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Modeling policyholders lapse behaviors is important to a life insurer since lapses aect pricing, reserving, protability, liquidity, risk management, as well as the solvency of the insurer. Lapse risk is indeed the most signicant life underwriting risk according to European Insurance and Occupational Pensions Authority's Quantitative Impact Study QIS5. In this paper, we introduce two advanced machine learning algorithms for lapse modeling. Then we evaluate the performance of dierent algorithms by means of classical statistical accuracy and protability measure. Moreover, we adopt an innovative point of view on the lapse prediction problem that comes from churn management. We transform the classication problem into a regression question and then perform optimization, which is new for lapse risk management. We apply dierent algorithms to a large real-world insurance dataset. Our results show that XGBoost and SVM outperform CART and logistic regression, especially in terms of the economic validation metric. The optimization after transformation brings out signicant and consistent increases in economic gains.

Introduction

Lapse risk is the most signicant risk associated with life insurance when compared with longevity risk, expenses risk, and catastrophe risk. Policyholders of life insurance may choose to surrender their policies at any time for cash values, or opt to stop paying premiums and leave policies to become invalid eventually. Lapses have signicant impacts on the protability, or even on the solvency, of a life insurer as many studies demonstrate. They may reduce expected prots [START_REF] Hwang | Dierentiating Surrender Propensity from Lapse Propensity across Life Insurance Products[END_REF], cause underwriting expenses unrecovered [START_REF] Tsai | The Distributions of Policy Reserves Considering the Policy-Year Structures of Surrender Rates and Expense Ratios[END_REF][START_REF] Pinquet | Commitment and Lapse Behavior in Long-Term Insurance: A Case Study[END_REF], impair the eectiveness of an insurer's asset-liability management (Kim, 2005c;[START_REF] Eling | Research on lapse in life insurance: what has been done and what needs to be done[END_REF] and bring in liquidity threats as experienced by US life insurers in the late 1980s.

When lapses vary with interest rates as suggested by [START_REF] Dar | Interest Rates, the Emergency Fund Hypothesis and Saving through Endowment Policies: Some Empirical Evidence for the U.K[END_REF], [START_REF] Kuo | An Empirical Study on the Lapse Rate: The Cointegration Approach[END_REF], Kim (2005a), Kim (2005b), and [START_REF] Cox | Annuity Lapse Modeling: Tobit or not Tobit ? Society of Actuaries[END_REF], they become even more detrimental to life insurers [START_REF] Tsai | The Distributions of Policy Reserves Considering the Policy-Year Structures of Surrender Rates and Expense Ratios[END_REF]. Many papers argue that the option to surrender a policy for the cash value might account for a large proportion of the policy value, e.g., [START_REF] Albizzati | Interest Rate Risk Management and Valuation of the Surrender Option in Life Insurance Policies[END_REF], [START_REF] Grosen | Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies[END_REF], [START_REF] Bacinello | Pricing Guaranteed Life Insurance Participating Policies with Annual Premiums and Surrender Option[END_REF], [START_REF] Bauer | Risk-neutral valuation of participating life insurance contracts[END_REF], [START_REF] Gatzert | Assessing the Risk Potential of Premium Payment Options in Participating Life Insurance Contracts[END_REF], and [START_REF] Consiglio | Pricing the Option to Surrender in Incomplete Markets[END_REF]. The above reasoning and nding may be the reasons why the fth Quantitative Impact Study (QIS5), conducted by the European Insurance and Occupational Pensions Authority (EIOPA) in 2011 regarding the implementation of Solvency II, reports that lapse risk accounts for about 50% of the life underwriting risks.

The signicance of lapse risk draws attentions of scholars to study what causes policyholders to lapse their policies. We may classify the literature into being macro-or micro-oriented. Macrooriented papers (e.g., [START_REF] Dar | Interest Rates, the Emergency Fund Hypothesis and Saving through Endowment Policies: Some Empirical Evidence for the U.K[END_REF][START_REF] Kuo | An Empirical Study on the Lapse Rate: The Cointegration Approach[END_REF]Kim, 2005a;Kim, 2005b;[START_REF] Cox | Annuity Lapse Modeling: Tobit or not Tobit ? Society of Actuaries[END_REF] focus on how lapse rates (the proportion of lapsed policies to the total number of sampled policies within a period of time) are aected by environmental variables such as interest rates, unemployment rates, gross domestic product, and returns in capital markets, as well as by company characteristics like size and organizational form.

Micro-oriented papers secure data from insurers on individual policies to investigate the determinants of the lapse propensities/tendencies. The identied determinants include the characteristics of policyholders and the features of life insurance products/policies (see [START_REF] Renshaw | Statistical analysis of life assurance lapses[END_REF][START_REF] Kagraoka | Modeling Insurance Surrenders by the Negative Binomial Model[END_REF][START_REF] Cerchiara | Generalized Linear Models in Life Insurance: Decrements and Risk Factor under Solvency II[END_REF][START_REF] Milhaud | Surrender triggers in life insurance: what main features aect the surrender behavior in a classical economic context[END_REF][START_REF] Pinquet | Commitment and Lapse Behavior in Long-Term Insurance: A Case Study[END_REF]Eling and Kiesenbauer, 2014, among others) . [START_REF] Eling | Research on lapse in life insurance: what has been done and what needs to be done[END_REF] and [START_REF] Campbell | Modeling of Policyholder Behavior for Life Insurance and Annuity Products: A Survey and Literature Review[END_REF] provide extensive reviews of the literature on lapses 1 .

This paper extends the micro-oriented line of literature in two ways. Firstly, we introduce machine learning algorithms including Extreme Gradient Boosting (XGBoost) and Support Vector Machine (SVM) to lapse behavior modeling. These two advanced algorithms have their merits over other approaches used in the literature such as generalized linear models (i.e., binomial and Poisson models and logistic regression), Classication and Regression Tree (CART) analysis, and the proportional hazards model. Secondly, we adopt economic measures in addition to statistical accuracy in evaluating the performance of dierent algorithms. Such an adoption better demonstrates how dierent algorithms may benet the insurer.

Thirdly, we transform the optimization objective from classication accuracy to economic gains to demonstrate the benet of integrating modeling with prot maximization. Such an integration 1 There are some papers on the subject of modeling early terminations that do not t our macro-micro classication on empirical, explanatory studies. They impose specic assumptions on the transition probabilities to early terminations [START_REF] Buchardt | Cash ows and policyholder behaviour in the semi-Markov life insurance setup[END_REF], the early terminations' intensity [START_REF] Barsotti | Lapse risk in life insurance: Correlation and contagion eects among policyholders' behaviors[END_REF], or the early termination rates [START_REF] Loisel | From deterministic to stochastic surrender risk models: Impact of correlation crises on economic capital[END_REF][START_REF] Milhaud | Exogenous and Endogenous Risk Factors Management to Predict Surrender Behaviours[END_REF]. can increase life insurers' protability, improve insurers' customer management through taking preventive measures to reduce lapses, and retain more of the so-called Contractual Service Margin (CSM) in International Financial Reporting Standard (IFRS) 17. It also links us to the literature on churn management and its impact on the customer lifetime value (e.g., [START_REF] Neslin | Defection Detection: Measuring and Understanding the Predictive Accuracy of Customer Churn Models[END_REF][START_REF] Lemmens | Bagging and Boosting Classication Trees to Predict Churn[END_REF][START_REF] Lemmens | Managing Churn to Maximize Prots[END_REF].

The results from applying dierent algorithms to a large dataset consisting of more than six hundred thousand life insurance policies show that XGBoost and SVM outperform CART and logistic regression with respect to statistic accuracy. The results further show that XGBoost is the most robust across training samples.

The advantages of XGBoost and SVM are more apparent with respect to retention gains. The retention gain takes into account the costs of providing incentives to policyholders to reduce their propensities towards lapses, the benets of retaining policies, and the costs of false alarms. XGBoost and SVM generate much higher retention gains than logistic regression and CART do.

Last but not least, we conrm that economic gains can be further enhanced when the optimization is done on a function linked to the gains rather than on statistic accuracies. The resulted retention gains are 126% of those from applying XGBoost to pursue classication accuracies, and the increase in retention gains remains to be signicant under an alternative policyholder retention scheme. An insurer, therefore, should apply robust machine learning algorithms like XGBoost to its economic objective to achieve optimal lapse management.

The organization of the paper is as follows. Section 2 contains explanations about XGBoost and SVM, followed by brief descriptions on CART and logistic regression. In Section 3 we delineate two performance metrics to be used. One is the commonly seen accuracy, i.e., a statistical validation metric, while the other one is an economic metric considering the expected prots and costs of lapse management. We describe the data obtained from a medium-sized life insurer in Section 4.

Section 5 displays the comparison results across the four algorithms in terms of the statistical and economic metrics. We explain how to integrate algorithms with the prot maximization goal at the beginning of Section 6, and then compare the results from optimizing prot objectives with those from optimization statistic accuracy. Section 7 summarizes and concludes the paper.

Binary classication algorithms

The problem that we want to tackle is detecting whether a policyholder will lapse her/his policy or not, i.e., y i t0, 1u Popular predictive models include logistic regression and CART models. More advanced machine learning models that we introduce in this paper are SVM and XGBoost.

XGBoost

XGBoost is an extension of the gradient boosting introduced by [START_REF] Friedman | Greedy Function Approximation: A Gradient Boosting Machine[END_REF]. The gradient boosting tree is an ensemble method, i.e., multiple weak learners h are combined to become a strong learner F in order to achieve a better predictive performance. The following descriptions are summarized from [START_REF] Friedman | Greedy Function Approximation: A Gradient Boosting Machine[END_REF]).

Given a training sample ty i , x i u N 1 where x i R n and y i t0, 1u, one would like to nd a strong learner F ¦ pxq which minimizes a loss function Ψ py, F pxqq:

F ¦ pxq arg min F pxq E y,x Ψ py, F pxqq $ . (2.1)
The strong learner is an additive expansion of weak learners h ¡ x, tR lm u L 1 , ȳlm © that will be a L-terminal node regression tree in our case:

F M pxq M m0 β m h ¡ x, tR lm u L 1 , ȳlm © M m0 L ļ1 β m ȳlm 1 px R lm q , (2.2)
where tR lm u L 1 and ȳlm are the L-disjoint regions and the corresponding split points determined by the mth regression tree, respectively, and beta m are the expansion coecients. This strong learner is estimated through a stage-wise method that begins with an initial guess F 0 pxq. Then the pseudo-residuals for m 1, 2, . . . , M are computed:

ỹim ¡ δΨ py i , F px i qq δF px i q & F pxqF m¡1 pxq . (2.
3)

The regions tR lm u L 1 are obtained by estimating the mth L-terminal node regression tree on the sample tỹ i , x i u N 1 . The product β m ȳlm γ lm is set to optimize the loss function Ψ:

γ lm arg min γ xi R lm Ψ py i , F m¡1 px i q γq.
(2.4)

At the nal stage, the strong learner is updated,

F m pxq F m¡1 pxq ν.γ lm 1 px R lm q , (2.5)
where ν p0, 1s is a shrinkage parameter that controls how much information is used from the new tree.

The gradient boosting tree method may be summarized as the following algorithm extracted from [START_REF] Friedman | Greedy Function Approximation: A Gradient Boosting Machine[END_REF].

Inspired by previous general works on statistical learning, many extensions to the gradient boosting tree method have been developed. The stochastic gradient boosting technique [START_REF] Friedman | Greedy Function Approximation: A Gradient Boosting Machine[END_REF] is based on the same principle as the bagging technique [START_REF] Breiman | Bagging predictors[END_REF]. It introduces randomness in the observation: given a random permutation π of the integers t1, . . . , N u and Ñ N , the new weak learner tree is estimated on the random subsample 2 ỹπpiqm , x πpiq @ Ñ 1

. Another way to inject randomness that has been popularized by [START_REF] Breiman | Bagging predictors[END_REF] is randomly selecting a subspace of the explanatory variables. More specically, given a random permutation π ¦ of integers t1, . . . , nu and ñ n, the new weak learner tree is estimated on tỹ im , P ¦ pxq i u N 1 in which P ¦ pxq 2

x π ¦ p1q , . . . , x π ¦ pñq @ .

To avoid overtting, some extensions follow the general idea of the ridge regression [START_REF] Hoerl | Ridge Regression: Biased Estimation for Nonorthogonal Problems[END_REF] and lasso regression [START_REF] Tibshirani | Regression Shrinkage and Selection Via the Lasso[END_REF] and adopt the penalized optimization O py, F pxqq Ψ py, F pxqq ΩpF q.

(2.6) Among all the boosting packages that have been developed, the XGBoost system (Chen and

Guestrin, 2016) has become the most popular due to its exibility and computing performances.

It has also become the most popular machine learning algorithm in data science challenges such as Kaggle for structured data. We list the main parameters that need to be tuned, using the package's terminology and the notation of [START_REF] Friedman | Greedy Function Approximation: A Gradient Boosting Machine[END_REF], as follows.

1. nrounds is the number of trees to grow: M ; 2. eta is the shrinkage parameter: M ν;

3. gamma is the regularization parameter which is used in Ω;

4. max_depth is the number of nodes of a tree: L;

5. min_child_weight is the minimal number of observations in a node and min l,m °N i1 1px i R lm q should be higher than this value; 6. subsample is the relative size of the random subsample used in the case of a stochastic gradient boosting: Ñ {N;

7. colsample_bytree is the relative size of the random subspace of explanatory variables selected at each new tree: ñ{n.

Since we are interested in a binary classication in this paper, we use the logistic loss function:

Ψpy, ŷq N i1 y i ln ¡ 1 e ¡ŷ i © p1 ¡ y i q ln 1 e ¡y i ¨% , (2.7)
and the error function as the metric for cross-validation:

errorpy, ŷq °N i1 1 py i $ round pŷ i qq N , (2.8) where round pŷ i q 5 1 if ŷi ¥ 0.5, 0 if ŷi 0.5.

The tuning method that we adopt consists of two nested cross-validations. We rst perform a grid search on the parameters except nrounds with a 2-folds cross-validation (the grid of values is reported in Appendix 1). Then we determine the best nrounds through a 5-folds cross-validation up to 200 for every possible set of parameters in the grid.

SVM

The theory of SVM was introduced in the 1990's by [START_REF] Boser | A Training Algorithm for Optimal Margin Classiers[END_REF] and [START_REF] Cortes | Support-vector networks[END_REF]. It has become a popular algorithm for classication problems and for churn prediction in particular (e.g., [START_REF] Zhao | Customer Churn Prediction Using Improved One-Class Support Vector Machine. Advanced Data Mining and Applications[END_REF][START_REF] Xia | Model of Customer Churn Prediction on Support Vector Machine[END_REF] Its predictive power is rather good compared to other classication algorithms (e.g., [START_REF] Vafeiadis | A comparison of machine learning techniques for customer churn prediction[END_REF][START_REF] Wainer | Comparison of 14 dierent families of classication algorithms on 115 binary datasets[END_REF].

The SVM algorithm can be described by geometrical terms. The main idea is to nd a hyperplane that separates the observation space into two homogeneous subspaces that is as far apart from each other as possible. This solution is dened as the maximum-margin hyper-plane. To deal with misclassications, a soft margin (i.e., a penalty determined by the user) is imposed upton the SVM.

Another way to deal with classication errors is to project the data to a higher-dimensional space through a kernel function. A more complete geometrical description of SVM can be found in Noble (2006).

In the following, we adopt a formula-based description of the SVM by using the notation of [START_REF] Hsu | A Practical Guide to Support Vector Classication[END_REF]. Given a training sample ty i , x i u N 1 where x i R n and y i t 1, ¡1u, the SVM algorithm is the solution of the following optimization problem:

min ω,b,ξ 1 2 ω t ω C N i1 ξ i , (2.9) 
with the constraints

y i ω t φpx i q b ¨¥ 1 ¡ ξ i , ξ i ¥ 0.
(2.10)

The separating hyperplane is determined by the orthogonal vector ω and constant b. The soft margin penalty cost is denoted as C. The data may be projected to a higher dimension space by the function φ, and the underlying kernel function is dened by K px i , x j q φpx i q t φpx j q.

In our case we choose to consider the radial basis function kernel (also called RBF kernel) that is the most commonly used in practice and determined by K px i , x j q exp ¡γ x i ¡ x j 2 ¨, (2.11) with γ ¡ 0 being the kernel parameter.

Then we use the e1071 R package [START_REF] Meyer | Misc Functions of Department of Statistics, Probability, Theory Group (Formely : E1071)[END_REF] to implement the SVM algorithm. To tune the SVM parameters pC, γq, we perform a grid search on a 2-folds cross-validation and adopt the misclassication error function as the validation metric. The grid of values is reported in Appendix 2.

CART

CART was rst introduced by [START_REF] Breiman | Classication and Regression Trees[END_REF]. The underlying idea is straight forward:

dening a class by following a list of decision rules on the explanatory variables. To determine these rules, the data space is iteratively separated by binary split into two disjointed subspaces. At each step or node of this top-down construction, the explanatory variable and the dividing point are chosen to minimize the Gini impurity of the node.

More specically, given a node l of N l observations of response y i t0, 1u with i l, the proportion of observations in the node is dened by p l 1 N l °il y i . Then use an algorithm to partition the parent node into two nodes l L and l R by maximizing

I G plq ¡ rI G pl L q ¡ I G pl R qs , (2.12)
where I G is the Gini impurity of the node and computed by

I G plq N l p l p1 ¡ p l q. (2.13)
This construction is applied up to obtaining a node for every observation point. The tree obtained is thus designated as the saturated model. Although tting the response on the training sample perfectly, it generally leads to low predictive performance when applied to new samples.

Hence the tree needs to be pruned, i.e., the number of nal nodes needs to be reduced to increase its predictive power.

Many criteria can be used to prune the tree, e.g., the minimum number of observations in a nal node. We choose L, the number of terminal nodes, that minimizes the misclassication error: errorpy, ŷq °N i1 1 py i $ ŷi q N .

(2.14)

L is estimated by a 10-folds cross-validation methodology. We use the rpart R package [START_REF] Therneau | Recursive partitioning and regression trees[END_REF] to implement CART.

Logistic Regression

The logistic regression is a special case of the generalized linear models [START_REF] Nelder | Generalized Linear Models[END_REF] obtained with the Bernoulli distribution. The goal is to model the probability of a binary event such as the lapse probability p i of the policyholder i. Given a training sample ty i , x i u N 1 where

x i R n and y i t0, 1u, the regression model is specied as:

ln p i 1 ¡ p i β 0 x t i β.
(2.15)

The parameters pβ 0 , βq R ¢ R n can be estimated by the maximum-likelihood method:

L N ¹ i1 £ e x T i β 1 e x T i β y i ¢ 1 1 e x T i β 1¡y i . (2.16)
When applying the estimated logistic regression model to a classication problem, it doesn't directly lead to labeled responses but to estimated probabilities. To determine the forecasted class, we chose the common threshold of 0.5, i.e., ŷ¦ i 5

1 if ŷi ¥ 0.5, 0 if ŷi 0.5.
(2.17)

Validation metrics

For each policy, the observed lapse y i and the forecasted lapse ŷi are binary variables: py i , ŷi q t0, 1u 2 . The four dierent outputs of a binary classication model are named true positive p1, 1q, true negative p0, 0q, false positive p0, 1q and false negative p1, 0q while the number of each case is usually laid out in the so-called confusion matrix. Denote N pj, kq as the coecients of the confusion matrix in which j t0, 1u stands for the observed lapse indicator and k t0, 1u the predicted lapse indicator. Given a set of response variables ty i , ŷi u N 1 , we estimate N pj, kq as:

N pj, kq N i1
1 py i , ŷi kq .

(3.1)

Statistical metric

Based on the confusion matrix, dierent metrics can be developed. We rst focus on the accuracy metric, the ratio of correctly classied predictions over the total number of predictions:

accuracypy, ŷq N p1, 1q N p0, 0q N 1 ¡ errorpy, ŷq.

(3.2)

Economic metric

Although we adopt mathematic algorithms to predict lapses, the risk is an economic issue after all.

We thus would like to analyze and compare the classication algorithms by an economic metric.

More specically, we will estimate the impacts of dierent classication results on the expected prots from policies, also called customer lifetime values. In order to do so, we plan to adopt an economic model inspired by [START_REF] Neslin | Defection Detection: Measuring and Understanding the Predictive Accuracy of Customer Churn Models[END_REF] and [START_REF] Gupta | Modeling Customer Lifetime Value[END_REF].

Suppose that policy i stays Θ i years in the portfolio pΘ i Nq. The protability ratio at time t can be represented by p i,t and the face amount by F i,t . The lifetime value for policy i is computed as:

CLV i Θ i ţ0 p i,t F i,t p1 d t q t , , (3.3) 
where d t is the discount rate.

Assuming a deterministic time horizon T N, we ddene the pT 1q-dimensional real vectors p i , F i , r i and d for protability ratios, face amounts, retention probabilities, and interest rates respectively. Given the four vectors, the customer lifetime value is

CLV i pp i , F i , r i , dq T ţ0 p i,t F i,t r i,t p1 d t q t , , (3.4) 
The lapse management strategy is modelled by the oer of an incentive δ i R T 1 to policyholder i who is contacted with a cost c. The incentive is accepted with the probability γ i , and the acceptance will change the vector of the probabilities of staying in the portfolio from r i to r ¦ i R T 1 . We further make the following simplifying assumptions:

1. p i are the same for all policies and denoted as p hereafter;

2. δ i are the same for all contacted policies and denoted as δ hereafter;

3. p i,t , F i,t and d t remain constant across time;

4. r i equals to r lapse or r stay p1, 1, . . . , 1q and r lapse is estimated on the dataset and will be given in Section 5.2;

5. if r i r stay , the incentive is accepted with probability γ i 1 and r ¦ i r stay ; 6. if r i r lapse , the incentive is accepted with probability γ i γ and r ¦ i r stay . 2 Policyholders who reject the oers (probability 1 ¡ γ) will lapse their policies, i.e. r ¦ i r lapse .

The application of a segmentation algorithm to the tested samples produces two confusion matrices: one with respect to number of policies while the other in term of face amount. For the latter matrix, we denote F pj, kq as the coecients of the matrix with regard to face amount, where j stands for the indicator of the policyholder's lapse in real life, k the indicator by the algorithm's prediction, and pj, kq t0, 1u 2 . More specically,

F pj, kq N i1 F i .1 py i , ŷi kq , (3.5)
while N is dened in Equation 3.1.

2 These simplications assume that the protability ratio, the incentive, and the probability to accept the incentive is the same across policyholders, respectively. Upon the availability of data, we may compute an expected protability ratio for each policy. The incentive oered to each policyholder can then be set as a function of the policy's protability. The probability of accepting the oer can also be a function of the incentive, but such a function is dicut to estimate in practice. Face amount may be variable for some products, which increases the diculty in estimating the expected protability ratio. The retention probabilities may change with time, and this calls for a dynamic model of lapse propensities

We dene the reference portfolio value (RPV) as the customer lifetime value of all policies if no customer relationship management about lapses are carried out to be: RP V CLV pp, F p0, 0q F p0, 1q, r stay , dq CLV pp, F p1, 0q F p1, 1q, r lapse , dq .

(3.6) Given a segmentation algorithm, we compute the lapse managed portfolio value (LMPV) by LM P V pδ, γ, cq CLV pp, F p0, 0q, r stay , dq CLV pp, F p1, 0q p1 ¡ γqF p1, 1q, r lapse , dq CLV pp ¡ δ, F p0, 1q γF p1, 1q, r stay , dq ¡ c pNp0, 1q N p1, 1qq .

(3.7)

Then we dene the economic metric of the algorithm as the retention gain:

RGpδ, γ, cq LM P V pδ, γ, cq ¡ RP V,

(3.8)
that can be simplied as RGpδ, γ, cq γ rCLV pp ¡ δ, F p1, 1q, r stay , dq ¡ CLV pp, F p1, 1q, r lapse , dqs CLV pδ, F p0, 1q, r stay , dq ¡ c pNp0, 1q N p1, 1qq . We specify several variables based on the literature and the data provided by the insurer as input to the algorithms of Section 2. Firstly we are able to identify from the data the age, gender, and occupation of an insured at the time when the policy was issued. Female is designated as 1 while male 0 for the dummy variable Gender. Then we designate the dummy variable Occupation as 1 for the occupations that the insurers in Taiwan would undertake extra screening/underwriting. The data also record whether the insured is required to have a physical examination when purchasing life insurance and how many non-life policies (health and long-term care) a person are listed as the insured (since a person may purchase multiple policies).

The data also contain the inception date and face amount of each policy. There are three types of policies. The most popular type is traditional policies like term life, whole life, and endowment.

Investment-linked and interest-adjustable types of products appeared in 2000s. We also able to identify whether a policy is a single-premium one or not. There are three cases with regard to participation. It was not until 2004 that insurers were allowed to sell non-participating policies. 

Result with respect to statistical and economic metrics

Our focus is on the predictive performance of dierent algorithms. We thus conduct out-of-sample tests using the following procedure. First, we randomly split the dataset D into 10 subsamples tD 1 , . . . , D 10 u of equal size and then train an algorithm on D k , k t1, . . . , u. The estimated model is subsequently applied to the other subsamples to obtain forecasts ŷ of lapses. In the last step, we compare these predictions with the observed lapses y by the validation metric ρpy, ŷq to measure the predictive performance of the algorithm. This procedure enables us to make sure that every observation is used, at some point of an algorithm, as both training and testing samples. It is similar to the k-fold cross-validation technique in which the training subsample is composed of D ¡D k and the testing subsample is set to D k . We use the k-fold cross-validation to tune parameters in training some of the algorithms.

3 Few policies are also sold by independant agents, brokers that we gather in the same category. 4 Paying premiums by automatic transfers from bank accounts or by recurring payments of credit cards is indierent to policyholders. We thus regard these two automatic/recurring payment methods as one. 5 The exchange rate used in the paper is 30 NTD/1 USD. 

5.1

Results with respect to the statistical metric

The mean accuracy computed using the above cross-validation procedure is displayed in the Table 3 and Figure 2 for each binary classication algorithm. As expected, the more sophisticated the model is, the more accurate the predictions will be. XGBoost ranks number one, followed by SVM, CART, and logistic regression (LR). XGBoost surpasses logistic regression by 2.24% on average, which represents a signicant improvement of 12,684 correctly classied policies. Moreover, the smallest standard deviation of accuracy of the XGBoost, 0.03%, indicates that XGBoost is less prone to sample selection. This is visible in the box plot of Figure 2. 

Results with respect to the economic metric

To evaluate the algorithms by the economic metric, we rst need to specify the parameters of the cash ows model. Since no data is available for us to estimate these parameters, we have to make assumptions. We had conducted sensitivity analyses and conrmed that the comparison results remain the same in general.

The time horizon T is set to 12 years according to the length of the sampling period. We estimate the retention probability vector r lapse from the dataset and obtain the vector displaid in Table 8. Other parameters are set as follows:

the protability ratio p 0.5%; the discount rate d 2%; the cost to contact a policyholder c 10 USD.

We propose two dierent incentive strategies: an aggressive one and a moderate one. The incentive vectors are described in Table 9 Table 9: Incentive strategies. We further assume that the probabilities of accepting the incentives for a would-lapse policyholder are γ 1 20% and γ 2 10% respectively.

The results from comparing dierent classication algorithms by the economic metric with the aggressive incentive strategy are displayed in Table 10 and Figure 3. The winner looks to be XGBoost: it has the highest retention gain with the smallest standard deviation across subsampling.

Figure 3 further illustrates that XGBoost and SVM lead to similar retention gain compared to logistic regression and CART.

Notice that the dierences across the algorithms are wider in terms of the economic metric than the statistical metric. The accuracies of the models are between 76.64% and 78.88%, which means an improvement ratio of 2.9%. The retention gains, on the other hand, range from 2.7 and 5.2 million USD, indicating an enhancement of 96%. Therefore, choosing a good algorithm is more important in terms of economic reality (dollar amount) than by statistical accuracy. It appears that CART produces the lowest retention gain: $2,680,012. This is mostly because CART has the highest false alarm rate (cf. Table 3c) which means oering the incentive to many policyholders who have no intention to lapse their policies. Furthermore, CART leads to the highest contacting cost since it predicts the highest lapses. The prots are thus reduced. Then we look at algorithms' performances when the incentive strategy is moderate and leads to lower acceptance probabilities. The results are displayed in the Table 11 and the Figure 4. We rst notice XGB and SVM remains to be ranked No. 1 and No. 2, respectively. Next we observe that the improvement ratio of the best algorithm over the worst is smaller but remains to be signicant (56%). Thirdly, retention gains are signicantly lower with the moderate incentive strategy. For instant, XGB achieves a gain of 5.2 million dollars with the aggressive incentive strategy but the gain reduces to 3.3 million dollars when incentives oered to policyholders are moderate. Under our assumptions, the company should rather set the aggressive incentive strategy up to optimize her gains. However, in practice, one would need a more complete sensitivity study on the incentive to be oered and the corresponding acceptance probability to fully optimize the lapse management. 6 Optimization on protability instead of classication It is obvious that insurers would not seek to optimize the classication accuracy but focus on economic gains resulted from the classication algorithms when forming a lapse management strategy.

When our aim is to maximize the protability of the lapse management strategy, binary classications might be unsuitable since they are not designed to meet such a need. [START_REF] Ascarza | In Pursuit of Enhanced Customer Retention Management: Review, Key Issues, and Future Directions[END_REF] emphasize the dierence between the at-risk population (e.g., customers with high churn probabilities) and the targeted population (e.g., customers that the company should focus her retention campaign on in order to optimize her prots) from an economic point of view. Along this line of churn literature, [START_REF] Lemmens | Managing Churn to Maximize Prots[END_REF] modify the usual loss function into a prot-based function to optimize economic gains. They obtain a signicantly increase in the expected prot of a retention campaign. Learning from the churn literature, we transform the above classicaton problem into a regression question in this section.

Methodology

Let the new response variable z R j i represents the retention gain or loss resulting from proposing the incentive j t1, 2u (cf. Section 5.2) to policyholder i. More specically, we dene z R j i as z R j i 5 ¡CLV pδ j , F i , r stay , dq ¡ c if y i 0, γ j . rCLV pp ¡ δ j , F i , r stay , dq ¡ CLV pp, F i , r lapse , dqs ¡ c if y i 1. 

Ψ z R j , ẑR j ¨ 1 N N i1 z R j i ¡ ẑR j i % 2 , (6.2)
and as the metric for cross-validation.

In the last step, lapse ŷi is forecasted if the estimated gain is positive:

ŷi 5 1 if ẑR j ¥ 0, 0 if ẑR j 0, (6.3) 
By this way we can apply the same metrics described in previous sections. Here ŷi is better to be understood as the estimation of the protability about oering an incentive to the policyholder i rather than the forecast on the policyholder's lapse.

The two new classications are denoted as XGB_R1 and XGB_R2, respectively, for applying XGBoost to z R 1 and z R 2 . The tuning method that we apply to estimating the parameters is described in Appendix 3.

Results

Table 12 and Figure 5 display the prediction accuracies. Table 12 shows that XGB_R1 and XGB_R2 produce relatively low mean accuracy of respectively 76.7% and 75.7% While XGB_R2

is clearly the worst model in term of accuracy, XGB_R1 generates similar results to the logistic regression which is the worst binary classication model regarding the accuracy measure. These seemingly unsatised results are understandable since both XGB_R1 and XGB_R2 are not designed to predict whether a policy would be lapsed or not. What they aim for are economic gains. and 99,432) and produce the most false-sense-of-security (resp. 113,948 and 119,405). However, we will see very soon that XGB_R1 and XGB_R2 stand out when we switch focus to retention gain.

Table 15 and Figure 6 show that XGB_R1 generates a signicantly larger average retention gain with the aggressive incentive strategy ($6,586,357) than other algorithms as well as a signicantly lower standard deviation ($53,460). The increase in retention gain is 26% (1.3 million USD) higher than that generated by XGB (the second-best algorithm) and 146% (3.9 million USD) better than that produced by CART. Looking back to Table 13, we see that XGB_R1 leads to reduce the number of false alarms (18,204) in optimizing the retention gain, even if this also reduces the We expect that the benet of integrating the algorithm with the goal is robust across incentive strategies. This is conrmed by the results in Table 16 and Figure 7. XGB_R2 generates retention gain of 3.9 million dollars that is nearly 600 thousand dollars more than that achieved by the second place XGB. The increase in retention gains is 18%. The increases with respect to the commonly seen LR and CART reach 47% and 85%. The results in this section demonstrate the benet of having a specic objective. If senior managers of an insurer are able to specify an objective to be optimized (e.g., maximizing retention gain), the sta should apply an advanced algorithm like XBG directly to such an objective to achieve the optimum. The enhanced gain relative to the case having no specic objective other than classication accuracy can be substantial.

Conclusions

Lapse risk is the most signicant risk associated with life insurance. Lapses may cause losses, reduce expected prots, lead to stringent liquidity, result in mis-pricing, impair the risk management, or even pose solvency threats. Employing a good algorithm to model policyholder lapse behavior is therefore valuable. In this study, we adopt innovative viewpoints on lapse management in addition to introducing machine learning algorithms to lapse prediction. Applying XGBoost and SVM to predicting whether a policyholder will lapse her/his policy is new to the literature. Secondly, we adopt not only a statistical metric in evaluating algorithms' prediction performance but also an economic metric based on customer lifetime value and retention gains.

The goal of classication accuracy has no direct link to the insurer's costs and prots. It thus might lead to a biased strategy [START_REF] Powers | Evaluation: from Precision, Recall and F-measure to ROC, Informedness, Markedness and Correlation[END_REF]. Following the churn literature, we dene a specic validation metric based on the economic gains. This constitutes our third contribution: we are the rst to set up a prot-based loss function so that we may directly optimize the economic gains.

More specically, we change the usual statistical idea of classication to a gain regression in which prots are to be maximized.

The two machine learning algorithms, XGBoost and SVM, perform a little bit better than classic CART and logistic regression in terms of statistical accuracy on a large dataset consisting of more than six hundred thousand life insurance policies with information on policy terms and policyholders' characteristics. XGBoost has another advantage over other algorithms: it is less dependent upon the choice of training samples.

The advantages of XGBoost and SVM are more apparent with respect to retention gains. The retention gains incorporate the costs of providing incentives to policyholders to reduce lapse propensities and the benets of retaining policies. XGBoost and SVM generate much higher retention gains than logistic regression and CART do. For instance, XGBoost produces 1.2 to 2.6 million dollars more economic gains than CART.

In the last section, we demonstrate that the economic gains can be further enhanced when the optimization is done on a function linked to economic gains rather than on statistic accuracies. The results show that the retention gains with an aggressive incentive strategy resulted from XGB_R1 is 126% of those from applying XGBoost to pursue classication accuracies, in particular by reducing the false alarm rates. An insurer should therefore apply advanced machine learning algorithms like colsample_bytree : 0.8.

Then, we determine the best nrounds through a 5-folds cross-validation with this parameter tested up to 1,000.

Figure 1 :

 1 Figure 1: Pseudocode of the Gradient Tree Boosting algorithm[START_REF] Friedman | Greedy Function Approximation: A Gradient Boosting Machine[END_REF].

  from a medium-size life insurance company in Taiwan that had total assets over 15 billion US dollars at the end of 2013. The data contain 629,331 life insurance policies sold during the period from 1998 to 2013. The data-providing insurer tracked changes in the statuses of policies including death and lapse. The last tracking date is 31/08/2013. 243,152 policies out of all samples were lapsed, and 5,486 insureds died during the sampling period.

Figure 2 :

 2 Figure 2: Box plot of statistic accuracies.

Figure 3 :

 3 Figure 3: Box plot of retention gains with the aggressive strategy.

Figure 4 :

 4 Figure 4: Box plot of retention gains with the moderate strategy.

Figure 5 :

 5 Figure 5: Box plot of statistic accuracies.

Figure 6 :

 6 Figure 6: Box plot of retention gains with the aggressive strategy.

Figure 7 :

 7 Figure 7: Box plot of retention gains with the moderate strategy.

Table 1 :

 1 Descriptive statistics of categorical explanatory variables.

	Variables	Category	Percentage
	Gender		
		Female	48
		Male		52
	Occupation		
		Tier one	80.5
		Requiring extra screening	19.5
	Physical Examination		
		Exempted	96.4
		Required	3.6
	Distribution Channel		
		TA		93.9
		BK		3.4
		DM		2.4
		Others	7	0.3
	Premium Payment		
		Single premium	3.1
		Non single premium	96.9
	Premium Paying Method		
		Insurer	18.8
		B&C		70.8
		P&C		10.4
	Participation		
		Non-participating	37.2
		Participating	16.2
		Mandatory participating	46.6
	Product Type		
		Interest-adjustable	1.7
		Investment-linked	1.2
		Traditional	97.1
	Currency Domination		
		NTD		88.1
		Others		11.9

Table 2 :

 2 Descriptive statistics of continuous explanatory variables.

		Mean	Medium	St. Dev.	Minimum	Maximum
	Age	28.3	27	16.8	0	80
	# of non-life policies	1.2	0	2	0	33
	Inception date	06/06/2005	21/04/2005	4.8 (years)	01/01/1998	31/07/2013
	Face Amounts (in USD)	17,165	10,000	28,050	333	2,000,000

Table 3 :

 3 Cross-Validated Statistic Accuracies. 

		LR	CART	SVM	XGB
	Mean Accuracy	76.64%	77.15%	77.82%	78.8%
	Standard Deviation	0.07%	0.10%	0.08%	0.03%

Table 4 :

 4 Average confustion matrix of XGB.

			Predicted
			Stay	Lapse
	Actual	Stay Lapse	309,111 81,177	38,450 137,660

Table 5 :

 5 Average confustion matrix of SVM.

			Predicted
			Stay	Lapse
	Actual	Stay Lapse	310,258 88,339	37,303 130,498

Table 6 :

 6 Average confustion matrix of CART.

			Predicted
			Stay	Lapse
	Actual	Stay Lapse	296,320 78,209	51,241 140,628

Table 7 :

 7 Average confustion matrix of LR.

			Predicted
			Stay	Lapse
	Actual	Stay Lapse	304,025 88,775	43,537 130,062

Table 8 :

 8 Estimated retention probability r lapse .

	Year	0	1	2	3	4	5	6	7	8	9	10	11	12
	Retention probability	0.96	0.87	0.67	0.37	0.27	0.21	0.15	0.12	0.10	0.08	0.06	0.05	0.04

Table 10 :

 10 Cross-validated retention gains with the aggressive strategy.

		LR	CART	SVM	XGB
	Mean Retention Gain	4,046,602	2,680,012	5,028,737	5,243,913
	Standard Deviation	133,993	209,220	139,102	115,415

Table 11 :

 11 Cross-validated retention gains with the moderate strategy. The drawbacks of XGB and SVM relative to CART and LR that we may think of are not

		LR	CART	SVM	XGB
	Mean Retention Gain	2,618,396	2,085,599	3,113,900	3,261,029
	Standard Deviation	63,693	85,184	54,169	45,928
	In summary, XGB and SVM consistently perform better than CART and LR no matter which
	performance index, statistical accuracy or retention gains with alternative incentive strategies, is
	used.				

Table 12 :

 12 Cross-Validated Statistic Accuracies. 

		LR	CART	SVM	XGB	XGB_R1	XGB_R2
	Mean Accuracy	76.64%	77.15%	77.82%	78.8%	76.67%	75.71%
	Standard Deviation	0.07%	0.10%	0.08%	0.03%	0.07%	0.06%
	The numbers in Table 13 and 14 tell us more about why XGB_R1 and XGB_R2 performs badly
	in statistical accuracy. They result in the smallest correct identications on lapses (resp. 104,889

Table 13 :

 13 Average confustion matrix of XGB_R1.

			Predicted
			Stay	Lapse
	Actual	Stay Lapse	329,357 113,948	18,204 104,889

Table 14 :

 14 Average confustion matrix of XGB_R1.

			Predicted
			Stay	Lapse
	Actual	Stay Lapse	329,413 119,405	18,149 99,432
	correct detection (104,889). The good results of XGB_R1 in achieving retention gain demonstrate
	the benet of integrating the algorithm with the goal to be achieved. The objective function for
	XGB_R1 to minimize, Equation 6.2, is about predicting retention gains. XGB_R1 therefore would
	naturally perform the best when compared with other algorithms optimizing other objectives (such
	as classication accuracies).			

Table 15 :

 15 Cross-validated retention gains with the aggressive strategy.

		LR	CART	SVM	XGB	XGB_R1
	Mean Retention Gain	4,046,602	2,680,012	5,028,737	5,243,913	6,586,357
	Standard Deviation	133,993	209,220	139,102	115,415	53,460

Table 16 :

 16 Cross-validated retention gains with the moderate strategy.

		LR	CART	SVM	XGB	XGB_R2
	Mean Retention Gain	2,618,396	2,085,599	3,113,900	3,261,029	3,852,782
	Standard Deviation	63,693	85,184	54,169	45,928	39,163

This policy is a whole life insurance with a one-year old insured and the death benet of ten thousand NTD (a little over three hundred USD). There are other small policies with death benets smaller than three thousand USD. These policies constitute less than one percent of our samples.
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Appendix 1 XGBoost Tuning -Binary Classication

The values of the parameters tested in the grid search for the tuning of XGBoost are as follows: eta : 0.005, 0.1, 0.15; gamma : 0, 5, 10; max_depth : 10, 15, 20, 25, 30; min_child_weight : 15, 20, 25; subsample : 1; colsample_bytree : 0.4, 0.5, 0.6.

The values of the grid search are chosen by a previous sensitivity study in which we apply the same methodology on a subsample of the whole database but with a coarser grid. Then we focus on a ner grid to obtain better results within a reasonable time period. In addition, the fact that we only test subsample with the value of 1 means that we do not adopt the stochastic gradient boosting of [START_REF] Friedman | Greedy Function Approximation: A Gradient Boosting Machine[END_REF].

Appendix 2 SVM Tunning

The values of the parameters tested in the grid search for the tuning of SVM are as follows:

Cost : 0.5, 1, 2, 5, 10; gamma : 0.25, 0.5, 0.75, 1, 1.25.

Similar to the previous section, the values of the grid search are chosen by a previous sensitivity study in which we apply the same methodology on a subsample of the whole database but with a coarser grid. Then we focus on a ner grid to obtain better results. This is necessary so that the computing can be done within a reasonable time period.

Appendix 3 XGBoost Tuning -Protability

We adopt the values of most parameters generated by a previous sensitivity study as: eta : 0.005; gamma : 1; max_depth : 15; min_child_weight : 15; subsample : 0.7;