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Abstract 

Modeling policyholders lapse behaviors is important to a life insurer since lapses affect 

pricing, reserving, profitability, liquidity, risk management, as well as the solvency of the 

insurer.  Lapse risk is indeed the most significant life underwriting risk according to European 

Insurance and Occupational Pensions Authority’s Quantitative Impact Study QIS5. In this 

paper, we introduce two advanced machine learning algorithms for lapse modeling.  Then we 

evaluate the performance of different algorithms by means of classical statistical accuracy and 

profitability measure.  Moreover, we adopt an innovative point of view on the lapse prediction 

problem that comes from churn management.  We transform the classification problem into a 

regression question and then perform optimization, which is new for lapse risk management.  

We apply different algorithms to a large real-world insurance dataset. Our results show that 

XGBoost and SVM outperform CART and logistic regression, especially in terms of the 

economic validation metric.  The optimization after transformation brings out significant and 

consistent increases in economic gains. 
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1. Introduction 

Lapse risk is the most significant risk associated with life insurance when compared with 

longevity risk, expenses risk, and catastrophe risk.  Policyholders of life insurance may 

choose to surrender their policies at any time for cash values, or opt to stop paying premiums 

and leave policies to become invalid eventually.  Lapses have significant impacts on the 

profitability, or even on the solvency, of a life insurer as many studies demonstrate.  They 

may reduce expected profits (Hwang and Tsai, 2018), cause underwriting expenses 

unrecovered (Tsai et al., 2009; Pinquet et al., 2011), impair the effectiveness of an insurer’s 

asset-liability management (Kim, 2005a; Eling and Kochanski, 2013) and bring in liquidity 

threats as experienced by US life insurers in the late 1980s.  

When lapses vary with interest rates as suggested by Dar and Dodds (1989), Kuo et al. 

(2003), Kim (2005b, 2005c) and Cox and Lin (2006), they become even more detrimental to 

life insurers (Tsai et al., 2009).  Many papers argue that the option to surrender a policy for 

the cash value might account for a large proportion of the policy value, e.g., Albizzati and 

Geman (1994), Grosen and Løchte Jørgensen (2000), Bacinello (2003), Bauer et al. (2006), 

Gatzert and Schmeiser (2008), and Consiglio and Giovanni (2010).  The above reasoning and 

finding may be the reasons why the fifth Quantitative Impact Study (QIS5), conducted by the 

European Insurance and Occupational Pensions Authority (EIOPA) in 2011 regarding the 

implementation of Solvency II, reports that lapse risk accounts for about 50% of the life 

underwriting risks.   

The significance of lapse risk draws attentions of scholars to study what causes 

policyholders to lapse their policies.  We may classify the literature into being macro- or 

micro-oriented.  Macro-oriented papers (e.g., Dar and Dodds, 1989; Kuo et al., 2003; Kim, 

2005b, 2005c; Cox and Lin, 2006) focus on how lapse rates (the proportion of lapsed policies 

to the total number of sampled policies within a period of time) are affected by environmental 

variables such as interest rates, unemployment rates, gross domestic product, and returns in 

capital markets, as well as by company characteristics like size and organizational form.   

Micro-oriented papers secure data from insurers on individual policies to investigate the 

determinants of the lapse propensities/tendencies.  The identified determinants include the 

characteristics of policyholders and the features of life insurance products/policies (see 

Renshaw and Haberman (1986), Kagraoka (2005), Cerchiara et al. (2005), Milhaud et al. 

(2011), Pinquet et al. (2011), and Eling and Kochanski (2013) among others.).  Eling and 

Kochanski (2013) and Campbell et al. (2014) provide extensive reviews of the literature on 

lapses.1 

This paper extends the micro-oriented line of literature in two ways.  Firstly, we 

introduce machine learning algorithms including Extreme Gradient Boosting (XGBoost) and 

Support Vector Machine (SVM) to lapse behavior modeling.  These two advanced algorithms 

have their merits over other approaches used in the literature such as generalized linear 

models (i.e., binomial and Poisson models and logistic regression), Classification and 

Regression Tree (CART) analysis, and the proportional hazards model.  Secondly, we adopt 

economic measures in addition to statistical accuracy in evaluating the performance of 

                                                      
1 There are some papers on the subject of modeling early terminations that do not fit our macro-micro 

classification on empirical, explanatory studies.  They impose specific assumptions on the transition probabilities 

to early terminations (Buchardt et al., 2015), the early terminations’ intensity (Barsotti et al., 2016), or the early 

termination rates (Loisel and Milhaud, 2011; Milhaud, 2013). 
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different algorithms.  Such an adoption better demonstrates how different algorithms may 

benefit the insurer.   

Thirdly, we transform the optimization objective from classification accuracy to 

economic gains to demonstrate the benefit of integrating modeling with profit maximization.  

Such an integration can increase life insurers’ profitability, improve insurers’ customer 

management through taking preventive measures to reduce lapses, and retain more of the so-

called Contractual Service Margin (CSM) in International Financial Reporting Standard 

(IFRS) 17.  It also links us to the literature on churn management and its impact on the 

customer lifetime value (e.g., Lemmens and Croux, 2006; Lemmens and Gupta, 2017; Neslin 

et al., 2006).   

The results from applying different algorithms to a large dataset consisting of more than 

six hundred thousand life insurance policies show that XGBoost and SVM outperform CART 

and logistic regression with respect to statistic accuracy.  The results further show that 

XGBoost is the most robust across training samples.   

The advantages of XGBoost and SVM are more apparent with respect to retention gains.  

The retention gain takes into account the costs of providing incentives to policyholders to 

reduce their propensities towards lapses, the benefits of retaining policies, and the costs of 

false alarms.  XGBoost and SVM generate much higher retention gains than logistic 

regression and CART do. 

Last but not least, we confirm that economic gains can be further enhanced when the 

optimization is done on a function linked to the gains rather than on statistic accuracies.  The 

resulted retention gains are 126% of those from applying XGBoost to pursue classification 

accuracies, and the increase in retention gains remains to be significant under an alternative 

policyholder retention scheme.  An insurer, therefore, should apply robust machine learning 

algorithms like XGBoost to its economic objective to achieve optimal lapse management.     

The organization of the paper is as follows.  Section 2 contains explanations about 

XGBoost and SVM, followed by brief descriptions on CART and logistic regression.  In 

Section 3 we delineate two performance metrics to be used.  One is the commonly seen 

accuracy, i.e., a statistical validation metric, while the other one is an economic metric 

considering the expected profits and costs of lapse management.  We describe the data 

obtained from a medium-sized life insurer in Section 4.  Section 5 displays the comparison 

results across the four algorithms in terms of the statistical and economic metrics.  We explain 

how to integrate algorithms with the profit maximization goal at the beginning of Section 6, 

and then compare the results from optimizing profit objectives with those from optimization 

statistic accuracy.  Section 7 summarizes and concludes the paper. 

 

2. Binary classification algorithms 

The problem that we want to tackle is detecting whether a policyholder will lapse her/his 

policy or not, i.e., 𝑦𝑖 ∈ {0,1}.  Popular predictive models include logistic regression and 

CART models.  More advanced machine learning models that we introduce in this paper are 

SVM and XGBoost. 
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2.1. XGBoost 

XGBoost is an extension of the gradient boosting introduced by Friedman (2001).  The 

gradient boosting tree is an ensemble method, i.e., multiple weak learners h are combined to 

become a strong learner F in order to achieve a better predictive performance.  The following 

descriptions are summarized from Friedman (2002). 

Given a training sample {𝑦𝑖, 𝒙𝑖}1
𝑁 where 𝒙𝑖 ∈ ℝ𝑛 and 𝑦𝑖 ∈ {0,1}, one would like to find a 

strong learner 𝐹∗(𝒙) which minimizes a loss function 𝚿(𝑦, 𝐹(𝒙)): 

𝐹∗(𝒙) = arg min
𝐹(𝒙)

𝐸𝑦,𝒙[𝚿(𝑦, 𝐹(𝒙))].    (1) 

The strong learner is an additive expansion of weak learners ℎ(𝒙, {𝑅𝑙𝑚}1
𝐿 , �̅�𝑙𝑚) that will be a 

𝐿-terminal node regression tree in our case: 

𝐹𝑀(𝒙) = ∑ 𝛽𝑚ℎ(𝒙, {𝑅𝑙𝑚}1
𝐿 , �̅�𝑙𝑚)𝑀

𝑚=0 =  ∑ ∑ 𝛽𝑚
𝐿
𝑙=1

𝑀
𝑚=0 �̅�𝑙𝑚1(𝒙 ∈ 𝑅𝑙𝑚),  (2) 

where {𝑅𝑙𝑚}1
𝐿 and �̅�𝑙𝑚 are the 𝐿-disjoint regions and the corresponding split points determined 

by the 𝑚th regression tree, respectively, and 𝛽𝑚 are the expansion coefficients.  This strong 

learner is estimated through a stage-wise method that begins with an initial guess 𝐹0(𝒙).  

Then the pseudo-residuals for 𝑚 = 1, 2, … , 𝑀 are computed: 

�̃�𝑖𝑚 =  − [
𝛿𝚿(𝑦𝑖,𝐹(𝒙𝑖))

𝛿𝐹(𝒙𝑖)
]

𝐹(𝒙)=𝐹𝑚−1(𝒙)
.                               (3) 

The regions {𝑅𝑙𝑚}1
𝐿 are obtained by estimating the 𝑚th 𝐿-terminal node regression tree 

on the sample {�̃�𝑖𝑚, 𝒙𝑖}1
𝑁.  The product 𝛽𝑚�̅�𝑙𝑚 = 𝛾𝑙𝑚 is set to optimize the loss function 𝚿: 

𝛾𝑙𝑚 = arg min
𝛾

∑ 𝚿(𝑦𝑖, 𝐹𝑚−1(𝒙𝑖) + 𝛾)𝒙𝑖∈𝑅𝑙𝑚
.                       (4) 

At the final stage, the strong learner is updated, 

𝐹𝑚(𝒙) = 𝐹𝑚−1(𝒙) + 𝜈. 𝛾𝑙𝑚1(𝒙 ∈ 𝑅𝑙𝑚),                            (5) 

where  𝜈 ∈ (0,1] is a shrinkage parameter that controls how much information is used from 

the new tree.  

 The gradient boosting tree method may be summarized as the following algorithm 

extracted from Friedman (2002). 

             (6) 

Inspired by previous general works on statistical learning, many extensions to the 

gradient boosting tree method have been developed.  The stochastic gradient boosting 

technique (Friedman, 2002) is based on the same principle as the bagging technique 

(Breiman, 1996).  It introduces randomness in the observation: given a random permutation 𝜋 

of the integers {1, … , 𝑁} and �̃� < 𝑁, the new weak learner tree is estimated on the random 
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subsample {�̃�𝜋(𝑖)𝑚, 𝒙𝜋(𝑖)}
1

�̃�
.  Another way to inject randomness that has been popularized by 

Breiman (2001) is randomly selecting a subspace of the explanatory variables.  More 

specifically, given a random permutation 𝜋∗ of integers {1, … , 𝑛} and  �̃� < 𝑛, the new weak 

learner tree is estimated on {�̃�𝑖𝑚, 𝑃∗(𝒙)𝑖}1
𝑁 in which 𝑃∗(𝒙) = {𝑥𝜋∗(1), … , 𝑥𝜋∗(�̃�)}. 

To avoid overfitting, some extensions follow the general idea of the ridge regression 

(Hoerl and Kennard, 1970) and lasso regression (Tibshirani, 1996) and adopt the penalized 

optimization point of view.  Instead of optimizing a loss function 𝚿(𝑦, 𝐹(𝒙)), the problem is 

modified as the optimization on an “objective” function 𝑶 that is the sum of a loss function 𝚿 

and a regularization term 𝛀:  

𝑶(𝑦, 𝐹(𝒙)) = 𝚿(𝑦, 𝐹(𝒙)) + 𝛀(𝐹).                              (7) 

Among all the boosting packages that have been developed, the XGBoost system (Chen 

and Guestrin, 2016) has become the most popular due to its flexibility and computing 

performances.  It has also become the most popular machine learning algorithm in data 

science challenges such as Kaggle for structured data.  We list the main parameters that need 

to be tuned, using the package’s terminology and the notation of Friedman (2002), as follows. 

(i) nrounds is the number of trees to grow: 𝑀; 

(ii) eta is the shrinkage parameter: 𝜈; 

(iii) gamma is the regularization parameter which is used in 𝛀; 

(iv) max_depth is the number of nodes of a tree: 𝐿; 

(v) min_child_weight is the minimal number of observations in a node and 

min
𝑙,𝑚

∑ 1(𝒙𝑖 ∈ 𝑅𝑙𝑚)𝑁
𝑖=1  should be higher than this value; 

(vi) subsample is the relative size of the random subsample used in the case of a 

stochastic gradient boosting: �̃�/𝑁; 

(vii) colsample_bytree is the relative size of the random subspace of explanatory 

variables selected at each new tree: �̃�/𝑛. 

Since we are interested in a binary classification in this paper, we use the logistic loss 

function: 

𝚿(𝑦, �̂�) = ∑ [𝑦𝑖 ln(1 + 𝑒−�̂�𝑖) + (1 − 𝑦𝑖) ln(1 + 𝑒�̂�𝑖)]𝑁
𝑖=1 ,             (8) 

and the error function as the metric for cross-validation: 

𝑒𝑟𝑟𝑜𝑟(𝑦, �̂�) =
∑ 1(𝑦𝑖≠𝑟𝑜𝑢𝑛𝑑(�̂�𝑖))𝑁

𝑖=1

𝑁
,                             (9) 

where 𝑟𝑜𝑢𝑛𝑑(�̂�𝑖) = {
1 if �̂�𝑖 > 0.5
0 if �̂�𝑖 ≤ 0.5

 .   

The tuning method that we adopt consists of two nested cross-validations.  We first 

perform a grid search on the parameters except nrounds with a 2-folds cross-validation (the 

grid of values is reported in Appendix 9.1).  Then we determine the best nrounds through a 5-

folds cross-validation up to 200 for every possible set of parameters in the grid.   

2.2. SVM 

The theory of SVM was introduced in the 1990’s by Boser et al. (1992) and Cortes and 

Vapnik (1995).  It has become a popular algorithm for classification problems and for churn 

prediction in particular (e.g. Zhao et al., 2005; Xia and Jin, 2008).  Its predictive power is 

https://www.kaggle.com/
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rather good compared to other classification algorithms (e.g. Vafeiadis et al., 2015; Wainer, 

2016). 

The SVM algorithm can be described by geometrical terms.  The main idea is to find a 

hyperplane that separates the observation space into two homogeneous subspaces that is as far 

apart from each other as possible.  This solution is defined as the maximum-margin hyper-

plane.  To deal with misclassifications, a soft margin (i.e., a penalty determined by the user) is 

imposed upton the SVM.  Another way to deal with classification errors is to project the data 

to a higher-dimensional space through a kernel function.  A more complete geometrical 

description of SVM can be found in Noble (2006). 

In the following, we adopt a formula-based description of the SVM by using the notation 

of Hsu et al. (2003).  Given a training sample {𝑦𝑖, 𝒙𝑖}1
𝑁 in which 𝒙𝑖 ∈ ℝ𝑛 and 𝑦𝑖 ∈ {+1, −1}, 

the SVM algorithm is the solution of the following optimization problem: 

min
𝜔,𝑏,𝜉

1

2
𝝎𝑇𝝎 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1 ,         (10) 

with the constraint 

𝑦𝑖(𝝎𝑇𝜙(𝒙𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0.                                                 (11) 

The separating hyperplane is determined by the orthogonal vector 𝝎 and constant 𝑏.  The soft 

margin penalty cost is denoted as 𝐶.  The data may be projected to a higher dimension space 

by the function 𝜙, and the underlying kernel function is defined by 𝐾(𝒙𝑖 , 𝒙𝑗) = 𝜙(𝒙𝑖)
𝑇𝜙(𝒙𝑗).   

In our case we choose to consider the radial basis function kernel (also called RBF 

kernel) that is the most commonly used in practice and determined by 

𝐾(𝒙𝑖, 𝒙𝑗) = exp(−𝛾 ‖𝒙𝑖 − 𝒙𝑗‖2),                             (12) 

with 𝛾 > 0 being the kernel parameter. 

Then we use the “e1071” R package (Meyer et al., 2015) to implement the SVM 

algorithm.  To tune the SVM parameters (𝐶, 𝛾), we perform a grid search on a 2-folds cross-

validation and adopt the misclassification error function as the validation metric.  The grid of 

values is reported in Appendix 9.2. 

2.3. CART 

CART was first introduced by Breiman (1984).  The underlying idea is straight forward:  

defining a class by following a list of decision rules on the explanatory variables.  To 

determine these rules, the data space is iteratively separated by binary split into two disjointed 

subspaces. At each step or node of this top-down construction, the explanatory variable and 

the dividing point are chosen to minimize the Gini impurity of the node.  

More specifically, given a node 𝑙 of 𝑁𝑙 observations of response 𝑦𝑖 ∈ {0,1} with 𝑖 ∈ 𝑙, 

the proportion of observations in the node is defined by 𝑝𝑙 =
1

𝑁𝑙
∑ 𝑦𝑖𝑖∈𝑙 .   Then use an 

algorithm to partition the parent node into two nodes 𝑙𝐿 and 𝑙𝑅 by maximizing  

 𝐼𝐺(𝑙) − [𝐼𝐺(𝑙𝐿) + 𝐼𝐺(𝑙𝑅)],     (13) 
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where 𝐼𝐺  is the Gini impurity of the node and computed by    

𝐼𝐺(𝑙) = 𝑁𝑙𝑝𝑙(1 − 𝑝𝑙).         (14) 

This construction is applied up to obtaining a node for every observation point.  The tree 

obtained is thus designated as the saturated model.  Although fitting the response on the 

training sample perfectly, it generally leads to low predictive performance when applied to 

new samples.  Hence the tree needs to be pruned, i.e., the number of final nodes needs to be 

reduced to increase its predictive power.   

Many criteria can be used to prune the tree, e.g., the minimum number of observations in 

a final node.  We choose 𝐿, the number of terminal nodes, that minimizes the 

misclassification error: 

𝑒𝑟𝑟𝑜𝑟(𝑦, �̂�) =
∑ 𝟏(𝑦𝑖≠�̂�𝑖)𝑁

𝑖=1

𝑁
.     (15) 

L is estimated by a 10-folds cross-validation methodology.  We use the “rpart” R package 

(Therneau et al., 2018) to implement CART. 

2.4. Logistic regression 

The logistic regression is a special case of the generalized linear models (Nelder and 

Wedderburn, 1972) obtained with the Bernoulli distribution.  The goal is to model the 

probability of a binary event such as the lapse probability 𝑝𝑖 of the policyholder 𝑖.  Given a 

training sample {𝑦𝑖, 𝒙𝑖}1
𝑁 in which 𝒙 ∈ ℝ𝑛 and 𝑦𝑖 ∈ {0,1}, the regression model is specified 

as: 

ln
𝑝𝑖

1−𝑝𝑖
= 𝛽0 + 𝒙𝑖

𝑇𝜷.     (16) 

The parameters (𝛽0, 𝜷) ∈ ℝ × ℝ𝑛 can be estimated by the maximum-likelihood method: 

ℒ = ∏ (
𝑒𝒙𝑖

𝑇𝜷

1+𝑒𝒙𝑖
𝑇𝜷

)

𝑦𝑖

(
1

1+𝑒𝒙𝑖
𝑇𝜷

)𝑁
𝑖=1

1−𝑦𝑖

.    (17) 

When applying the estimated logistic regression model to a classification problem, it 

doesn’t directly lead to labeled responses but to estimated probabilities.  To determine the 

forecasted class, we chose the common threshold of 0.5, i.e.,  

�̂�𝑖
∗ = {

1 if �̂�𝑖 > 0.5;
0 if �̂�𝑖 ≤ 0.5.

     (18) 

 

3. Validation metrics  

For each policy, the observed lapse 𝑦𝑖 and the forecasted lapse �̂�𝑖 are binary variables: 

(𝑦𝑖, �̂�𝑖) ∈ {0,1}2. The four different outputs of a binary classification model are named true 

positive (1,1), true negative (0,0), false positive (0,1) and false negative (1,0) while the 

number of each case is usually laid out in the so-called confusion matrix.  Denote 𝑁(𝑗, 𝑘) as 

the numbers of the confusion matrix in which 𝑗 ∈ {0,1} stands for the observed lapse indicator 
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and 𝑘 ∈ {0,1} the predicted lapse indicator.  Given a set of response variables {𝑦𝑖, �̂�𝑖}1
𝑁, we 

estimate 𝑁(𝑗, 𝑘) as: 

𝑁(𝑗, 𝑘) = ∑ 𝟏(𝑦𝑖 = 𝑗, �̂�𝑖 = 𝑘)𝑁
𝑖=1 .    (19) 

 

3.1. Statistical metric 

Based on the confusion matrix, different metrics can be developed.  We first focus on the 

accuracy metric, the ratio of correctly classified predictions over the total number of 

predictions: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, �̂�) =
𝑁(1,1)+𝑁(0,0)

𝑁
= 1 − 𝑒𝑟𝑟𝑜𝑟(𝑦, �̂�).   (20) 

3.2.  Economic metric 

Although we adopt mathematic algorithms to predict lapses, the risk is an economic 

issue after all.  We thus would like to analyze and compare the classification algorithms by an 

economic metric.  More specifically, we will estimate the impacts of different classification 

results on the expected profits from policies, also called customer lifetime values.  In order to 

do so, we plan to adopt an economic model inspired by Neslin et al. (2006) and Gupta et al. 

(2006). 

Suppose that policy i  stays Θ𝑖 years in the portfolio (Θ𝑖  N).  The profitability ratio at 

time t can be represented by 𝑝𝑖,𝑡 and the face amount by 𝐹𝑖,𝑡.  The lifetime value for policy i is 

computed as: 

𝐶𝐿𝑉𝑖 = ∑
𝑝𝑖,𝑡𝐹𝑖,𝑡

(1+𝑑𝑡)𝑡

Θ𝑖
𝑡=0   ,                                      (21) 

where 𝑑𝑡 is the discount rate. 

Assuming a deterministic time horizon T (T  N), we define the (𝑇 + 1)-dimensional 

real vectors 𝒑𝑖, 𝑭𝑖 , 𝒓𝑖 , and 𝒅 for profitability ratios, face amounts, retention probabilities, and 

interest rates respectively.  Given the four vectors, the customer lifetime value is 

𝐶𝐿𝑉𝑖(𝒑𝑖, 𝑭𝑖, 𝒓𝑖, 𝒅) = ∑
𝑝𝑖,𝑡𝐹𝑖,𝑡𝑟𝑖,𝑡

(1+𝑑𝑡)𝑡
𝑇
𝑡=0  .                              (22) 

The lapse management strategy is modelled by the offer of an incentive 𝜹𝑖  ∈ ℝ𝑇+1 to 

policyholder i who is contacted with a cost 𝑐.  The incentive is accepted with the probability 

𝛾𝑖, and the acceptance will change the vector of the probabilities of staying in the portfolio 

from 𝒓𝑖 to 𝒓𝑖
∗ ∈ ℝ𝑇+1.  We further make the following simplifying assumptions: 

(i) 𝒑𝑖 are the same for all policies and denoted as 𝒑 hereafter; 

(ii) 𝜹𝑖 are the same for all contacted policies and denoted as 𝜹 hereafter; 

(iii) 𝑝𝑖,𝑡, 𝐹𝑖,𝑡 and 𝑑𝑡 remain constant across time; 

(iv) 𝒓𝑖 equals to 𝒓𝑙𝑎𝑝𝑠𝑒 or  𝒓𝑠𝑡𝑎𝑦 in which 𝒓𝑠𝑡𝑎𝑦 = (1,1, … ,1)  and 𝒓𝑙𝑎𝑝𝑠𝑒 is estimated on 

the dataset and will be given in Section 5.2; 

(v) if 𝒓𝑖 = 𝒓𝑠𝑡𝑎𝑦, the incentive is accepted with probability 𝛾𝑖 = 1 and 𝒓𝑖
∗ = 𝒓𝑠𝑡𝑎𝑦; 
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(vi) if 𝒓𝑖 = 𝒓𝑙𝑎𝑝𝑠𝑒, the incentive is accepted with probability 𝛾𝑖 = 𝛾 and 𝒓𝑖
∗ = 𝒓𝑠𝑡𝑎𝑦. 2  

Policyholders who reject the offers (probability = 1- 𝛾) will lapse their policies, i.e. 

𝒓𝑖
∗ = 𝒓𝑙𝑎𝑝𝑠𝑒. 

The application of a segmentation algorithm to the tested samples produces two 

confusion matrices: one with respect to number of policies while the other in term of face 

amount.  For the latter matrix, we denote 𝐹(𝑗, 𝑘) as the coefficients of the matrix with regard 

to face amount, where 𝑗 stands for the indicator of the policyholder’s lapse in real life, 𝑘 the 

indicator by the algorithm’s prediction, and (𝑗, 𝑘) ∈ {0,1}2.  More specifically,  

𝐹(𝑗, 𝑘) = ∑ 𝐹𝑖 .𝑁
𝑖=1 𝟏(𝑦𝑖 = 𝑗, �̂�𝑖 = 𝑘),     (23) 

while N is defined in Equation (19). 

We define the reference portfolio value (RPV) as the customer lifetime value of all policies 

if no customer relationship management about lapses are carried out to be: 

𝑅𝑃𝑉 = 𝐶𝐿𝑉(𝒑, 𝐹(0,0) + 𝐹(0,1), 𝒓𝑠𝑡𝑎𝑦, 𝒅)       

+𝐶𝐿𝑉(𝒑, 𝐹(1,0) + 𝐹(1,1), 𝒓𝑙𝑎𝑝𝑠𝑒 , 𝒅).                         (24) 

Given a segmentation algorithm, we compute the lapse managed portfolio value (LMPV) by 

𝐿𝑀𝑃𝑉(𝜹, 𝛾, 𝑐) =  𝐶𝐿𝑉(𝒑, 𝐹(0,0), 𝒓𝑠𝑡𝑎𝑦, 𝒅) +  𝐶𝐿𝑉(𝒑, 𝐹(1,0) + (1 − 𝛾)𝐹(1,1), 𝒓𝑙𝑎𝑝𝑠𝑒 , 𝒅) 

+𝐶𝐿𝑉(𝒑 − 𝜹, 𝐹(0,1) + 𝛾𝐹(1,1), 𝒓𝑠𝑡𝑎𝑦, 𝒅) − 𝑐(𝑁(0,1) + 𝑁(1,1)).             (25) 

Then we define the economic metric of the algorithm as the retention gain: 

𝑅𝐺(𝜹, 𝛾, 𝑐) = 𝐿𝑀𝑃𝑉(𝜹, 𝛾, 𝑐) −  𝑅𝑃𝑉,                              (26) 

that can be simplified as 

𝛾[𝐶𝐿𝑉(𝒑 − 𝜹 , 𝐹(1,1), 𝒓𝑠𝑡𝑎𝑦, 𝒅) − 𝐶𝐿𝑉(𝒑, 𝐹(1,1), 𝒓𝑙𝑎𝑝𝑠𝑒 , 𝒅)] 

−𝐶𝐿𝑉(𝜹 , 𝐹(0,1), 𝒓𝑠𝑡𝑎𝑦 , 𝒅) − 𝑐(𝑁(0,1) + 𝑁(1,1)).      (27) 

4.  Data 

Our data come from a medium-size life insurance company in Taiwan that had total 

assets over 15 billion US dollars at the end of 2013.  The data contain 629,331 life insurance 

policies sold during the period from 1998 to 2013.  The data-providing insurer tracked 

changes in the statuses of policies including death and lapse.  The last tracking date is 

8/31/2013.  243,152 policies out of all samples were lapsed, and 5,486 insureds died during 

the sampling period.   

 

We specify several variables based on the literature and the data provided by the insurer 

as input to the algorithms of Section 2.  Firstly we are able to identify from the data the age, 

                                                      
2 These simplifications assume that the profitability ratio, the incentive, and the probability to accept the 

incentive is the same across policyholders, respectively.  Upon the availability of data, we may compute an 

expected profitability ratio for each policy.  The incentive offered to each policyholder can then be set as a 

function of the policy’s profitability.  The probability of accepting the offer can also be a function of the 

incentive, but such a function is difficut to estimate in practice.  Face amount may be variable for some products, 

which increases the difficulty in estimating the expected profitability ratio.  The retention probabilities may 

change with time, and  this calls for a dynamic model of lapse propensities. 
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gender, and occupation of an insured at the time when the policy was issued.  Female is 

designated as 1 while male 0 for the dummy variable Gender.  Then we designate the dummy 

variable Occupation as 1 for the occupations that the insurers in Taiwan would undertake 

extra screening/underwriting.  The data also record whether the insured is required to have a 

physical examination when purchasing life insurance and how many non-life policies (health 

and long-term care)  a person are listed as the insured (since a person may purchase multiple 

policies). 

 

The data also contain the inception date and face amount of each policy.  There are 

three types of policies.  The most popular type is traditional policies like term life, whole life, 

and endowment.  Investment-linked and interest-adjustable types of products appeared in 

2000s.  We also able to identify whether a policy is a single-premium one or not.  There are 

three cases with regard to participation.  It was not until 2004 that insurers were allowed to 

sell non-participating policies.  The policies sold by the end of 2003 are thus designated as 

Mandotory Participating.  Starting from 2004, policies may be classified into participating and 

non-participating.  Most policies sold in Taiwan are dominated in New Taiwan Dollar 

(NTD) ; there are some policies dominated in other currencies. 

 

We further set up two nominal variables.  Firstly, we categorize distribution channels as 

Tied Agents (denoted by TA), Direct Marketing (DM), and Banks (BK)3.  Secondly, premium 

paying methods are classified into three ways: collected by the personnel of the insurer 

(denoted as Insurer), automatic transfers from banks or payments by credit cards (B&C),4 and 

going to the post office or convenient stores in person (P&C). 

 

Table 1 presents the descriptive statistics of the above explanatory variables.  The 

average age of the sampled insureds is 28 and the standard deviation of the insureds’ age is 

17.  The minimum, medium, and maximum age is 0, 27, and 80, respectively.  The samples 

consist of relatively equivalent portions of male and female insureds.  About 20% of the 

insureds work in riskier occupations that call for extra underwriting.  Most insureds (over 

96%) were not required to go through physical examination in purchasing life insurance.  

Many insureds are associated with multiple non-life policies so that the average number of 

non-life policies a person are listed as the insured is 1.2.  There is a person who is listed as the 

insured for 33 non-life policies. 

 

The mean and medium of policy inception dates are in the second quarter of 2005, and 

the standard deviation around this quarter is almost 5 years.  The face amount of the sampled 

policies has an average of 17,165 US dollars5 with big variations: the largest policy reaches 2 

million dollars, the smallest one is only 333 dollars,6 and the standard deviation is about 

twenty-eight thousand dollars.  Around 3% of the samples are single-premium policies.  

46.6% of samples are mandatory-participating policies while 37.2% are non-participating 

ones.  Almost all policies are traditional types of products ; interest-adjustable and 

                                                      
3 Few policies are also sold by independant agents, brokers that we gather in the same category. 

4 Paying premiums by automatic transfers from bank accounts or by recurring payments of credit cards is 

indifferent to policyholders.  We thus regard these two automatic/recurring payment methods as one.  

5 The exchange rate used in the paper is 30 NTD/1 USD. 

6 This policy is a whole life insurance with a one-year old insured and the death benefit of ten thousand NTD (a 

little over three hundred USD).  There are other small policies with death benefits smaller than three thousand 

USD.  These policies constitute less than one percent of our samples. 
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investment-linked types of products are merely 3% of our samples.  88% of policies are 

dominated in NTD. 

 

Table 1 also shows that selling life insurance through tied agents is the major way 

(94%) of this insurer while the sampled policies sold through direct marketing are smaller 

than 3%.  It further shows that the most popular way of paying premiums is through 

automatic/recurring transfers from bank accounts or credit cards (71%).  Since post offices 

and convenient stores providing money transferring services are conveniently around, about 

10% of our samples have premiums paid in places like these. 

Table 1: Descriptive Statistics of Explanatory Variables. 

 

Variables Percentage         

Gender      

 Female 48%     

 Male 52%     

Occupation      

 Tier one 80.5%     

 Requiring extra screening 19.5%     

Physical Examination      

 Exempted 96.4%     

 Required 3.6%     

Distribution Channel      

 TA 93.9%     

 BK 3.4%     

 DM 2.4%     

 Others7 0.3%     

Premium payment      

 Single premium 3.1%     

 Non single premium 96.9%     

Premium Paying Method      

 Insurer 18.8%     

 B&C 70.8%     

 P&C 10.4%     

Participation      

 Non-participating 37.2%     

 Participating 16.2%     

 Mandatory participating 46.6%     

Product Type      

 Interest-Adjustable 1.7%     

 Investment-Linked 1.2%     

 Traditional 97.1%     

Currency Domination      

 NTD 88.1%     

 Others 11.9%     

                                                      
7 Few were sold through independent agents or brokers. 
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  Mean Medium 

Standard  

Deviation Minimum Maximum 

Age  28.3 27 16.8 0 80 

# of non-life policies  1.2 0 2 0 33 

Inception date 06/06/2005 21/04/2005 4,8 (years) 01/01/1998 31/07/2013 

Face Amounts (in USD) 17,165 10,000 28,050 333 2,000,000 

 

5. Results with respect to statistical and economic metrics 

Our focus is on the predictive performance of different algorithms.  We thus conduct out-

of-sample tests using the following procedure.  First, we randomly split the dataset D into 10 

subsamples {𝐷1, … , 𝐷10} of equal size and then train an algorithm on 𝐷𝑘 , k ∈{1,…,10}.  The 

estimated model is subsequently applied to the other subsamples to obtain forecasts �̂� of 

lapses.  In the last step, we compare these predictions with the observed lapses 𝑦 by the 

validation metric 𝜌(𝑦, �̂�) to measure the predictive performance of the algorithm.  This 

procedure enables us to make sure that every observation is used, at some point of an 

algorithm, as both training and testing samples.  It is similar to the k-fold cross-validation 

technique in which the training subsample is composed of 𝐷 − 𝐷𝑘 and the testing subsample 

is set to 𝐷𝑘.  We use the k-fold cross-validation to tune parameters in training some of the 

algorithms. 

5.1. Results with respect to the statistical metric  

The mean accuracy computed using the above cross-validation procedure is displayed in 

the Table 2 and Figure 1 for each binary classification algorithm.  As expected, the more 

sophisticated the model is, the more accurate the predictions will be.  XGBoost ranks number 

one, followed by SVM, CART, and logistic regression (LR).  XGBoost surpasses logistic 

regression by 2.24% on average, which represents a significant improvement of 12,684 

correctly classified policies.  Moreover, the smallest standard deviation of accuracy of the 

XGBoost, 0.03%, indicates that XGBoost is less prone to sample selection.  This is visible in 

the box plot of Figure 1.  

 

Table 2 – Cross-Validated Statistic Accuracies 

  LR CART SVM XGB 

Mean Accuracy 76.64% 77.15% 77.82% 78.88% 

Standard 

Deviation 
0.07% 0.10% 0.08% 0.03% 
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Figure 1: Box Plot of Statistic Accuracies 

 

Looking at the entire confusion matrices in Tables 3a to 3d, we find that CART predicts 

the most lapses (191,869 = 51,241 + 140,628) from which it identifies the most lapses 

correctly (140,628) but also signals the most false alarms (51,241).  SVM predicts the most 

stays (398,597 = 310,258 + 88,339) in which it identifies the most stays correctly (310,258) 

while produces many false security cases (88,339).  XGBoost is rather robust on the other 

hand.  It is ranked the second in terms of all aspects: correctly identifying lapses (137,660), 

correctly identifying stays (309,111), not producing false alarms (38,450), and not producing 

false securities (81,177). 

 

Table 3a: Average Confusion Matrix of XGB 

  Predicted 

  Stay Lapse 

Actual 
Stay 309,111 38,450 

Lapse 81,177 137,660 

 

Table 3b: Average Confusion Matrix of SVM 

  Predicted 

  Stay Lapse 

Actual 
Stay 310,258 37,303 

Lapse 88,339 130,498 
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Table 3c: Average Confusion Matrix of CART 

  Predicted 

  Stay Lapse 

Actual 
Stay 296,320 51,241 

Lapse 78,209 140,628 

 

Table 3d: Average Confusion Matrix of LR 

  Predicted 

  Stay Lapse 

Actual 
Stay 304,025 43,537 

Lapse 88,775 130,062 

 

 

5.2. Results with respect to the economic metric 

To evaluate the algorithms by the economic metric, we first need to specify the 

parameters of the cash flows model.  Since no data is available for us to estimate these 

parameters, we have to make assumptions.  We had conducted sensitivity analyses and 

confirmed that the comparison results remain the same in general. 

The time horizon 𝑇 is set to 12 years according to the length of the sampling period.  We 

estimate the retention probability vector 𝒓𝑙𝑎𝑝𝑠𝑒 from the dataset and obtain:  

 

Other parameters are set as follows: 

- the profitability ratio 𝑝 = 0.5%; 

- the discount rate 𝑑 = 2%;  

- the cost to contact a policyholder  𝑐 = 10 USD. 

We propose two different incentive strategies: an aggressive one and a moderate one. The 

incentive vectors are defined as below: 

 

We further assume that the probabilities of accepting the incentives for a would-lapse 

policyholder are 𝛾1 = 20% and 𝛾2 = 10% respectively. 

The results from comparing different classification algorithms by the economic metric 

with the aggressive incentive strategy are displayed in Table 4 and Figure 2.  The winner 

looks to be XGBoost: it has the highest retention gain with the smallest standard deviation 

across subsampling.  Figure 2 further illustrates that XGBoost and SVM lead to similar 

retention gain compared to logistic regression and CART.   

Notice that the differences across the algorithms are wider in terms of the economic 

metric than the statistical metric.  The accuracies of the models are between 76.64% and 

78.88%, which means an improvement ratio of 2.9%.  The retention gains, on the other hand, 

range from 2.7 and 5.2 million USD, indicating an enhancement of 96%.  Therefore, choosing 

Year t 0 1 2 3 4 5 6 7 8 9 10 11 12

Retention probability 0.96 0.87 0.67 0.37 0.27 0.21 0.15 0.12 0.1 0.08 0.06 0.05 0.04

Year t 0 1 2 3 4 5 6 7 8 9 10 11 12

Incentive 1 0% 0% 0.030% 0.030% 0.060% 0.060% 0.090% 0.090% 0.120% 0.120% 0.150% 0.150% 0.180%

Incentive 2 0% 0% 0.015% 0.015% 0.030% 0.030% 0.045% 0.045% 0.060% 0.060% 0.060% 0.060% 0.060%
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a good algorithm is more important in terms of economic reality (dollar amount) than by 

statistical accuracy. 

  It appears that CART produces the lowest retention gain: $2,680,012.  This is mostly 

because CART has the highest false alarm rate (cf. Table 3c) which means offering the 

incentive to many policyholders who have no intention to lapse their policies.   Furthermore, 

CART leads to the highest contacting cost since it predicts the highest lapses.  The profits are 

thus reduced. 

 

Table 4: Cross-Validated Retention Gains with the Aggressive Strategy 

  LR CART SVM XGB 

Mean Retention Gain 4,046,602 2,680,012 5,028,737 5,243,913 

Standard Deviation 133,993 209,220 139,102 115,415 

 

 

Figure 2: Box Plot of Retention Gains with the Aggressive Strategy 

 

Then we look at algorithms’ performances when the incentive strategy is moderate and 

leads to lower acceptance probabilities.  The results are displayed in the Table 5 and the 

Figure 3.  We first notice XGB and SVM remains to be ranked No. 1 and No. 2, respectively.  

Next we observe that the improvement ratio of the best algorithm over the worst is smaller but 

remains to be significant (56%).   Thirdly, retention gains are significantly lower with the 

moderate incentive strategy.  For instant, XGB achieves a gain of 5.2 million dollars with the 

aggressive incentive strategy but the gain reduces to 3.3 million dollars when incentives 
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offered to policyholders are moderate.  Under our assumptions, the company should rather set 

the aggressive incentive strategy up to optimize her gains. However, in practice, one would 

need a more complete sensitivity study on the incentive to be offered and the corresponding 

acceptance probability to fully optimize the lapse management. 

 

Table 5: Cross-Validated Retention Gains with the Moderate Strategy 

  LR CART SVM XGB 

Mean Marketing Gain 2,618,396 2,085,599 3,113,900 3,261,029 

Standard Deviation 63,693 85,184 54,169 45,928 

 

 

 

Figure 3: Box Plot of Retention Gains with the Moderate Strategy 

 

In summary, XGB and SVM consistently perform better than CART and LR no matter 

which performance index, statistical accuracy or retention gains with alternative incentive 

strategies, is used.  The drawbacks of XGB and SVM relative to CART and LR that we may 

think of are not related to performance.  For instance, XGB and SVM are less transparent, 

more complex, demanding more computing power, and more difficult to be comprehended by 

inexperienced persons than CART and LR.  
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6. Optimization on profitability instead of classification 

It is obvious that insurers would not seek to optimize the classification accuracy but 

focus on economic gains resulted from the classification algorithms when forming a lapse 

management strategy.  When our aim is to maximize the profitability of the lapse 

management strategy, binary classifications might be unsuitable since they are not designed to 

meet such a need.  Ascarza et al. (2018) emphasize the difference between the at-risk 

population (e.g., customers with high churn probabilities) and the targeted population (e.g., 

customers that the company should focus her retention campaign on in order to optimize her 

profits) from an economic point of view.  Along this line of churn literature, Lemmens and 

Gupta (2017) modify the usual loss function into a profit-based function to optimize economic 

gains.  They obtain a significantly increase in the expected profit of a retention campaign.  

Learning from the churn literature, we transform the above classificaton problem into a 

regression question in this section.   

6.1. Methodology 

Let the new response variable 𝑧
𝑖

𝑅𝑗
 represents the retention gain or loss resulting from 

proposing the incentive 𝑗 ∈ {1,2} (cf. Section 5.2) to policyholder i.  More specifically, we 

define 𝑧
𝑖

𝑅𝑗
 as 

𝑧
𝑖

𝑅𝑗 = {
−𝐶𝐿𝑉(𝜹𝑗 , 𝐹𝑖 , �̂�, 𝒊) − 𝑐                                                           if 𝑦𝑖 = 0,

𝛾𝑗 . [𝐶𝐿𝑉(𝒑 − 𝜹𝑗  , 𝐹𝑖 , �̂�, 𝒊) − 𝐶𝐿𝑉(𝒑, 𝐹𝑖, 𝒓𝑙𝑎𝑝𝑠𝑒 , 𝒊)] − 𝑐     if 𝑦𝑖 = 1;
        (29) 

Then we may apply the XGBoost algorithm to {𝑧
𝑖

𝑅𝑗 , 𝒙𝑖}
1

𝑁

 and use the mean squared error as 

the loss function 

𝚿(𝑧𝑅𝑗 , 𝑧𝑅�̂�  ) =
1

𝑁
∑ [𝑧

𝑖

𝑅𝑗 − 𝑧𝑅�̂�
𝑖]

2
𝑁
𝑖=1 ,                                       (30) 

and as the metric for cross-validation. 

In the last step, lapse �̂�𝑖 is forecasted if the estimated gain is positive: 

�̂�𝑖 = {
1 if 𝑧𝑅�̂�

𝑖 > 0

0 if 𝑧𝑅�̂�
𝑖 ≤ 0

,                                  (31) 

By this way we can apply the same metrics described in previous sections.  Here �̂�𝑖 is better 

to be understood as the estimation of the profitability about offering an incentive to the 

policyholder 𝑖 rather than the forecast on the policyholder’s lapse.   

The two new classifications are denoted as XGB_R1 and XGB_R2, respectively, for 

applying XGBoost to 𝑧𝑅1 and 𝑧𝑅2.  The tuning method that we apply to estimating the 

parameters is described in Appendix 9.3.   

6.2. Results 

Table 6 and Figure 4 display the prediction accuracies.  Table 6 shows that XGB_R1 and 

XGB_R2 produce relatively low mean accuracy of respectively 76.7% and 75.7%  While 

XGB_R2 is clearly the worst model in term of accuracy, XGB_R1 generates similar results to 

the logistic regression which is the worst binary classification model regarding the accuracy 

measure.  These seemingly unsatisfied results are understandable since both XGB_R1 and 
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XGB_R2 are not designed to predict whether a policy would be lapsed or not.  What they aim 

for are economic gains. 

 

Table 6: Cross-Validated Accuracy  

  LR CART SVM XGB XGB_R1 XGB_R2 

Mean Accuracy 76.64% 77.15% 77.82% 78.88% 76.67% 75.71% 

Standard 

Deviation 
0.07% 0.10% 0.08% 0.03% 0.07% 0.06% 

 

 

Figure 4: Box Plot of Cross-Validated Accuracy 

 

The numbers in Table 7a and 7b tell us more about why XGB_R1 and XGB_R2 

performs badly in statistical accuracy.  They result in the smallest correct identifications on 

lapses (resp. 104,889 and 99,432) and produce the most false-sense-of-security (resp. 113,948 

and 119,405).  However, we will see very soon that XGB_R1 and XGB_R2 stand out when 

we switch focus to retention gain. 
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Table 7a: Average Confusion Matrix of XGB_R1 

  Predicted 

  Stay Lapse 

Actual 
Stay 329,357 18,204 

Lapse 113,948 104,889 

 

Table 7b – Average Confusion Matrix of XGB_R2 

  Predicted 

  Stay Lapse 

Actual 
Stay 329,413 18,149 

Lapse 119,405 99,432 

 

 

Table 8 and Figure 5 show that XGB_R1 generates a significantly larger average 

retention gain with the aggressive incentive strategy ($6,586,357) than other algorithms as 

well as a significantly lower standard deviation ($53,460).  The increase in retention gain is 

26% (1.3 million USD) higher than that generated by XGB (the second-best algorithm) and 

146% (3.9 million USD) better than that produced by CART.  Looking back to Table 7a, we 

see that XGB_R1 leads to reduce the number of false alarms (18,204) in optimizing the 

retention gain, even if this also reduces the correct detection (104,889).  The good results of 

XGB_R1 in achieving retention gain demonstrate the benefit of integrating the algorithm with 

the goal to be achieved.  The objective function for XGB_R1 to minimize, Equation (30), is 

about predicting retention gains.  XGB_R1 therefore would naturally perform the best when 

compared with other algorithms optimizing other objectives (such as classification 

accuracies). 

 

Table 8: Cross-Validated Retention Gains with the Aggressive Strategy 

  LR CART SVM XGB XGB_R1 

Mean Retention Gain 4,046,602 2,680,012 5,028,737 5,243,913 6,586,357 

Standard Deviation 133,993 209,220 139,102 115,415 53,460 
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Figure 5: Box Plot of Retention Gains the Aggressive Strategy 

 

We expect that the benefit of integrating the algorithm with the goal is robust across 

incentive strategies.  This is confirmed by the results in Table 9 and Figure 6.  XGB_R2 

generates retention gain of 3.9 million dollars that is nearly 600 thousand dollars more than 

that achieved by the second place XGB.  The increase in retention gains is 18%.  The 

increases with respect to the commonly seen LR and CART reach 47% and 85%. 

 

Table 9: Cross-Validated Retention Gains the Moderate Strategy 

  LR CART SVM XGB XGB_R2 

Mean Marketing Gain 2,618,396 2,085,599 3,113,900 3,261,029 3,852,782 

Standard Deviation 63,693 85,184 54,169 45,928 39,163 
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Figure 6: Box Plot of Retention Gains the Moderate Strategy 

 

The results in this section demonstrate the benefit of having a specific objective.  If 

senior managers of an insurer are able to specify an objective to be optimized (e.g., 

maximizing retention gain), the staff should apply an advanced algorithm like XBG directly 

to such an objective to achieve the optimum.  The enhanced gain relative to the case having 

no specific objective other than classification accuracy can be substantial.   

  

7. Conclusions 

Lapse risk is the most significant risk associated with life insurance.  Lapses may cause 

losses, reduce expected profits, lead to stringent liquidity, result in mis-pricing, impair the risk 

management, or even pose solvency threats.  Employing a good algorithm to model 

policyholder lapse behavior is therefore valuable.  

In this study, we adopt innovative viewpoints on lapse management in addition to 

introducing machine learning algorithms to lapse prediction.   Applying XGBoost and SVM 

to predicting whether a policyholder will lapse her/his policy is new to the literature.  

Secondly, we adopt not only a statistical metric in evaluating algorithms’ prediction 

performance but also an economic metric based on customer lifetime value and retention 

gains.   

The goal of classification accuracy has no direct link to the insurer’s costs and profits.  It 

thus might lead to a biased strategy (Powers, 2011).  Following the churn literature, we define 

a specific validation metric based on the economic gains.  This constitutes our third 

contribution: we are the first to set up a profit-based loss function so that we may directly 
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optimize the economic gains.   More specifically, we change the usual statistical idea of 

classification to a gain regression in which profits are to be maximized.   

The two machine learning algorithms, XGBoost and SVM, perform a little bit better than 

classic CART and logistic regression in terms of statistical accuracy on a large dataset 

consisting of more than six hundred thousand life insurance policies with information on 

policy terms and policyholders’ characteristics.  XGBoost has another advantage over other 

algorithms: it is less dependent upon the choice of training samples. 

The advantages of XGBoost and SVM are more apparent with respect to retention gains.  

The retention gains incorporate the costs of providing incentives to policyholders to reduce 

lapse propensities and the benefits of retaining policies.  XGBoost and SVM generate much 

higher retention gains than logistic regression and CART do.  For instance, XGBoost 

produces 1.2 to 2.6 million dollars more economic gains than CART.   

In the last section, we demonstrate that the economic gains can be further enhanced when 

the optimization is done on a function linked to economic gains rather than on statistic 

accuracies.  The results show that the retention gains with an aggressive incentive strategy 

resulted from XGB_R1 is 126% of those from applying XGBoost to pursue classification 

accuracies, in particular by reducing the false alarm rates.  An insurer should therefore apply 

advanced machine learning algorithms like XGB to its economic objective so that lapse 

management can be really optimized.     
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9. Appendices  

9.1. XGBoost Tuning – Binary Classification 

The values of the parameters tested in the grid search for the tuning of XGBoost are as 

follows: 

- eta: 0.05, 0.1, 0.15; 

- gamma: 0, 5, 10; 

- max_depth: 10, 15, 20, 25, 30; 

- min_child_weight: 15, 20, 25; 

- subsample: 1; 

- colsample_bytree: 0.4, 0.5, 0.6. 

The values of the grid search are chosen by a previous sensitivity study in which we apply the 

same methodology on a subsample of the whole database but with a coarser grid.  Then we 

focus on a finer grid to obtain better results within a reasonable time period.  In addition, the 

fact that we only test subsample with the value of 1 means that we do not adopt the stochastic 

gradient boosting of Friedman (2002). 

9.2. SVM Tuning 

The values of the parameters tested in the grid search for the tuning of SVM are as 

follows: 

- Cost: 0.5, 1, 2, 5, 10; 

- gamma: 0.25, 0.5, 0.75, 1, 1.25; 

Similar to the previous section, the values of the grid search are chosen by a previous 

sensitivity study in which we apply the same methodology on a subsample of the whole 

database but with a coarser grid.  Then we focus on a finer grid to obtain better results.  This 

is necessary so that the computing can be done within a reasonable time period. 

9.3. XGBoost Tuning – Profitability 

We adopt the values of most parameters generated by a previous sensitivity study as: 

- eta = 0.005; 

- gamma = 1; 

- max_depth = 15; 

- min_child = 15; 

- subsample = 0.7; 

- colsample = 0.8. 
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Then, we determine the best nrounds through a 5-folds cross-validation with this parameter 

tested up to 1,000. 


