

2 has been used to teaching the first and only logic control

course in non-control engineering programs in order to

introduce the main concepts of sequential logic.

The first part of the paper presents the curriculum of the

course named “Control of automated processes” of 24 hours

developed for 16 students in 2nd year of license in

“informatics and data processing” at IUT (“Institute of

Technology”) at Reims Champagne Ardenne University

(URCA). The main objective of this module for students is to

give them basic knowledge and know-how to be able to

develop a logic controller whatever the programming

language. A learning from errors pedagogy has been used to

have students felt and understood the specificities of control

logic. The proposed control problems are simple, like the

programming language used (Scratch) but without formal

specification and methods to implement, the work is not as

simple as it seems.

The second and third parts of the paper deals with HOME I/O

and Scratch 2 extensions. The last part of the paper presents 2

introductory problems used to propose a teaching based on

learning from errors.

The paper concludes with some feed-backs about this

experience and gives some perspectives.

2. “LOGIC CONTROL OF AUTOMATED PROCESSES”

COURSE FOR COMPUTER SCIENCE STUDENT IN IUT

In France, after a high school diploma, Institutes of

Technology at the University (IUT) have the primary

vocation to prepare students in two years for a university

degree in 24 technology fields like computer science.

2.1 IUT computer science department

The 28 departments of computer science of the IUT in France

train students to computing and to team work so as to prepare

them to their integration in working life. It therefore offers a

teaching supervised by available teachers, and professionals

who teach students a practical and concrete experience of the

computing line of work. The part dedicated to computer

science of the teaching is based on 3 axes, each of them

requiring specific qualities and skills:

- Tools and methods for software engineering that deals with

specifications of customer requirements;

- Algorithmic and programming;

- Architecture system and network.

To those teaching objectives, other general academic

disciplines are added for half of the teaching learning time

(Mathematics, Economy, Communication...), that provide a

multidisciplinary aspect to the training. Besides, the

assessment is based on theory but also on practical situations,

via supervised projects and a work placement in a company

enabling to validate the knowledge and skills acquired during

the training. At URCA, second year computer science

students at IUT can follow a 24 hours course named “Logic

control of automated processes”.

2.2 Initiation to “Logic control of automated processes”

The main objective is to give to students, who know nothing

about control systems and Programmable Logic Controller

(PLC), the fundamentals about control of industrial systems,

discrete event systems and logic controllers. Indeed, today

the massive use of digital and information technologies like

Cyber-Physical Systems (i.e. network of interacting elements

with physical input and output instead of as standalone

devices), Industrial Internet of Things (IIoT), Machine to

Machine (M2M) communication, Big Data and Cloud

Computing represent what it is called the fourth industrial

revolution (Industry 4.0). One of the main challenges is to

propose methodologies and tools matching the two worlds:

IT (Information Technology) and OT Operational

Technology). At least, computer science technicians and

engineers will have in the future to combine IT and OT

know-how. The need for multiple hard and soft skills will

become more and more important day after day. Employees

will have to possess greater flexibility to adapt to new roles

and work environments, and get accustomed to continual

interdisciplinary IT and OT learning. It is why the area of

computer science and control education, training and

outreach have to evolve in order to be adapted to the

requirements of the Factory of the Future and more generally

to our society (Lamnabhi-Lagarrigue et al., 2017). This

course has been developed having in mind this objective. The

idea is to enable the students to feel and to understand some

specificities of logic controller program development. In this

course, voluntarily, we do not focus on PLC programming

and the languages of the standard IEC 61131-3 which defines

five programming languages for programmable control

systems: function block diagram (FBD), ladder diagram

(LD), structured text (ST), instruction list (IL; similar to

assembly language), and sequential function chart (SFC).

These languages, except for ST, are quite far from advanced

languages learned and used by computer scientists. It is why

in this course, we focuse on 2 major requirements:

- A first stage to formalize specification before coding

the controller.

- A second stage of implementation, to code from

formal specification a controller, whatever the

programming language and whatever hardware

(ARDUINO, PLC…) or software (soft PLC,

Scratch…).

In the last 12 hours of the course, students should develop a

complete soft PLC in C#. In order to enable computer science

students to feel and understand characteristics of logic control

of dynamic system, a “learning from errors” based approach

has been carried out.

2.3 Learning from errors

Learning from errors is not new. For early educational

reformer John Dewey (1859-1952): "Failure is instructive.

The person who really thinks learns quite as much from his

failures as from his successes". Failure is an opportunity for

students to receive feedback on their strengths as well as their

areas of improvement. When reframed as a good,

constructive, and essential part of learning, failure is a master

teacher. More, making errors is a natural part of the learning

process. A lot of errors do not occur randomly, but originate

from misconceptions (Nesher, 1987). Nevertheless, although

errors should be eradicated, different theoretical approaches

on learning see them as beneficial for learners when used in a

constructive way (Wernecke et al., 2018). This pedagogical

approach presents several advantages (Pappas, 2016):

1. The pedagogy of error promotes the personal development

of learners who take more risks. Errors provide students with

the opportunity to take risks that they would not have taken

in a normal context. In the real world, they would not be as

innovative or creative when approaching a problem, simply

because they would be too afraid of the outcome or the

consequences. Experiencing by making mistakes can help

them in all areas of their lives.

2. The pedagogy of error promotes problem solving and

critical thinking. When help manuals or tutorials are used,

students have the opportunity to develop skills. Rather than

simply following instructions, they must use their problem

solving and thinking skills to come up with a practical and

effective solution on their own.

3. The pedagogy of error reinforces the retention and

understanding of knowledge. When students come to a

conclusion or formulate a solution on their own, they are

more likely to absorb this information and retain it in their

long-term memory. Indeed, if teachers give them the answer

directly, they will remember it for one or two minutes, then

move on to the next module. On the other hand, if they have

to manage to find a solution and do some research to obtain a

correct answer, they will remember it thanks to the

circumstances used to arrive at the solution. The educational

experience itself becomes more memorable.

4. The pedagogy of error removes the limits created by the

fear of failure. By developing courses based on the pedagogy

of error, failure could be always an option for students. Being

in a healthy learning environment where error is not a

blemish, students will not be afraid of failure or the

consequences of their mistakes. Mistakes are seen as full

teaching tools rather than obstacles in the learning process.

Students will be motivated to make efforts and answer

questions, even if they are unsure of the correct answer. Thus,

they can learn from their mistakes and thus rectify the

situation, pushing them to broaden their knowledge base in a

deeper and more active way.

5. Learning from errors allows learners to be more confident

in general in all aspects of their lives. Mistakes provide

students with confidence and self-esteem. They feel

empowered to find their own solutions. With the support

system in place when needed, the fear of error is dispelled.

6. The pedagogy of error helps students to make connections

between ideas and concepts. Giving an incorrect answer is

better than getting a good answer without doing anything.

Indeed, students are more likely to remember "wrong"

choices. Because of this, they are invited to continue to find

the right solution by themselves. This creates a connection in

their minds between the learning experience in itself and the

idea or concept. The experience becomes even more dynamic

and real.

However, learning from errors could be difficult in automatic

control teaching. Hence, the use of real equipment is

mandatory. However, it is not possible to allow students to

make errors in the controller. Indeed, real equipment requires

considerable room and regular maintenance, which has

important costs and requires qualified people; last but not

least, most applications of interest tend to be risky for the

inexperienced students who are trying to making them work.

Software simulation can help a lot in this subject. In fact, real

time computer based simulation can be a risk free, affordable

and easy to replicate training platform. In the specific case of

industrial control and automation education and training,

software simulations recreating industrial plants can replace

physical target systems (Callaghan et al., 2009). This

“synthetic” approach makes possible to get an inexpensive

training environment that does not present any risk of injury

to man or damage to machines. Modern technology, most

derived from computer games, is making them very realistic,

low cost and increasingly easy to use and integrate with

external devices. Video games can be a great tool, really

adapted to control and STEM education (Mayo, 2009)

(Arango et al., 2008) (Riera et al., 2009). It is with this

objective that CReSTIC lab from the University of Reims

Champagne-Ardenne and Real Games, a Portuguese

company, performed in a 3-year R&D project (2011-2014)

bringing a complete “virtual” house, called HOME I/O, into

the classroom for control and STEM education (Riera et al.,

2016). Hence, it is possible to propose healthy learning

environment where error is possible and not a blemish.

In the course proposed to second year computer science

students at IUT, we have used learning from errors at the

beginning. These students knows very well how to code and

programming languages. So it is proposed to the students to

develop in Scratch 2.0, 2 simple programs to control one light

and the garage door of HOME I/O. It is explained that

HOME I/O and scratch 2.0 are used in high schools to learn

computer programming. So, theoretically, second year

computer science students at the university would not have

any problems to design that piece of Scratch 2.0 code.

Before presenting the specifications of the 2 problems and the

results obtained, the following of the paper gives some

information about HOME I/O and its connection with Scratch

2.0.

3. HOME I/O: A VIRTUAL HOUSE FOR CONTROL AND

STEM EDUCATION

HOME I/O (https://realgames.co/home-io/) is the result of

«DOMUS» (2011-2014) a 3-year research and development

project between the CReSTIC lab from the University of

Reims Champagne-Ardennes and Real Games, a Portuguese

company, which was partially founded by the French

Ministry of National Education. HOME I/O is real time FPS

simulation software (figure 1) of a smart house and its

surrounding environment.

Fig. 1. HOME I/O

This software was built to cover a large spread of educational

applications in technology and engineering sciences (Riera et

al., 2016) (Philippot et al., 2017). More than a simulator,

HOME I/O is a learning, experimenting and project

development environment dedicated to the student from

Middle schools, High schools and Universities. HOME I/O

can be easily interfaced with third party utilities, software

(LabView, Matlab Scratch 2.0…) or hardware

(microcontrollers, programmable logic controllers…). In

2017, a native connection to Scratch 2.0, using a web server,

has been implemented in HOME I/O. This update has

extended the pedagogical possibilities of HOME I/O,

particularly for high schools students.

4. HOME I/O WITH SCRATCH 2.0

Scratch is a well-known visual programming environment

(figure 2) that allows users (primarily ages 8 to 16) to learn

computer programming while working on personally

meaningful projects such as animated stories and games. A

key design goal of Scratch is to support self-directed learning

through tinkering and collaboration with peers (Maloney et

al., 2010). The Scratch project began in 2003, and the Scratch

software and first web site were publicly launched in 2007.

Scratch is free, available in nearly 70 languages, and more

than 30 million users all over the world. In addition, Scratch

software is often redistributed by school systems and

educational organizations.

Scratch allows children to learn coding concepts and create

interactive projects without needing to learn a text-based

programming language. This means they won’t be slowed

down by their keyboard skills or the ability to remember

complex code. Scratch is dynamic, it allows to modify the

code of the program in progress execution. Multimedia

oriented for teaching to the computer world children, Scratch

treats with great ease the basic concepts of programming such

as loops, tests, variable assignments, and especially the

manipulation of objects, such as sounds and videos. Scratch

is visual, all the code is directly written in the language

kindergarten in the form of colored bricks (for example

yellow controls, variables in red, movements in blue) placed

inside scripts. Scratch is free and allows the teacher to spread

his pedagogy through an almost playful interactivity of the

objects manipulated by these software bricks. Key features of

Scratch are liveness and tinkerability, making execution

visible, no errors messages, making data concrete and

minimizing the command set (Maloney et al., 2010).

Fig. 2. Scratch 2.0 editor

Scratch uses a broadcast mechanism to support inter-scripts

communication and synchronization. Any script can

broadcast a message (an arbitrary string). A broadcast

triggers all scripts in all scripts that begin with a matching

“when I receive <msg>” trigger block (Maloney et al., 2010).

Scratch lacks the explicit concurrency control mechanisms

often found in other programming languages, such as

semaphores, locks, or monitors. Instead, Scratch builds

concurrency control into its threading model in a way that

avoids most race conditions, so that users do not need to

think about these issues. This is done by constraining where

thread switches can occur. In the Scratch model, a thread

switch can occur in only two places: (1) on a command that

waits explicitly (e.g., “wait 1 second”) or (2) at the end of a

loop. A thread switch cannot occur in the middle of a

sequence of non-waiting statements, or between the test of an

“if” command and its body. Although the Scratch threading

model avoids most race conditions, it does not eliminate all

concurrency issues (Maloney et al., 2010).

Scratch can either be used online in a web browser, or

downloaded and used offline. Scratch 2.0 can be extended to

control external devices (e.g. robotics kits, musical

instruments) and to access data from external sensor

hardware (e.g. sensor boards). A Scratch 2.0 extension

extends Scratch with a collection of command and reporter

blocks that can be used to interact with a particular device.

When an extension is enabled, its blocks appear in the "More

Blocks" palette. Due to browser security restrictions, Scratch

2.0 cannot interact with hardware devices directly. Instead,

hardware extensions come with a helper app, a separate

application that the user must install and run on their

computer. Scratch 2.0, only with the offline editor, can

communicate with a helper app via HTTP requests, and the

helper app talks to the hardware. Scratch 2.0 sends

commands to the helper app and the helper app sends sensor

values and status information back to Scratch 2.0 via HTTP

GET requests. Since the protocol is standard HTTP, any

browser can be used to test and debug helper apps. Scratch

2.0 retrieve sensor values and status information from the

helper app by sending a poll command. In response to a poll

command, the helper app returns a list of (sensor name,

value) pairs, one pair per line. Scratch 2.0 sends poll

commands roughly 30 times per second. HOME I/O can be

used together with Scratch 2.0 through scratch extensions.

Data exchange between Scratch 2.0 and HOME I/O is done

through a built-in web server in HOME I/O which is listening

on port 9797. User may disable the web server or define a

different listening port. A Scratch 2.0 template file includes

the necessary HOME I/O extension blocks. After opening

this file in Scratch, more blocks are available. In order to use

HOME I/O devices in Scratch 2.0, they must be set to

external mode first. A successful connection between Scratch

and HOME I/O is indicated by a green light next to the

HOME I/O (en) extension (cf. figure 3).

Fig. 3. HOME I/O blocks in Scratch 2 offline

For experts in logic controllers, this approach using helper

app via HTTP requests, even if it is simple from a user point

of view, raises several questions from a theoretical and

pedagogical point of views. First, a sensor can change

anytime, and a program is sequential. So, that can involve

bad calculation and it is why an image memory is used in a

PLC in order to work with constant values of I/O during a

PLC scan time. In addition, the way in which communication

is varied out between helper app and Scratch can be a source

of problem and can involve a Scratch crash if variables are

exchanged all the time (figure 4).

Fig. 4. Example of Scratch 2 crash

All the HOME I/O devices can be controlled with Scratch 2.0

blocks and all the data coming from HOME I/O sensors can

be used in Scratch 2.0 scripts in a very easy way. For

instance, the block (figure 5) enables to turn on the light

number 2 in room D.

Fig. 5. Example of HOME I/O block in Scratch 2.0 offline

Hence, it is not possible to design a robust and efficient

controller, if the behavior of the control part and the operative

part is not well known. It is quite strange from a pedagogical

point of view that these problems are not at all developed in

the bibliography even if Scratch 2.0 extensions are popular to

communicate with external hardware and software. It is why

HOME I/O with Scratch 2.0 can be very useful to understand

and learn logic control system.

5. LEARNING FROM ERRORS TO START WITH LOGIC

CONTROL

Two simple control problems have been proposed to second

year computer science students at IUT: light and garage door

(figure 6).

1st Problem: one click on the remote control button 1 has to

switch on the garage light if the light is off and to switch off

is the light is on. Initially, the light is off.

Of course, for students on computer science, to understand

and to use Scratch 2.0 is very easy. In addition, all of them

are gamers, and the use of HOME I/O is natural. The main

interests of this first simple example is to have the students

understood different aspects of sequential systems:

- concept of Inputs (sensors) and Outputs (actuators) of a

controller;

- gap between textual specifications and programming a

controller;

- “forever” loop is necessary (to mimic the PLC scan cycle);

- differences between events and signals (rising edge or

falling edge) and the necessity to use “repeat until” block

instead of “if” in Scratch 2.0.

Fig. 6. 2 simple control problems with HOME I/O

This year, only 2 of the students performed to do a correct

controller in less than 30 minutes (figure 7). With this

example, students learned a lot from their errors and can by

themselves understood fundamentals of logic control without

talking about PLC. One can notice that none of them has

proposed a solution based on communication messages

between several scripts.

Fig. 7. Scratch 2.0 script for the light control

The second problem concerns the garage door and is more

complex.

2nd problem: pressing button 1 on the remote control opens

the garage door, after a delay of 5 seconds in the open

position, the door closes. When closing, press button 1 again

or, if the infrared sensor at the garage door detects a passage,

the door opens again. This cycle is repeated as long as the

garage door is not closed.

The main interests of this second problem is to have the

students understood from their errors that:

- need of methods to formalize specification, like GRAFCET

(IEC 60848, 2002);

- gap between formal specifications and programming and

the difficulty to validate a controller.

This year, only 1 student has proposed a working “empiric”

solution in 45 minutes.

After this introduction, students because of the encountered

difficulties, are really interested in the content of the course.

The second part of the course deals with the specification

language GRAFCET (IEC 60848, 2002) used a lot in France.

This standard is mainly for all people (design engineers,

realization engineers, maintenance engineers...) who need to

specify the behavior of a system (control-command of

automatic machine, safety component...). This specification

language should also serve as a communication means

between designers and users of automated systems. The

implementation of a specification described by GRAFCET

isn’t included in the scope of IEC 60848 standard.

GRAFCET (the acronym of GRAphe Fonctionnel de

Commande Etape/Transition or, in English, Step Transition

Function Charts) is a graphical method for specifying

industrial automation. Simple syntax, graphical

representation, powerful and concise commands these are

what make GRAFCET easy to learn and use. A good

presentation of the main features of GRAFCET standard can

be found in (David, 1995). The specification language

described in the IEC 60848 standard differs from the SFC

(Sequential Function Chart) proposed by the IEC 61131-3

standard (IEC, 2003), even if both are often named SFC in

English and if models in these two languages may look

similar; the differences stand both in syntax and semantics

(Provost et al., 2011). The basic notions of GRAFCET are

only presented in the course: terms and definitions, graphical

representation of the elements (steps, transitions and links),

graphical representation of sequential basic structures (cycle

of single sequence, selection of sequences, activation of

parallel sequences and synchronization of sequences), general

principles (syntax and evolution rules). We particularly insist

on transient evolution and exclusive activation of a selected

sequence which is not guaranteed from the structure.

The third part of the course deals with the implementation.

First, we discuss about the different ways to implement a

Grafcet with Scratch 2.0. A method based on “messages”, not

presented in this paper, is proposed to convert a Grafcet in

Scratch Scripts. This method is applied to the garage door

problem (figure 8). A second solution, based on the

calculation of transitions, step variables and actions is

proposed with constant I/O values during a cycle time. In

fact, students implement it in Scratch 2.0 and program the

behavior of a PLC: scan inputs, execute program logic and

update outputs (figure 9). This solution can be used whatever

the controller hardware or software.

In the last part of the course, which is not described in this

paper, students in 12 hours develop a full controller in C# for

HOME I/O, managing lights, garage door and entrance gate

after proposing a GRAFCET specification.

5. CONCLUSION

In this paper, it has been shown how a first and only course in

logic control for 2nd year computer science at IUT is

performed by using HOME I/O and Scratch 2.0. A learning

from errors pedagogy has been used to have students felt and

understood the specificities of control logic, without dealing

with PLC. The proposed control problems are simple, like the

programming language (Scratch 2.0), but without formal

specification (GRAFCET) and methods to implement, the

work is not so easy at all (Pichard et al., 2018). The use of

HOME I/O as a pedagogic digital twin is really adapted to a

learning from errors pedagogy. This course has been a

success for 2 years, students are interested and motivated as

proved by questionnaires that will be presented during the

IFAC ACE 2019 conference. However, teachers have to

show to students that controller design based only on errors

corrections is not the right way to work, at all.

ACKNOWLEDGMENT

Parts of the work presented in this paper are carried out in the

context of the HUMANISM No ANR-17-CE10-0009

research program, funded by the French ANR “Agence

Nationale de la Recherche”.

X4

X1

X4

X0

Open garage door1

garage door opened

2

5s/X2

Close garage door3

garage door opened

Close garage door4

(remote button 1 or ir)
and garage door closed

garage door closed

0

 remote button 1

Fig. 8. Grafcet specification and Scratch 2.0 script (1st

solution) for the garage door

Fig. 9. Scratch 2.0 script (2nd solution) for the garage door

REFERENCES

Arango, F, Aziz, E.-S., Esche, S.K., Chassapis, C. (2008). A

review of applications of computer games in education

and training. Frontiers in Edu. Conf.. Pp. T4A.1-4A.6.

Callaghan, M. J. McCusker, K. Losada, J. L. Harkin, J. G.

and Wilson, S. (2009) “Teaching Engineering Education

Using Virtual Worlds and Virtual Learning

Environments,” in 2009 International Conference on

Advances in Computing, Control, and

Telecommunication Technologies, 2009, pp. 295–299.

David, R. “Grafcet: a powerful tool for specification of logic

controllers,” IEEE Transaction on Control Systems

Technology, vol. 3, no. 3, pp. 253–268, 1995.

Lamnabhi-Lagarrigue, F., Annaswamy, A., Engell, S.,

Isaksson, A., Khargonekar, P., Murray, R., Nijmeijer, H.,

Samad, T., Tilbury, D., Van den Hof, P. (2017) “Systems

& Control for the future of humanity, research agenda:

Current and future roles, impact and grand challenges”.

Annual Reviews in Control 43 (2017) 1-64.

Maloney, J., Resnick, M., Rusk, N., Silverman, B. and

Eastmond, E. (2010). “The scratch programming

language and environment”. Trans. Comput.

Educ.,10:16:1–16:15, November 2010.

Mayo, M. J. (2009).Video Games: A Route to Large-Scale

STEM Education? Science. 2009 Jan 2; 323(5910):79-

82. doi: 10.1126/science.1166900.

Nesher, P. (1987). Towards an Instructional Theory: The

Role of Student`s Misconceptions. For the Learning of

Mathematics 7,3: pp 33-40, Publishing Association

Montreal, Quebec, Canada.

Philippot, A. Riera, B., Koza, M., Pichard, R. Saddem, R.,

Gellot F., Annebicque, D. and Emprin, F. HOME I/O

and FACTORY I/O - 2 Pieces of innovative PO

simulation software for automation education. The 27th

European Association for Education in Electrical and

Information Engineering Annual Conference (EAEEIE

2017), Grenoble, France, June 2017.

Pichard, R., Philippot, A., Saddem, R., Riera, B. Safety of

Manufacturing Systems Controllers by Logical

Constraints With Safety Filter. IEEE Transactions on

Control Systems Technology:1 - 9, 2018.

10.1109/TCST.2018.2827329.

Riera, B. Marangé, P., Gellot, F., Nocent, O., Magalhães, A.,

Vigário, B. (2009). Complementary usage of real and

virtual manufacturing systems for safe PLC training. 8th

IFAC Symposium on Advances in Control Education

(ACE09). Kumamoto, Japon, October.

Riera, B., Emprin, E. Annebicque, D., Colas, C., Vigario, B.

(2016). “HOME I/O: a virtual house for control and

STEM education from middle schools to Universities”.

11th IFAC Symposium on Advances in Control

Education ACE 2016, Bratislava (Slovakia), 1-3 June

2016

IEC INTERNATIONAL STANDARD 61131-3 (2003).

Second edition 2003-01, Programmable controllers –

Part 3: Programming languages. Reference number

CEI/IEC 61131-3: 2003.

IEC INTERNATIONAL STANDARD 60848 (2002). Second

edition 2002-02, GRAFCET specification language for

sequential function charts. Reference number CEI/IEC

60848: 2002.

Pappas, C. (2016). Les 7 avantages de la pédagogie de

l'erreur en eLearning,

https://elearningindustry.fr/pedagogie-de-lerreur-

avantages

Provost, J., Roussel, J.-M., Faure, J.-M. (2011). A formal

semantics for Grafcet specifications. 7th IEEE

Conference on Automation Science and Engineering

(IEEE CASE 2011), Aug 2011, Trieste, Italy. pp.488-

494, 2011.

Wernecke, U., Schütte, K., Schwanewedel, J., Harms, U.

“Enhancing Conceptual Knowledge of Energy in

Biology with Incorrect Representations”. CBE Life Sci

Educ. 2018 Spring;17(1). pii: ar5. doi: 10.1187/cbe.17-

07-0133.

