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Quasicomplementary foliations and
the Mather–Thurston theorem

GAËL MEIGNIEZ

We establish a form of the h–principle for the existence of foliations of codimension
at least 2 which are quasicomplementary to a given one. Roughly, “quasicomplemen-
tary” means that they are complementary except on the boundaries of some kind of
Reeb components. The construction involves an adaptation of W Thurston’s “inflation”
process. The same methods also provide a proof of the classical Mather–Thurston
theorem.
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1 Introduction

1.1 Quasicomplementary foliations

Given, on a manifold M, a dimension-q foliation F, the existence of a foliation G

complementary to F (that is, G is of codimension q and transverse to F ) is of course
in general an intractable problem. In this paper, we weaken the transversality condition,
prescribing a simple (and classical) model for the tangentialities between F and G

which implies that G is a limit of plane fields complementary to F but themselves not
necessarily integrable. We establish, when q � 2, a form of Gromov’s h–principle for
such “quasicomplementary” foliations.
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644 Gaël Meigniez

Here is a very elementary example similar to what we call quasicomplementarity,
although q D 1. Consider the Hopf foliation F of the 3–sphere S3 by circles.
The classical geometric theory of foliations shows that F admits no complementary
foliation G : indeed, by the Novikov closed leaf theorem (see for example Camacho
and Lins Neto [2] or Candel and Conlon [3]), G would have a compact leaf which
would separate S3 , in contradiction to the transversality to F ; alternatively, one can
argue that the Hopf fibration would then be a foliated bundle [2, pages 99–100; 3,
Example 2.1.5] over a simply connected base S2 ; hence all leaves of G would be
diffeomorphic to the base; and by the Reeb global stability theorem [2, Chapter IV,
Theorem 4; 3, Theorem 6.1.5], the total space would be S2 �S1 , not S3 .

However, it is easily verified that the sphere has a Reeb foliation G which is comple-
mentary to the circles except on its unique compact leaf, which is tangential to them.
Moreover, G is a limit of 2–plane fields complementary to the circles, provided that
one makes its two Reeb components “turbulize” in appropriate directions: precisely,
the holonomy of G along any circle fibre in the compact leaf must be contracting on
one side of the leaf, and expanding on the other.

The models for the tangentialities are classical, being nothing but W Thurston’s con-
struction to fill holes in codimensions 2 and more [36, Section 4]. To fix ideas,
the smooth (C1 ) differentiability class is understood everywhere, unless otherwise
specified. On the interval I WD Œ0; 1�, fix a smooth real function r 7! u.r/ such that
u0.r/ > 0 for 0< r < 1, and u.r/ and all its successive derivatives vanish at r D 0, and
u.r/Cu.1� r/D 1. Write Dn (resp. Sn�1 ) for the compact unit ball (resp. sphere)
in Rn ; endow D2 with the polar coordinates � , � ; endow S1 with the coordinate s ;
on D2 �S1 , one has the smooth 1–parameter family .!r/r2I of smooth nonsingular
1–forms defined for 0� r � 1

2
by

!r WD u.1� 2�/dsCu.2�/d��
on
˚
� � 1

2

	�
and

!r WD u.2� 2�/d�Cu.2�� 1/.ds�u.1� 2r/d�/�
on
˚
� � 1

2

	�
; while, for 1

2
� r � 1,

!r WD u.2� 2r/!1=2Cu.2r � 1/ds:

For every r , the form !r is integrable (it is immediately verified that !r ^ d!r D 0);
hence one gets on D2�S1 a 1–parameter family of codimension-1 foliations, seen in
Figure 1.
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r D 1 1
2
< r < 1 r D 1

2
0� r < 1

2

Figure 1: Thurston’s construction to fill holes in codimensions 2 and more.

Fix p; q� 2. For every closed .p�2/–fold †, we define the multifold Reeb component
of core † as the .pCq/–fold

C† WD†�D2 �Dq�1 �S1

(whose projection to the i th factor for 1� i � 4 will be denoted by pri ) endowed with
two foliations:

� The dimension-q foliation F† parallel to the factor Dq�1 �S1 .

� The codimension-q foliation G† obtained by endowing, for every a 2 Dq�1 ,
the fibre pr3

�1.a/ with its codimension-1 foliation pullback of the 1–form !jaj

under pr2 � pr4 .

Definition 1.1 On a .pCq/–fold M, the codimension-q foliation G is quasicomple-
mentary to the dimension-q foliation F if they are transverse except maybe for finitely
many disjoint multifold Reeb components C† ,!M, in which F (resp. G ) coincides
with F† (resp. G† ).

The components may have different cores; one can of course also consider the union
of the components as one component whose core may be not connected. Note that
G is almost everywhere complementary to F : precisely, everywhere on M, except
on the subset defined in each component C† by � ı pr2 D

1
2

and kpr3k �
1
2

, which

Geometry & Topology, Volume 25 (2021)



646 Gaël Meigniez

is a hypersurface tangential to F. Also, it is easily verified that G is a limit of
codimension-q plane fields complementary to F on M.

For the elements on Haefliger structures, namely normal bundle, differential, concor-
dances, regularity and relations to foliations, see Section 2. Recall the foliation theorem
in codimensions 2 and more, also known as the “h–principle for foliations”, on closed
manifolds [36]; see also Eliashberg and Mishachev [6] and Mitsumatsu and Vogt [30].
We use the notation OpX .Y / for “some open neighbourhood of Y in X ”.

Theorem 1.2 (Thurston) On a compact manifold M, let � be a real vector bundle of
dimension q � 2, let 
 be a �q –structure whose normal bundle is � , and let ! be a
1–form valued in � of constant rank q ; assume that d
 D ! on OpM .@M/.

Then M admits a regular �q –structure 
 0 of normal bundle � such that :

� 
 0 D 
 on OpM .@M/, and 
 0 is concordant to 
 on M (rel @M ).

� d
 0 is homotopic to ! on M (rel @M ) among the 1–forms valued in � of
constant rank q .

Our main result is a refinement of this classical one for a manifold already foliated:

Theorem A On a compact manifold M, let F be a foliation of dimension q � 2, let

 be a �q –structure whose normal bundle is �F, and let ! be a 1–form valued in �F
such that !j�F is of constant rank q ; assume that d
 D ! on OpM .@M/.

Then M admits a regular �q –structure 
 0 of normal bundle �F such that :

� 
 0 D 
 on OpM .@M/, and 
 0 is concordant to 
 on M (rel @M ).

� d
 0 is homotopic to ! on M (rel @M ) among the 1–forms valued in �F of
constant rank q .

� The foliation induced by 
 0 is quasicomplementary to F on M.

Remark 1.3 We put no restriction on the position of F with respect to @M.

Remark 1.4 The construction does not use sophisticated results on groups of diffeo-
morphisms. For every integer r � 1, Theorem A holds as well in the differentiability
class C r, with the same proof.

Geometry & Topology, Volume 25 (2021)
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Remark 1.5 This result and our proof are also valid for p D 1, in which case there
exist no multifold Reeb components at all, hence “quasicomplementary” means “com-
plementary”. Of course, it is not a great deal to produce a foliation complementary
to a given codimension-1 foliation; however, the point is that there is one in every
concordance class of �q –structures whose normal bundle is �F, and this goes in every
differentiability class (Remark 1.4), including C qC1 .

Remark 1.6 By construction, for p WD codim.F /� 2, the core † of each multifold
Reeb component resulting from our construction will be a product of two spheres
Si�1 � Sp�i�1 , with 1 � i � p � 1; see Proposition 4.21. One can if one likes
better, by a trick due to Thurston [37, beginning of Section 5], arrange that † is the
.p�2/–torus, or, for p � 3, that †D S1 �Sp�3 — see Meigniez [27, Sections 3.3.2
and 3.3.3].

Denote, as usual, by B�rq (resp. B�rq ) the Haefliger space classifying the � –structures
(resp. parallelized � –structures) of codimension q and differentiability class C r. One
has in particular the following corollaries of Theorem A, since B�1q is contractible —
see Tsuboi [38] — and since B�1q is .qC1/–connected; see Thurston [35].

Corollary 1.7 Let F be a C1 foliation of dimension at least 2 on a closed manifold.
Then F admits a quasicomplementary foliation of class C 1 .

If moreover codim.F / D 2, or if the bundle �F is trivializable, then F admits a
quasicomplementary foliation of class C1 .

1.1.1 About the proof Theorem A is better established under a version (Theorem A0)
producing a cleft foliation G with fissures (see Section 3) instead of multifold Reeb
components; the fissures are some kind of discontinuities in the foliation that have a
product structure †�Dq where † is a compact .p�2/–fold; in that frame, quasicom-
plementarity means that outside the fissures, G is complementary to F, and that on the
fissures, every slice parallel to Dq is a plaque of F. For q � 2, Theorems A and A0

are straightforwardly equivalent to each other through Thurston’s method to fill the
holes, but Theorem A0 also holds in codimension q D 1.

To prove Theorem A0, the problem is translated, using the Gromov–Phillips–Haefliger
parametric foliation theorem on open manifolds, into an extension problem whose
proof falls to an adaptation of the original “inflation” process that Thurston introduced
to prove Theorem 1.2.

Geometry & Topology, Volume 25 (2021)



648 Gaël Meigniez

We feel that the present work illustrates the power and the accuracy, in the framework
of Gromov’s h–principle, of the tools that Thurston left to us after his early works on
foliations.

1.2 A proof of the Mather–Thurston theorem

A second application of our method deals with the construction of foliated products,
and more generally of foliated bundles. We begin with discussing foliated products.

In the case where the given foliation F is a product foliation, we can get full comple-
mentarity at the price of modifying the base factor of the product by some surgeries; in
other words we give a proof of the classical Mather–Thurston theorem [35], by means
of a geometric construction pertaining to the h–principle.

See J Mather’s proof in codimension 1 in [21]; for the general codimensions, Mather
[23, pages 79–80] mentions that Thurston had three different proofs — the first seems
to be lost; see Mather [22; 23] McDuff [24; 25] and Segal [34] for the two other proofs;
see also Kupers [18] for a modern one.

Precisely, fix a manifold X of dimension q � 1, without boundary, not necessarily
compact. “At infinity” means as usual “except maybe on some compact subset”. For a
compact oriented manifold V of dimension p � 0 maybe with smooth boundary, on
V �X, consider the slice foliation FV parallel to X; and the horizontal codimension-q
foliation parallel to V , or equivalently the horizontal �q –structure whose differential is
the projection

�.V �X/! �FV

parallel to �V .

Recall that a foliated X –product over V means a codimension-q foliation on V �X
complementary to FV on V �X and horizontal at infinity. Equivalently, this amounts
to a �q –structure on V �X whose normal bundle is �FV , whose differential induces
the identity on �FV , and horizontal at infinity.

We use the notation yV � V � I for the union of V � 0 with @V � I . An oriented
cobordism .V;W; V �/ rel @V means as usual a compact oriented p–fold V � together
with an oriented diffeomorphism @V � Š @V , and a compact oriented .pC1/–fold W
bounded by � yV [@V V � . We write �pr for the restriction to yV �X � V � I�X of the
projection V � I�X ! V �X. We shall prove:

Geometry & Topology, Volume 25 (2021)
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Theorem 1.8 (Mather–Thurston, version “for geometrically minded topologists”)
Let V be a compact oriented manifold ; let 
 be a �q –structure on V �X, of normal
bundle �FV , horizontal at infinity, and restricting to a foliated X –product over @V .

Then there are an oriented cobordism .V;W; V �/ rel @V and a �q –structure on W �X,
of normal bundle �FW , horizontal at infinity, coinciding with �pr�.
/ on yV �X, and
restricting to a foliated X –product over V � .

This interpretation of the Mather–Thurston theorem was introduced by D B Fuchs [9].
Let us now recall how the classical version of the theorem can be deduced.

Consider the group Diffc.X/ of the compactly supported diffeomorphisms of X,
endowed with the smooth topology; the same group Diffc.X/ı with the discrete
topology; the identity map

Diffc.X/ı ! Diffc.X/

and the topological group Diffc.X/ that is the homotopy-theoretic fibre of this map.
Recall that its classifying space BDiffc.X/ also classifies the foliated X –products.

Realize B�q as a fibred space over BOq with fibre B�q . Denote by X the foliation
of X by points (regarded as a �q –structure on X whose normal bundle is �X and
whose differential is the identity of �X ). Consider the space �c.�X/ of the maps

f WX ! B�q

such that f lifts the map X ! BOq classifying �X, and such that f classifies X at
infinity. One can view �c.�X/ as the space of the �q –structures on X whose normal
bundle is �X and coinciding with X at infinity. For X D Rq, the space �c.�Rq/

coincides with the qth loop space �q.B�q/.

Consider the map
BDiffc.X/

˛
�! �c.�X/

adjoint to the map
X �BDiffc.X/! B�q

that classifies the �q –structure of the total space of the universal foliated X –product
[21; 35].

Theorem 1.8 amounts to saying that ˛ induces an isomorphism in oriented bordism.
Equivalently, by the “Hurewicz theorem for bordism groups” (see Atiyah and Hirze-
bruch [1] and Eliashberg, Galatius and Mishachev [4, Appendix B]), ˛ induces

Geometry & Topology, Volume 25 (2021)



650 Gaël Meigniez

an isomorphism in integral homology. That last wording is the classical one. The
map ˛ is actually a homology equivalence: indeed, B�q being .qC1/–connected in
class C1 [35], the space �c.�X/ is simply connected.

There is also a well-known generalization of the Mather–Thurston theorem for foliated
bundles rather than foliated products.

Still consider a manifold X of dimension q � 1; to simplify, assume that X is closed.
As usual, an X –bundle .E; �/ over a compact manifold V is a smooth locally trivial
bundle map � WE! V whose fibres are diffeomorphic with X; a foliated X –bundle
means moreover a codimension-q foliation on E complementary to the fibres of � .
Equivalently, this amounts to a �q –structure on E whose normal bundle is ker.d�/
and whose differential induces the identity on ker.d�/.

The generalized Mather–Thurston theorem can be stated as an isomorphism in integral
homology between the space BDiff1.X/ı that classifies the foliated X –bundles,
and the classifying space for �q –structures on X –bundles whose normal bundle is
tangential to the fibres. For a construction of this last classifying space and a proof
of the generalized theorem as a corollary of the usual Mather–Thurston theorem, see
Nariman [31, Section 1.2.2].

Here is the version “for geometrically minded topologists” of the generalized Mather–
Thurston theorem. The notation yV has the same meaning as above.

Theorem 1.9 Let .E; �/ be an X –bundle over a compact oriented manifold V ; let

 be a �q –structure on E, of normal bundle ker.d�/, and restricting to a foliated
X –bundle over @V .

Then there are

� an oriented cobordism .V;W; V �/ rel @V ;

� an X –bundle .EW ; �W / over W , coinciding over yV with the pullback of .E; �/
through the projection V � I! V ;

� a �q –structure on EW , of normal bundle ker.d�W /, coinciding over yV with
the pullback of 
 through the projection E� I!E, and restricting to a foliated
X –bundle over V � .

Our method to prove Theorem 1.8 actually also gives Theorem 1.9 after a very few
straightforward changes which are left to the reader.

Geometry & Topology, Volume 25 (2021)
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Note 1.10 (other differentiability classes) The Mather–Thurston theorem and its
generalization for foliated bundles are well known to hold for every differentiability
class C r for r an integer � 1. Our proof goes without change in these classes.
Three other interesting classes are C 0 , Lipschitz and PL. The validity of the Mather–
Thurston theorem is classical in the classes C 0 and Lipschitz, and also in the class
PL in codimension 1, but it remains open in the class PL for q � 2. Our methods
cannot handle the C 0 class, but do handle the Lipschitz and PL classes after some
technicalities and adaptations; this material will be covered in a forthcoming paper.

Let us illustrate Theorem 1.9 by two known corollaries. Since B�1q is contractible [38]
and since B�1q is .qC1/–connected [35]:

Corollary 1.11 (i) Every X –bundle over a closed oriented manifold is cobordant
to a C 1–foliated X –bundle.

(ii) Every X –bundle over a closed oriented surface is cobordant to a C1–foliated
X –bundle.

For (ii), when X itself is a surface, see also [31, Remark 3.16].

Jenseits des Homotopieprinzips One could maybe speak of a “c–principle”, with a
c for “cobordism”. Recall that in situations where Gromov’s famous h–principle holds,
every “formal” object is homotopic to a genuine object through the formal objects.
In the same way, let us say that the c–principle holds when every formal object is
cobordant to a genuine object through the formal objects. Examples of results pertaining
to the c–principle are the Mather–Thurston theorem for foliated products or bundles,
the Madsen–Weiss theorem for fibrations whose fibres are surfaces (see [4]), and the
realization of taut compactly generated pseudogroups by foliations of dimension 2 and
codimension 1; see Meigniez [26]. In the same spirit, see Fuchs’ early paper [9] and
Kupers’ recent one [18].

Acknowledgements It is a pleasure to thank Mike Freedman, François Laudenbach,
Nikolai Mishachev, Sam Nariman, Larry Siebenmann and the anonymous referees, for
constructive exchanges which have benefited this work.

2 Haefliger structures

In this section, we recall A Haefliger’s notion of �q –structure [12; 13; 14; 15], under
the form of microfoliated bundle (this form was introduced in [13]; see also [29]).

Geometry & Topology, Volume 25 (2021)
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M U
Z.M/

Rq
E

Figure 2: A �q –structure.

We fix some vocabulary, point out a few elementary facts and prove (again) the two
parametric forms of the classical foliation theorem on open manifolds.

We write every real vector bundle � over a manifold M in the form � D .E; �;Z/

where E is the total space, � WE!M is the projection and Z WM !E is the zero
section.

2.0.1 Definition A �q –structure 
 on M is given by

� a real vector bundle � D .E; �;Z/ of dimension q over M ;

� an open neighbourhood U of Z.M/ in E ;

� on U, a codimension-q foliation M transverse to every fibre.

One calls � the normal bundle, and M the microfoliation (Figure 2). One regards two
�q –structures as equal if they have the same normal bundle and if their microfoliations
coincide on some open neighbourhood of the zero section; in other words, 
 is actually
the germ of M along Z.M/; we shall also denote 
 by Œ�; U;M �.

A �q –structure means a �q –structure whose normal bundle is M �Rq.

2.0.2 Canonical form and differential Consider a �q –structure 
 D Œ�; U;M � on
a manifold M, where � D .E; �;Z/.

On the manifold U, let � be the differential 1–form valued in ��.�/, defined at every
point v 2 U as the projection of �vE onto ker.dv�/ D ��.v/ parallel to �vM. If
one likes better, � is the unique 1–form defining the foliation M (in the sense that
�M D ker�) and whose restriction to every fibre of � is the identity. We call �
the canonical form of the �q –structure 
 . Let us define the differential d
 of the
�q –structure 
 as Z�.�/: a differential 1–form on M valued in � .

Geometry & Topology, Volume 25 (2021)
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Note 2.1 The notion of differential for a Haefliger structure does not seem to appear
in the literature. In the case where d
 is of rank q , of course d
 admits a convex set
of left inverse vector bundle monomorphisms � ,! �M, which are the objects that the
authors have considered instead. The differential exists for every Haefliger structure
at every point, not only at the regular ones (see Section 2.0.6). It is functorial with
respect to pullbacks (see Section 2.0.3). We feel that, speaking in terms of d
 , the
analogy between the h–principle for foliations and several other avatars of Gromov’s
h–principle becomes more transparent. From our viewpoint, the foliation theorems,
Theorems 1.2 and 2.13, deal with homotoping a given differential form of maximal
rank to one which is somehow integrable.

2.0.3 Pullback Given a �q –structure 
 D Œ�; U;M � on M, and given a smooth
mapping f WN !M, one defines a pullback �q –structure f �.
/ on N whose normal
bundle is the usual pullback vector bundle f �.�/, and whose microfoliation is the
pullback of the foliation M under the canonical bundle morphism f �.�/! � .

Example 2.2 We give, as an example, a useful construction allowing one to regard
the microfoliation of any Haefliger structure as another Haefliger structure.

Given 
 D Œ�; U;M � as above, where � D .E; �;Z/, consider the vector bundle
y� WD ��.�/ of rank q over the base E ; consider its total space

yE DE �M E D f.v; w/ 2E �E j �.v/D �.w/g

and the exponential map

exp W yE!E; .v;w/ 7! vCw:

One has on the manifold U the �q –structure y
 whose normal bundle is y�jU and whose
microfoliation is the pullback of the foliation M under exp. Clearly,

(1) Z�.y
/D 
:

2.0.4 Isomorphisms J Milnor’s notion of microbundle (here smooth) is the natural
one for the bundle normal to a Haefliger structure. For simplicity, one rather speaks in
terms of vector bundle; but this underlying fact is reflected in the morphisms that one
admits. It is enough for us to consider isomorphisms.

Definition 2.3 A microisomorphism between two real vector bundles � D .E; �;Z/
and �0 D .E 0; � 0; Z0/ over the same manifold M is a germ of diffeomorphism
' WE!E 0 along Z.M/ such that Z0 D ' ıZ and � D � 0 ı' .

Geometry & Topology, Volume 25 (2021)
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If moreover �0 D � and if the differential of ' at every point of Z.M/ is the identity,
we call ' a special microautomorphism of � .

Clearly, the group Maut.�/ of the microautomorphisms of � splits as the semidirect
product of the group Smaut.�/ of the special microautomorphisms by the group Aut.�/
of the linear automorphisms.

Note that Smaut.�/ is convex, hence contractible.

Definition 2.4 Given two �q –structures 
 WD Œ�; U;M � and 
 0 WD Œ�0; U 0;M 0� on the
same manifold M, an isomorphism between them is a microisomorphism ' W �! �0

such that M D '�.M 0/ (as germs of foliations along Z.M/).

2.0.5 Concordance Let 
0 and 
1 be two �q –structures on the same manifold M
which coincide in restriction to some submanifold N �M (maybe empty).

Definition 2.5 A concordance, also known as a homotopy, between 
0 and 
1 (rel N )
is a �q –structure 
 on M � I such that

� 
 jM�i D 
i for i D 0; 1;

� 
 coincides with pr�1.
0/ in restriction to N � I .

Lemma 2.6 If 
0 and 
1 are isomorphic (rel N ), then they are concordant (rel N ).

Proof Put 
i D Œ�i ; Ui ;Mi � for i D 0; 1. Let ' be a microisomorphism between 
0
and 
1 such that 'jN D id. Without loss of generality, shrinking U0 and U1 , arrange
that U1 D '.U0/.

Endow U0 WDU0�I with the foliation M 0 WD pr�1.M0/; in the disjoint union U0tU1 ,
identify each point .v; 1/ 2 U0 with �.v/ 2 U1 . The quotient space is diffeomorphic
to an open neighbourhood of the zero section in a vector bundle over M � I ; and on
this quotient space, the image of M 0 is the microfoliation of a concordance (rel N )
between 
0 and 
1 .

Proposition 2.7 (concordance extension property) Given a �q –structure 
 on M
and a submanifold N �M, every concordance of 
 jN extends to a concordance of 
 .

This is obvious from Haefliger’s original viewpoint on the � –structures [12], obvious
if one sees �q –structures as maps to B�q , and almost as obvious from the geometric
viewpoint adopted here. See also [21, page 199].
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2.0.6 Regular Haefliger structures and foliations The following remarks are in-
tended to make clear the relations between two notions: foliations on the one hand,
regular Haefliger structures on the other hand.

Vocabulary 2.8 Given a codimension-q foliation G on a manifold M, we define as
usual the bundle normal to G as �G WD �M=�G ; and we define the differential of G

as the canonical projection dG W �M ! �G.

If G is moreover complementary to a dimension-q foliation F on M, we often identify
�G with �F ; then, dG becomes a linear retraction �M ! �F.

A �q –structure 
 D Œ�; U;M � on M, where �D .E; �;Z/, is called regular at a point
x 2M if d
 is of maximal rank q at x ; in other words, Z is transverse to M at x .

Definition 2.9 If 
 is regular on M, one says that 
 induces the codimension-q
foliation G WDZ�.M / on M. If moreover

� the bundle � normal to 
 equals the bundle �G normal to G ;

� the differential d
 equals the differential dG of the foliation G ;

then we say that 
 specially induces G, and that 
 is a special regular Haefliger
structure.

Lemma 2.10 (a) Every codimension-q foliation is specially induced by some
regular �q –structure.

(b) Two regular �q –structures are isomorphic if and only if they induce the same
foliation.

(c) The identity is the unique automorphism of a regular �q –structure.

Proof Fix an auxiliary Riemannian metric on M ; denote by D.x; r/�M the open
ball of centre x and radius r .

(a) Given a codimension-q foliation G on M, let exp W �G !M be the exponential
map �M !M restricted to the subbundle �G?Š �G. Clearly, on a neighbourhood of
the zero section, exp�.G / is the microfoliation of a �q –structure specially inducing G.

(b) One can assume that M is compact. Let 
 WD ŒE; �;Z;U;M � and 
 0 WD

ŒE 0; � 0; Z0; U 0;M 0� be two regular �q –structures on M inducing the same foliation
G DZ�.M /DZ0�.M 0/.
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Since M 0 is complementary in U 0 to the fibres of � 0, there is an r > 0 so small
that for every x 2 M, the projection � 0 admits a local section � 0x WD.x; r/ ! U 0

tangential to M 0 and such that � 0x.x/DZ
0.x/. Clearly, � 0x.y/ depends smoothly on

the pair .x; y/.

On the other hand, since 
 is regular, after shrinking U, one has for every v 2 U a
point Z.pr.v// of the zero section in the leaf of M through v ; and one can arrange that
pr W U !M is smooth, and that pr ıZ D id. One has M D pr�.G /. Moreover, after
shrinking U again, one can arrange that for every x 2M, the diameter of �.pr�1.x//
in M is less than r . One defines, for v 2 U,

'.v/ WD � 0pr.v/.�.v//

So, ' is smooth, and maps every leaf of M into a leaf of M 0, and � 0 ı ' D � , and
' ıZ DZ0.

It remains to verify that ' induces a diffeomorphism between OpE .Z.M// and
OpE 0.Z

0.M//. To this end, permuting the roles of 
 and 
 0, one makes a similar map

'0 W OpE 0.Z
0.M//! OpE .Z.M//

and one considers

 WD '0 ı' W OpE .Z.M//! OpE .Z.M//:

So,  maps every leaf of M into a leaf of M, and � ı D � , and  ıZ DZ. We
claim that such a map  is necessarily the identity on some neighbourhood of Z.M/.

Indeed, shrinking U again, one can arrange that  is defined on U. Since 
 is regular,
shrinking U again, the saturation of Z.M/ with respect to the foliation M is U.
Consider any leaf L of M. In particular, L is connected. Since L meets Z.M/ and
 is the identity there, one has  .L/�L. Since �jL is an étale map preserved by  ,
the fixed-point set of  jL is open and closed in L, hence  jL D id. The claim is
proved.

(c) This is a particular case of the claim.

In other words:

(i) A codimension-q foliation on M amounts to an isomorphism class of regular
�q –structures on M .

(ii) For every codimension-q foliation G on M, the regular �q –structures on M
specially inducing G form a principal space under the group Smaut.�G /.

Geometry & Topology, Volume 25 (2021)



Quasicomplementary foliations and the Mather–Thurston theorem 657

Conclusion 2.11 (a) In view of Lemma 2.6 and of (i) above, one can speak of the
concordance class of a codimension-q foliation G, defined as the concordance
class of any �q –structure inducing G.

(b) In view of (ii) above and Smaut.�G / being contractible, there is no inconve-
nience in identifying a codimension-q foliation G with any regular �q –structure
specially inducing G.

2.0.7 The parametric foliation theorem on open manifolds The classical foliation
theorem on open manifolds admits two parametric versions, that we respectively call
“nonintegrable” and “integrable”. The second will be used repeatedly in the proof of
Theorem A0. It does not seem to appear explicitly in the literature, although all proofs
of the nonintegrable version (for example the one in [20]) actually prove the integrable
one as well.

The space of parameters will be a compact manifold A; fix a compact submanifold
B �A, maybe empty. Consider, over a manifold M, a real vector bundle �D .E; �;Z/
of dimension q , and its pullback z� over M �A.

Definition 2.12 By a family of Haefliger structures .
.a//a2A whose normal bundle
is � , one means, for every a 2 A, a �q –structure 
a on M whose normal bundle
is � — denote its microfoliation by M .a/— such that the (germ of the) plane field
�M .a/ on OpE .Z.M// depends smoothly on a .

Call the family .
.a//a2A integrable (with respect to the parameter) if, moreover, there
is a global �q –structure z
 on M �A whose normal bundle is z� and whose restriction
to the slice M � a is 
.a/ for every a 2 A.

Fix a compact submanifold N � M (maybe empty) such that the pair .M;N / is
open, in the sense, classical in the h–principle, that every connected component of the
complement M nN which is relatively compact in M meets @M. Assume that M
carries a (smooth) parametric family .!.a//a2A of �–valued differential 1–forms of
constant rank q such that d
.a/D!.a/ holds on OpM .N / for every a2A, and on M
for every a 2 OpA.B/. Consider the projection pr1 W .x; t/ 7! x and the embedding
�t W x 7! .x; t/ for x 2M and t 2 I .

Theorem 2.13 Let .
.a//a2A be a family of �q –structures on M.

Then , under the above hypotheses:
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(i) There is a smooth family .x
.a//a2A of �q –structures on M � I such that for
every a 2 A:

(1) ��0.x
.a//D 
.a/.

(2) x
.a/D pr�1.
.a// on OpM .N /� I .

(3) If a 2 B , then x
.a/D pr�1.
.a// on M � I .

(4) 
 0.a/ WD ��1.x
.a// is regular.

(ii) Moreover , the family .d
 0.a//a2A is homotopic on M, rel .N �A/[ .M �B/,
to the family .!.a//a2A among the families of �–valued 1–forms of constant
rank q .

(iii) If the family .
.a//a2A is moreover integrable , then one can choose the family
.x
.a//a2A to be also integrable.

Proof Haefliger’s original proof of the nonparametric foliation theorem on open
manifolds [13; 14] is a direct application of the Gromov–Phillips transversality theorem
in the frame of � –structures: the transversality theorem is applied, in the total space
of the normal bundle of the structure, to the zero section, and provides a homotopy
that puts it transverse to the microfoliation. This argument goes with parameters and
thus proves both parametric versions, the nonintegrable and the integrable. Here are
the details, for the sake of completeness.

Choose a smooth plateau function � on M �A such that

� �D 1 on a neighbourhood of P WD .N �A/[ .M �B/;

� !.a/x D d
.a/x for every .x; a/ in the support spt.�/.

Let V � E be an open neighbourhood of the zero section Z.M/, so small that
M .
.a// is defined on V for every parameter a , and that the plane field �M .a/ on V
depends smoothly on a . Let �.a/ be, on V , the canonical, ��.�/–valued 1–form
defining M .a/ (recall Section 2.0.2).

For a fixed a 2 A, consider, over the map Z WM !E, the bundle morphism

�.a/ W �M ! �E

defined for every x 2M and u 2 �xM as

�.a/xu WD �.x; a/u˚ .1��.x; a//!.a/xu
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(where the tangent space �Z.x/E is decomposed as �xM ˚ �x ). In view of the choice
of � and of the definitions of d
 and � ,

(2) �.a/Z.x/ ı �.a/x D !.a/x :

Hence, �.a/x is transverse to �Z.x/M .a/ in �Z.x/E. By the Gromov–Phillips transver-
sality theorem [10; 32; 11, pages 53 and 102] (which, if one likes, one can today obtain
as an immediate application of the Eliashberg–Mishachev holonomic approximation
theorem [7]), one has a map

H WM �A� I! V

and, over H, a homotopy of parametric families of bundles morphisms

� W �M �A� I! �E

such that for every x 2M, u 2 �xM, a 2 A and t 2 I :

(I) H.x; a; t/DZ.x/ if .x; a/ 2 P or t D 0.

(II) �.u; a; t/D �.a/xu if .x; a/ 2 P or t D 0.

(III) The map u 7! �.u; a; t/ maps �xM linearly into �H.x;a;t/E transversely to
�H.x;a;t/M .a/.

(IV) �.u; a; 1/D .@H=@x/.x; a; 1/u.

For every parameter a , define the �q –structure x
.a/ on M �I as the pullback of y
.a/
(recall Example 2.2) through the map .x; t/ 7!H.x; a; t/. The properties (1)–(3) of
Theorem 2.13 follow from (I) above and from (1) in Example 2.2, while (4) follows
from (III) and (IV).

(ii) Consider on M the 1–parameter family of A–parametrized families of rank-q ,
�–valued 1–forms:

$.a; t/xu WD�H.x;a;t/�.u; a; t/

(where a 2 A, t 2 I , x 2M and u 2 �xM ). By (2) above and by (I) and (II), the
identity $.a; t/x D !.a/x is met for .x; a/ 2 P or t D 0. On the other hand, by the
definitions of � and y
 and by (IV), one has $.a; 1/D d
 0.a/.

(iii) Assume moreover that every 
.a/ is the restriction to the slice M �a of a global
�q –structure z
 on M �A. Then every x
.a/ is the restriction to the slice M � a� I

of the global �q –structure on M �A� I that is the pullback of yz
 through the map

H � pr2 WM �A� I! V �A:
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3 Cleft Haefliger structures and cleft foliations

We shall actually prove first a form (Theorem A0) of Theorem A dealing with “fissures”
instead of multifold Reeb components; this form goes as well for q D 1. Our fissures
are some kind of discontinuities in a foliation which in the compact case amount to the
same as the classical “holes”, ubiquitous in the theory of foliations since Thurston’s
works [36; 37]. The advantage of fissures over holes is that fissures are more functorial.

Consider a compact manifold Q of dimension q � 1 with smooth boundary (we are
essentially interested in the case QDDq ).

Notation 3.1 One denotes by Diff.Q/ the group of the diffeomorphisms of Q whose
support is contained in the interior of Q .

One denotes by Diff.Q/I the topological group (for the smooth topology) of the
smooth pointed paths in Diff.Q/: in other words, the families of diffeomorphisms
' WD .'t /t2I such that

� 't 2 Diff.Q/;

� '0 D id;

� 't .y/ depends smoothly on the pair .t; y/ 2 I�Q .

It is convenient to add that

� 't coincides with id (resp. '1 ) for t close to 0 (resp. 1).

Then, one considers as usual on S1 �Q the 1–dimensional foliation S' , called the
suspension of ' , spanned by the vector field .@=@t; @'=@t/ (here S1 is the quotient of
the interval I by 0D 1).

Fix a ' 2 Diff.Dq/I . Denote by � the angle coordinate z 7! z=jzj on C� . The
model cleft of monodromy ' is the manifold C �Rq endowed on the complement of
0�Dq with the codimension-q foliation C' equal to .� � idDq /

�.S'/ on C� �Dq

and horizontal (parallel to C ) on C � .Rq nDq/.

Let M be a manifold of dimension � 0.

Definition 3.2 A (q–)fissure (or cleft) in M is a pair .C; Œc�/ where

(1) C �M is a proper (ie topologically closed) codimension-2 submanifold, which
may have a boundary;
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(2) Œc� is the germ along C of a submersion

c W OpM .C /!C �Rq

such that C D c�1.0�Dq/;

(3) at every point of C \ @M, the rank of cj@M is also qC 2.

Note:

� The image c.C / is not necessarily all of 0�Dq.

� We admit the case where dim.M/ < 2, in which case C is necessarily empty.

� Sometimes, we regard the connected components of the fissure as several distinct
fissures.

� By (3), if C intersects @M, then .C; Œc�/ induces a fissure .C \ @M; Œcj@M �/
in @M.

Definition 3.3 A cleft �q –structure of monodromy ' and normal bundle � on M is
a triple � WD .C; Œc�; 
/ such that

� .C; Œc�/ is a fissure in M ;

� � D .pr2 ı c/
�.�Rq/ on OpM .C /;

� 
 is on M nC a �q –structure of normal bundle �jMnC ;

� 
 specially induces c�.C'/ on OpM .C / nC.

(Recall Definition 2.9.) The fissure may be empty, and must be empty if dim.M/ < 2.

If M has a boundary, � induces on @M a cleft �q –structure

�j@M WD .C \ @M; Œcj@M �; 
 j@M /:

Definition 3.4 Let � WD .C; Œc�; 
/ be a cleft �q –structure on M. If moreover 

is regular on M nC, and specially induces a foliation G there, then one calls � , or
(recalling Conclusion 2.11(b)) the triple G WD .C; Œc�;G /, a cleft foliation.

The two following notions will be crucial in the proof of Theorem A0. Let G be a cleft
foliation on a manifold M.

Definition 3.5 One calls a vector field r on M tangential to G if

� r.x/ 2 �xG at every point x 2M nC ;

� r.x/ 2 ker.dxc/ at every x 2 OpM .C /.

Geometry & Topology, Volume 25 (2021)



662 Gaël Meigniez

Definition 3.6 One calls a foliation X on M tangential to G if

� �xX � �xG at every point x 2M nC ;

� �xX � ker.dxc/ at every x 2 OpM .C /.

Now, let F be a dimension-q foliation on M.

Definition 3.7 The q–fissure .C; Œc�/ in M is in standard position with respect to F

if for every leaf L of F jOpM .C/ there is a z 2C such that c induces a rank-q map
from L into the slice z �Rq.

In particular, C is then tangential to F, in the sense that �xF � �xC at every x 2 C.
One thus gets a dimension-q foliation FC on C.

Definition 3.8 The cleft foliation G WD .C; Œc�;G / on M is quasicomplementary to F

if .C; Œc�/ is in standard position with respect to F, and if G is complementary to F

on M nC.

Recall that M denotes M � I and that �M �M is the union of M � 0 with @M � I ;
also, pr1 denotes the first projection M !M.

Theorem A0 Fix a ' 2 Diff.Dq/I such that '1 ¤ id. On a compact manifold M, let
F be a foliation of dimension q � 1, and 
 be a �q –structure whose normal bundle
is �F. Let F denote the dimension-q foliation on M parallel to F.

Assume that over OpM .@M/, the differential d
 is a linear retraction �M ! �F.
Then:

(i) M admits a cleft �q –structure � WD .C; Œc�; x
/ of normal bundle �F and of
monodromy ' such that

� .C; Œc�/ is disjoint from �M and in standard position with respect to F ;
� x
 D pr�1.
/ on OpM .

�M/;
� �jM�1 is a cleft foliation quasicomplementary to F.

(ii) Moreover, in the case where M is a product V �X and where F is its slice
foliation parallel to X, one can arrange that the projection V �X � I! V � I is
one-to-one in restriction to each connected component of c�1.0; 0/.

Note 3.9 The hypothesis that, over OpM .@M/, the differential d
 is a linear retraction
�M ! �F, amounts to saying that the �q –structure 
 is regular there, complementary
to F, and special (recall the note after Vocabulary 2.8 and Definition 2.9).
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The proof of Theorem A0 will be given in Section 4. The proof of Theorem A as a
corollary of Theorem A0 will be given in Section 3.2. The proof of the Mather–Thurston
Theorem 1.8 as a corollary of Theorem A0 will be given in Section 5.

3.1 Toolbox

We shall use the following tools, among which Section 3.1.5 is classical; the others are
more or less obvious.

3.1.1 Structure of compact fissures Let .C; Œc�/ be a q–fissure in a manifold M,
and † WD c�1.0; 0/. Note that if M is compact, then C is compact.

Lemma 3.10 Assume that C is compact. Then:

(a) There are a small � > 0 and an equidimensional embedding

h W†�D2 �Dq ,!M

whose image H is a thin compact neighbourhood of C in M, and such that

c ı h W .�; z; y/ 7! .�z; .1C �/y/:

(b) If .C; Œc�/ is moreover in standard position (Definition 3.7) with respect to a
dimension-q foliation F, then one can moreover arrange that h�.F / is the slice
foliation parallel to Dq.

After the lemma, the compact fissure C is diffeomorphic with †�Dq. We call † the
core of the fissure.

Proof (a) Since C is compact and Dq is compact connected, the submersion c
induces a proper map from OpM .C / onto OpC�Rq .0�Dq/. For � > 0 small enough,
after Ehresmann’s lemma, c induces a locally trivial fibration of some neighbourhood H
of C in M over the bidisk

f.z; y/ 2C �Rq j jzj � �; jyj � 1C �g:

Of course, the bidisk being contractible, the fibration is actually trivial.

(b) If .C; Œc�/ is moreover in standard position with respect to a dimension-q fo-
liation F, consider the (trivial) fibration cjC of C over Dq. The leaves of FC

(Definition 3.7), being complementary in C to the fibres of this fibration, are mapped

Geometry & Topology, Volume 25 (2021)



664 Gaël Meigniez

diffeomorphically onto the simply connected base. By the Reeb local stability theorem
[2, Chapter IV, paragraph 4], shrinking H if necessary, all leaves of F jH are compact
q–disks, and they are the fibres of a fibration p WH!†�D2 . The wanted embedding h
is the inverse of the diffeomorphism

p� .pr2 ı c/ WH !†�D2 �Dq:

3.1.2 Horizontal perturbation of a compact fissure Let .C; Œc�/ be a compact q–
fissure in a manifold M.

Choose a neighbourhood H D h.† �D2 �Dq/ of C in M as in Lemma 3.10(a).
For any self-diffeomorphism f 2 Diff.† � D2/ (Notation 3.1), consider the self-
diffeomorphism xf of H defined by

xf .h.�; z; y// WD h.f .�; z/; y/:

Then . xf �1.C /; Œc ı xf �/ is a new q–fissure in M.

(a) If moreover .C; Œc�/ is in standard position with respect to a foliation F on M,
then, after Lemma 3.10(b), for a proper choice of the embedding h, for every
f 2 Diff.†�D2/, the perturbed fissure . xf �1.C /; Œc ı xf �/ is also in standard
position with respect to F.

(b) Given a cleft �q –structure � WD .C; Œc�; 
/ on M, provided that H is thin enough,
xf preserves the germ of c�.
/ along @H. We thus get on M a perturbed cleft
�q –structure,

�h;f WD . xf
�1.C /; Œc ı xf �; 
h;f /;

where 
h;f is the �q –structure on M n xf �1.C / defined on H n xf �1.C / by

 0 WD xf �.
/, and on M n Int.H/ by 
 0 WD 
 .

(c) If moreover � is a cleft foliation quasicomplementary to F, then, after Lemma
3.10(b), for a proper choice of h, for every f 2 Diff.†�D2/, the perturbed
cleft foliation �h;f is also quasicomplementary to F.

3.1.3 Pulling back a fissure, a cleft Haefliger structure or a cleft foliation Let
u WM 0!M be a smooth map between two manifolds, and .C; Œc�/ be a q–fissure
in M.

Definition 3.11 The fissure .C; Œc�/ is pullable through u if at every point of u�1.C /,
the map c ıu is of maximal rank qC 2.
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Then one gets in M 0 a pullback fissure .u�1.C /; Œcıu�/. If u is an inclusion M 0�M,
we say “restrictable” instead of “pullable” and “restriction” instead of “pullback”. The
following remarks (a)–(e) will be useful:

(a) If moreover

(1) one has dimension-q foliations F on M and F 0 on M 0 ;

(2) u is leafwise étale with respect to F 0 and F, in the sense that at every x 2M 0,
the differential dxu maps isomorphically �xF 0 onto �u.x/F ;

(3) the fissure .C; Œc�/ is in standard position with respect to F (Definition 3.7);

then obviously the pullback fissure .u�1.C /; Œcıu�/ is in standard position with respect
to F 0.

(b) The pullability condition is actually generic in this frame, in the following sense:

Under the hypotheses of Definition 3.11 and (1)–(3) above, assume moreover that
C is compact. Choose a neighbourhood H D h.† �D2 �Dq/ of C in M as in
Lemma 3.10(a)–(b). Then:

Lemma 3.12 For f 2Diff.†�D2/ generic , the perturbed fissure . xf �1.C /; Œc ı xf �/
(Section 3.1.2) is pullable through u.

Proof Apply the Thom transversality theorem under, if one likes, Poénaru’s version
“with constraints” (see [19, paragraph 5.4]).

(c) Under the hypothesis of Definition 3.11, any cleft �q –structure � WD .C; Œc�; 
/
on M admits a pullback cleft �q –structure of the same monodromy,

u�.�/ WD .u�1.C /; Œc ıu�; u�.
//:

If u is an inclusion M 0 �M, we rewrite u�.�/ as �jM 0 .

(d) Let r be on M a vector field tangential to a cleft foliation G (Definition 3.5).

Then, the (maybe only partially defined) flow of r preserves G, in the following sense:
for every t 2 R and x 2 Int.M/, if rt .x/ is defined and also lies in Int.M/, then
G D .rt /�.G/ on OpM .x/.

(e) Under the hypothesis of Definition 3.11 and (1)–(2) above, the pullback through u
of any cleft foliation quasicomplementary to F on M is a cleft foliation quasicomple-
mentary to F 0 on M 0.
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3.1.4 Holes

Definition 3.13 For a compact manifold †, a compact manifold Q of dimension
q � 1 and an element ' 2 Diff.Q/I , the hole of core †, fibre Q and monodromy '
consists of the manifold H WD †�D2 �Q together with, along @H, the germ of a
codimension-q foliation H' such that

� H' is the slice foliation parallel to D2 on some neighbourhood of †�D2�@Q ;

� H' restricts, on †�@D2�Q , to the preimage of the suspension S' under the
projection .�; z; y/ 7! .z; y/.

Let .C; Œc�; 
/ be a cleft �q –structure of monodromy ' on a manifold M, whose
fissure is compact. Choose a neighbourhood H as in Lemma 3.10. One can then forget

 in the interior of H, remembering only its germ along @H. One has thus enlarged
the fissure into a hole of the same core, of fibre Dq and of the same monodromy.

Conversely, any hole .†�D2 �Dq;H'/ of fibre Dq can be horizontally shrunk into
a fissure, by extending radially the germ of foliation H' from the vertical boundary
†� @D2 �Dq and thus foliating the subset †� .D2 n 0/�Dq.

3.1.5 Filling a hole whose monodromy is a multirotation (after [36, Section 4])

Definition 3.14 Let Q be a compact manifold of dimension q � 2. One calls ' WD
.'t /t2I 2Diff.Q/I a multirotation if there are a function u on I as in Section 1.1 and
an equidimensional embedding

F WDq�1 �S1 ,! Int.Q/
such that, for every t 2 I ,

� 't .F.a; s//DF
�
a; sC tu.1�2jaj/

�
for every a 2Dq�1 such that jaj � 1

2
and

every s 2 S1 ŠR=Z;

� 't is the identity on the rest of Q .

For any (compact) manifold †, on H WD†�D2�Q , denote by F (resp. H0 ) the slice
foliation parallel to Q (resp. to †�D2 ). Assuming that ' is the above multirotation,
consider the foliation H of †�D2 �Q equal to the foliation G† of Section 1.1 in
†� .D2 � Im.F // Š C† (see Figure 1), and equal to H0 in the complement. The
germ of H along @H matches Definition 3.13. One has thus filled, by means of the
foliation H , the hole of core †, fibre Q and monodromy ' .
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Remark 3.15 (on the differential of the filling foliation) Recall the definitions
(Vocabulary 2.8) of the normal bundle �H and of the differential dH for the folia-
tion H . The 1–parameter family .!r/ of Section 1.1 provides a homotopy between
the codimension-q plane fields �H0 and �H on H, rel @H. Hence, the family .!r/
also provides, uniquely up to a homotopy, a linear isomorphism of vector bundles

h W �H ! �H0 D �F

which is the identity on @H, and such that the image hıdH of the differential dH is
homotopic to dH0 among the .�F /–valued 1–forms of rank q on H, rel @H.

3.1.6 Vertical reparametrization of a hole

Definition 3.16 Given a locally trivial fibration between some manifolds � WE! B

and a 1–parameter family .fs/s2I of self-diffeomorphisms of E such that f0 D id
and that � ıfs D � for every s , one calls the family .fs/s2I (or f1 alone) an isotopy
vertical with respect to � .

The vertical isotopies enjoy an obvious extension property.

Now, let Q be a compact q–manifold; consider the identity component Diff.Q/0 and
its universal cover eDiff.Q/0 , which can be realized as the quotient of Diff.Q/I by the
relation of homotopy rel @I . We denote by Œ'� the class of the 1–parameter family of
diffeomorphisms ' . The projection eDiff.Q/0! Diff.Q/0 is Œ'� 7! '1 .

The following is classical; we recall the short proof for completeness.

Lemma 3.17 The suspension foliation S' only depends , up to an isotopy in S1 �Q

vertical with respect to the projection to S1 and which is the identity close to S1 � @Q ,
on the conjugation class of Œ'� in the group eDiff.Q/0 .

Proof (Here S1 is the quotient of the interval I by the relation 0D 1.)

One the one hand, a homotopy of the family .'t /t2I rel @I obviously amounts to a
vertical isotopy of S' rel 0�Q .

On the other hand, let '0 D  ' �1 be a conjugation in the group Diff.Q/I . Put, for
s 2 I ,

fs W S
1
�Q! S1 �Q; .t; y/ 7!

�
t; '0st

�
 s.'st

�1.y//
��
:

This family .fs/ is a vertical isotopy of S1 �Q , and f �1 .S'0/DS' .
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It follows that the notion of hole of monodromy ' does actually not depend on '
itself, but only on the conjugation class of Œ'� in eDiff.Q/0 . Indeed, any isotopy in
†�S1�Q vertical with respect to the projection to †�S1 , and which is the identity
close to †�S1 � @Q , extends into an isotopy in †�D2 �Q vertical with respect to
the projection to †�D2 , and which is the identity close to †�D2 � @Q . (The same
holds of course for the monodromy of cleft Haefliger structures).

3.1.7 Splitting a hole into two holes Given a compact manifold Q and a factoriza-
tion ' D '0'00 in the group Diff.Q/I , let S be the 2–sphere minus the interiors of
three disjoint compact disks. Hence, �1.S/ is the free group on two generators 
 0

and 
 00, which one chooses so that the three components of @S, oriented as such, are
respectively conjugate to 
 0�1 and 
 00�1 and 
 0
 00. Suspending the representation
�1.S/!Diff.Q/I that maps 
 0 to '0 and 
 00 to '00, one gets on S�Q a codimension-
q foliation G such that

(1) G is complementary to the slice foliation parallel to Q ;

(2) G is parallel to S on a neighbourhood of S � @Q ;

(3) G induces the suspensions of '�1 , '0�1 and '00 on the three components of
@S �Q .

Given also a manifold †, pulling back G into †�S �Q , one obtains a partial filling
of the hole H of core †, fibre Q and monodromy ' , leaving two holes H 0 �H and
H 00 �H of core †, fibre Q and respective monodromies '0 and '00. Note that the
core of H 0 (resp. H 00 ) embeds into the base † �D2 of H through the projection
H 7!†�D2 .

3.1.8 Vertical shrinking of a hole If Q0 �Q is a domain containing in its interior
the support of every 't , where ' D .'t /t2I 2 Diff.Q/I , then in the hole †�D2 �Q

of core †, fibre Q and monodromy ' , we can foliate the subset †�D2 � .Q nQ0/

by the horizontal slice foliation parallel to †�D2 , leaving a smaller hole †�D2�Q0

of the same core, fibre Q0 and monodromy 'jQ0 .

3.2 Proof of Theorem A as a corollary of Theorem A0

Let M, F, 
 and ! be as in the hypotheses of Theorem A. After pushing the microfoli-
ation of 
 by the linear automorphism .!j�F /

�1 of the vector bundle �
 D �F, one is
reduced to the case where !j�F D id. Choose ' to be a multirotation (Definition 3.14).
Applying Theorem A0(i), one obtains a cleft �q –structure .C; Œc�; x
/. Enlarge the
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fissure into a hole H �M of fibre Dq and monodromy ' (Section 3.1.4). Fill up this
hole according to Section 3.1.5; there results on M a (noncleft) �q –structure z
 whose
normal bundle is �F, which coincides with x
 on the complement of H, and whose
restriction 
 0 WD z
 jM�1 to M � 1ŠM is a (noncleft) foliation quasicomplementary
to F. Finally, 
 0 being special (Definition 2.9) on .M � 1/ n .H \ .M � 1//, and
after Remark 3.15 applied in H \ .M � 1/, the differential d
 0 is homotopic to ! ,
rel @.M � 1/, among the .�F /–valued 1–forms on M whose restriction to �F is of
constant rank q .

Note 3.18 (on the hypothesis q � 2) In the proof of Theorem A, the hypothesis
that q � 2 is crucial, allowing one to choose the diffeomorphism ' of Dq to be a
multirotation, and consequently, after enlarging the fissure, to fill the resulting hole
of monodromy ' (following Thurston) with the foliation described in the introduc-
tion. On the contrary, in codimension q D 1, there exist no multirotations, since
S1 does not embed in the interval D1 ! Filling a hole in codimension 1 requires in
general a complicated construction where one first has to enlarge the hole by a “worm
gallery” [37] (see also [27]). For this reason, there seems to be no general result for
the existence of codimension-1 quasicomplementary foliations, like Theorem A in the
higher codimensions.

4 Proof of Theorem A0

4.1 Foliating a neighbourhood of a codimension-1 skeleton transversely
to F

Following a classical scheme, the first part of the proof of Theorem A0 will solve the
problem on a small neighbourhood of the codimension-1 skeleton of a triangulation
of a large domain in M ; this part is somehow standard, pertaining to Gromov’s h–
principle for Diff–invariant open differential relations on open manifolds, with the help
of Thurston’s jiggling lemma.

Let M, F and 
 be as in Theorem A0. Put p WD dim.M/� q . By the jiggling lemma
[36, Section 5], one has

� a compact domain D � Int.M/, large enough that d
 is a linear retraction
�M ! �F over some open neighbourhood of M n Int.D/;

� a triangulation K of D which is in general position, in Thurston’s sense, with
respect to F.
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From Thurston’s definition of “general position”, we only need to recall that every
cell S of K is transverse to F (when dim.S/ < p , “transverse” means that there is
no tangency) and that, when dim.S/ � p , the foliation F jInt.S/ is conjugate to the
standard linear codimension-p foliation on Rdim.S/ . Consider the .pCq�1/–skeleton
K.pCq�1/ of K.

Lemma 4.1 After a first concordance of 
 on M rel @M (no cleft is necessary at this
stage), one can moreover arrange that d
 is also a linear retraction �M ! �F over
some open neighbourhood U of K.pCq�1/ in M.

(About the differential being a linear retraction, recall Note 3.9.)

Proof Choose a filtration .Kn/ for 0� n�N of K.pCq�1/ by subcomplexes such
that K0DKj@D , that KN DK.pCq�1/ and that Kn is the union of Kn�1 with a single
cell Sn . By induction on n, assume that d
 is already a linear retraction �M ! �F

over some open neighbourhood Un�1 of Kn�1 in M. For convexity reasons, d
 jUn�1
extends over M to a global linear retraction ! W �M ! �F. There are two cases,
depending on d WD dim.Sn/.

In the case 0� d � p , one has an equidimensional embedding

e W Sn �Dp�d �Dq ,!M

whose image is contained in a small neighbourhood of Sn , and such that

� e.x; 0; 0/D x for every x 2 Sn ;

� e maps @Sn �Dp�d �Dq into Un�1 ;

� e�.F / is the slice foliation on Sn �Dp�d �Dq parallel to the Dq factor.

One applies the integrable parametric foliation theorem on open manifolds (Theorem
2.13 of Section 2.0.7) to the manifold Dq, with N WD∅, the space of parameters being
A WD Sn �Dp�d , while B WD @Sn �Dp�d .

In the case p � d � pC q� 1, one has an equidimensional embedding

e WDp �Dd�p �DpCq�d ,!M

whose image is contained in a small neighbourhood of Sn , and such that

� e�1.Sn/DDp �Dd�p � 0;

� e maps @.Dp �Dd�p/�DpCq�d into Un�1 ;
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� Un�1[ e.Dp �Dd�p �DpCq�d / is a neighbourhood of Sn ;

� e�.F / is the slice foliation on Dp �Dd�p �DpCq�d that is parallel to the
Dd�p �DpCq�d factor.

One applies Theorem 2.13 to Dd�p �DpCq�d , with N WD @Dd�p �DpCq�d , the
space of parameters being A WDDp, while B WD @Dp.

In both cases, one gets on some open neighbourhood Un of Kn in M a regular
�q –structure 
 0 such that

(1) �
 0 D �F jUn ;

(2) 
 0 is concordant with 
 rel OpM .Kn�1/;

(3) the restriction d
 0j�F is of constant rank q over Un ;

(4) d
 0j�F is homotopic with id�F among the linear automorphisms of the vector
bundle �F jUn .

Over Un , push the microfoliation of 
 0 through the linear automorphism .d
 0j�F /
�1

of the vector bundle �F, and thus get an isomorphic �q –structure 
 00 whose differential
is a linear retraction of �Un onto �F jUn . To verify that 
 00 is concordant with 
 0, and
hence with 
 , rel OpM .Kn�1/, one can refer to the general Lemma 2.6; but here it
is even more obvious, because of (4). Finally, one calls to the concordance extension
property (Proposition 2.7) to complete the induction.

4.2 Preparing the niche for inflation

The next step in the proof of Theorem A0 has antecedents in Poénaru’s flexibility for
folded equidimensional maps [33], in Gromov’s proof of the microcompressibility
lemma [11, page 81], in Lemma 2.3A in [5], etc.

According to Lemma 4.1, one can define x
 on U � I as pr�1.
/. Then, vaguely, it
remains, in the wall M � I , to fill the niches Int.S/� .0; 1�, where S runs over the
.pCq/–cells of K. The present step will somehow normalize the Haefliger structure
along the boundary of the niche, in order that, further down, we can solve the new
extension problem by the “inflation” method.

Precisely, for each .pCq/–cell S of K, one has a large equidimensional embedding
j W Ip �Dq ,! Int.S/ containing S n .S \U/ in its interior, and such that j �.F / is
the slice foliation on Ip �Dq parallel to Dq. In this way, the proof of Theorem A0 is
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reduced to the case where M WD Ip �Dq, and where F is the slice foliation parallel
to Dq. We restrict the attention to this case.

Note: the choice of the cube Ip here, rather than the ball Dp, will be of no importance
for most of the construction, but it will make civilization easier in Section 4.3.2.

Recall that M WDM � I , that �M WD .M � 0/[ .@M � I/�M, that F is on M the
dimension-q slice foliation parallel to Dq, and that pr1 WM � I!M denotes the first
projection. Consider on M the �q –structure pr�1.
/.

Put
X WD .@Ip �Dq � I/[ .Ip � @Dq � 1/� �M �M:

Note that X \ .M � 1/D @M � 1.

Lemma 4.2 There is on OpM .
�M/ a foliation G such that

� G is complementary to F on OpM .
�M/;

� G is specially induced by pr�1.
/ on OpM .X/;

� G is concordant to pr�1.
/ on OpM .
�M/ rel OpM .X/ (recall Conclusion 2.11(a)).

Proof Let ! be, over M, the identity automorphism of the bundle �F.

First, regard 
 jM�0 as an integrable parametric family of �q –structures on Dq, with
space of parameters Ip. The integrable parametric foliation theorem, Theorem 2.13, is
first applied to 
 and ! on the open manifold Dq, the pair of parameters spaces being

.A;B/ WD .Ip; @Ip/:

One gets on M ŠM � 0 a foliation G0 complementary to F there, specially induced
by 
 on OpM�0.@Ip �Dq � 0/, and concordant to 
 (rel @Ip �Dq � 0).

Next, by the concordance extension property for �q –structures (see Section 2.0.5),
G0 can be extended over OpM .

�M/ by a �q –structure y
 , coinciding with pr�1.
/
on OpM .X/, and concordant to pr�1.
/ rel X.

Consider some small collar neighbourhood T Š Sq�1 � I of @Dq in Dq, and

N WD Ip �T � I �M:

Regard y
 jN as an integrable family of �q –structures on T , parametrized by IpC1 . One
obtains G on N by again applying the integrable parametric foliation, Theorem 2.13,
this time to y
 and ! on the open manifold T , the pair of parameters spaces being

.A;B/ WD .IpC1; @IpC1/:
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Fix a compact collar neighbourhood Col of @M in M, small enough that d
 is a linear
retraction �M ! �F over Col. Put � WDM n Int.Col/ and

W WD
�
M �

�
0; 1
2

��
[
�
Col�

�
1
2
; 1
��
�M and @1W WD

�
��

�
1
2

��
[
�
@��

�
1
2
; 1
��
:

As a paraphrase of Lemma 4.2, there is on OpM .W / a �q –structure x
 such that:

� On OpM .
�M [ .Col� 1//, one has x
 D pr�1.
/.

� On OpM .@1W /, the �q –structure x
 is regular and specially induces a foliation
G complementary to F.

To prove Theorem A0(i), it remains to extend x
 through the smaller niche M nW .
Hence, one is reduced to Proposition 4.3 below.

4.3 Inflation

Recall that M D Ip �Dq (p � 0, q � 1), that M DM � I , that �M D .M � 0/[
.@M � I/�M, that x� is the projection

x� WM D Ip �Dq � I! IpC1; .x; y; t/ 7! .x; t/;

and that F is the q–dimensional slice foliation of M parallel to the Dq factor. Let '
be as in Theorem A0.

Proposition 4.3 Let G be along �M a germ of foliation complementary to F there.

Then G extends to all of M as a cleft foliation of monodromy ' quasicomplementary
to F.

Note: here, the fact that cubes and disks are cubes and disks is actually unimportant;
the same result would hold for any two compact manifolds instead of Ip and Dq, with
almost the same proof.

The rest of the present Section 4.3 is to prove Proposition 4.3. The difficulty lies of
course in the arbitrary position of G with respect to Ip � @Dq � I . The “inflation”
method introduced by Thurston [36; 37] to prove the foliation theorem on closed
manifolds will fit to solve this difficulty, after some adjustments. We give the details for
three reasons. First, our framework is not exactly the same as Thurston’s: he foliated
simplices, we foliate prisms (by which we mean the product of a simplex by a smooth
disk). Secondly, some think that the argument in [36] is difficult; some have even
believed that it was not fully convincing — of course, this is not the case. Third, we feel
that “inflation” deserves to be more widely used as a general method in the h–principle,
which it has not been since the fundamental papers [36; 37], except in [20].
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I

Dq

P.ˇ5/

P.˛5/

Ip
˛1 ˇ1 ˛2 ˇ2 ˛3 ˇ3 ˛4 ˇ4 ˛5 ˇ5 ˛6 ˇ6 ˛7 ˇ7 ˛8 ˇ8

Figure 3: Decomposition of the most part of M into prisms, in the case
p D 0 and q D 1 .

4.3.1 Building the prisms Let Dom.G / be a small open neighbourhood of �M in M,
on which G is defined and complementary to F. We shall first decompose the domain
to be foliated, precisely M minus some smaller open neighbourhood of �M, into many
thin vertical prisms (Figure 3).

Endow IpC1 with a triangulation K ; choose it to be linear for convenience. The choice
of K will be made more precise further down.

Lemma 4.4 Provided that K is fine enough , one can choose, for each cell ˛ of K,
an embedding

e˛ W ˛�Dq ,!M

such that , for every x 2 ˛ ,

� e˛.x �Dq/� Int.x��1.x//;

� x��1.x/� e˛.x � Int.Dq//[Dom.G /;

� if x lies on some proper face ˇ   ˛ , then

eˇ .x �Dq/� e˛.x � Int.Dq//I

and that , for every y 2 @Dq, e˛.˛�y/ is contained in a leaf of G.
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Proof Regard M as IpC1 �Dq ; endow both factors with the Euclidean metrics. Fix
� > 0 so small that .x; y/2Dom.G / holds for every x 2 IpC1 and every y 2Dq such
that

jyj � 1� .pC 3/�:

Put rd WD 1� .pC 2� d/� for every integer 0� d � pC 1.

Consider the partially defined monodromy of G close to @M �I . Precisely, for a linear
path u W I! IpC1 and for y 2Dq, denote by .u.1/; hu.y// the extremity of the path
(if any) in M originated at .u.0/; y/, covering u through x� , and tangential to G. Fix
ı > 0 small enough that for every linear path u whose length juj is at most ı , and
every y 2Dq with r0 � jyj � rpC1 , the monodromy hu.y/ is defined, and

jhu.y/�yj<
1
2
�:

Choose the linear triangulation K such that every cell ˛ of K is of diameter at most ı .
For every point x 2 ˛ and every y 2 @Dq, put

e˛.x; y/ WD hŒ[.˛/;x�.rdim.˛/y/:

This is a smooth family of embeddings @Dq ,!Dq, parametrized by the points of ˛ . By
the isotopy extension property, this family extends to a smooth family of embeddings
Dq ,!Dq, also denoted by e˛ . The demanded properties hold by definition or follow
from the triangle inequality.

We write

P.˛/ WD e˛.˛�Dq/ and R.˛/ WD .˛�Dq/ n e˛.˛� Int.Dq//:

Let R �M be the union of the R.˛/’s for all cells ˛ of K. Hence, R is a compact
neighbourhood of Ip � @Dq � I in M. The foliation G is defined on OpM .R[M0/

and complementary to F there.

4.3.2 Civilizing the prisms Thurston [36] introduced the tool of “civilization” in
order to guarantee that some microextensions of foliations defined on the cells of a
triangulation are compatible and thus give a global smooth foliation; we slightly depart
from his vocabulary.

Definition 4.5 Let X be a manifold and Y �X be a compact submanifold, maybe
with boundary and corners. A civilization for Y in X is a foliation C of codimension
dim.Y / on OpX .Y /, transverse to Y .
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Actually, the object of interest is the germ of C along Y . The utility of civilization lies
in the following obvious remark. Consider the local retraction along the leaves of C,

pr W OpX .Int.Y //! Int.Y /:

Remark 4.6 (recall Section 3.1.3(c) and Definitions 3.6 and 3.11)

� Let G be a cleft foliation on Int.Y /. Then pr�.G/ is a cleft foliation on
OpX .Int.Y // and C is tangential to pr�.G/ there.

� Conversely, let G be a cleft foliation on OpX .Y / to which C is tangential. Then
G is restrictable to Int.Y /, and G D pr�.GjInt.Y // on OpX .Int.Y //.

Notation 4.7 Given two foliations A and B on the same manifold, we briefly write
A �B to mean that �xA � �xB at every point x .

The advantage of having chosen especially a polyhedral base IpC1 � RpC1 and a
linear triangulation K of this base is that each cell ˛ of K admits in RpC1 an obvious
civilization N˛ , namely the parallel linear foliation of RpC1 orthogonal to ˛ for the
Euclidean metric, such that for every face ˇ� ˛ , the compatibility condition N˛ �Nˇ

holds on OpRpC1.ˇ/.

Consider the inclusion

M D IpC1 �Dq �RpC1 �Dq

and the first projection � WRpC1 �Dq!RpC1 .

Lemma 4.8 One can choose, for every cell ˛ of K, a civilization C˛ for ˛�Dq in
RpC1 �Dq such that

(1) C˛ � G on OpM .R.˛// and , if ˛ �K0 , on OpM .˛�Dq/;

(2) C˛ � �
�.N˛/ on OpRpC1.˛/�Dq ;

(3) C˛ � Cˇ on OpRpC1.ˇ/�Dq for every face ˇ � ˛ .

Proof Denote by F the slice foliation of RpC1 �Dq parallel to Dq. It is easy to
extend G to a codimension-q foliation, still denoted by G, complementary to F on
OpRpC1�Dq .R [M0/. Then, make a second, not necessarily integrable extension:
let � � �.RpC1 �Dq/ be a .pC1/–plane field complementary to F, and coinciding
with �G over OpRpC1�Dq .R[M0/. Consider a cell ˛ of K. On OpRpC1�Dq .R.˛//,
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define C˛ as the pullback of N˛ through � tangentially to G. Then, extend C˛ over
OpRpC1�Dq .˛�Dq/ as follows. Denote by h˛i �RpC1 the affine subspace spanned
by ˛ . At every point .x; y/ 2 h˛i �Dq, define the leaf of C˛ through .x; y/ as the
union of the paths in RpC1 �Dq starting from .x; y/, tangential to � , and whose
projection through � is a linear path in RpC1 orthogonal to h˛i at x . The properties
(1)–(3) are immediate.

4.3.3 Foliating the prisms We can choose the fine linear triangulation K of Ip � I

such that, moreover, K collapses onto its subcomplex

K0 WDKj.Ip�0/[.@Ip�I/:

Such a collapse amounts to a filtration of K by subcomplexes .Kn/ for 0 � n � N
such that KN DK, and such that for every 1� n�N, exactly two cells ˛n and ˇn
lie in Kn but not in Kn�1 ; moreover, ˇn is a hyperface of ˛n . We write

Mn WDKn �Dq �M:

The inflation process is an induction: the prisms will be foliated (by cleft foliations
quasicomplementary to the fibres of x� ) one after the other, in the order given by the
collapse.

Vocabulary 4.9 (a) A smooth partial triangulation in a manifold † is a geometric
simplicial complex which is topologically embedded in †, and such that each
cell is smoothly embedded in †.

(b) By a system of spheres in †, we mean a finite disjoint union of smoothly
embedded spheres, whose dimensions are not necessarily the same and may vary
between 0 and dim.†/, and whose normal bundles are trivial.

The induction hypotheses are the following. Recall Definitions 3.8 and 3.6.

Property 4.10 There is on OpM .R[Mn/ a cleft foliation

Gn WD .Cn; Œcn�;Gn/

of monodromy ' such that

(1) Gn is quasicomplementary to F on OpM .R[Mn/;

(2) Gn coincides with G on OpM .R[M0/;

(3) for each cell 
 of Kn , the civilization C
 is tangential to Gn on OpM .
 �Dq/;
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(4) Mn\†n (where †n WD cn�1.0; 0/) admits a triangulation �n which is a smooth
partial triangulation of †n and collapses onto a system of spheres in †n ;

(5) x� is one-to-one in restriction to each connected component of Mn\†n .

The object of interest is actually the germ of Gn along R[Mn .

For nD 0, the (noncleft) foliation G0 WD G satisfies Property 4.10(1)–(5), in view of
Lemma 4.8(1).

Now, for some 1�n�N, assume that the above induction hypotheses are met for n�1.

For short, write ˛ , ˇ and i , instead of ˛n , ˇn and dim.ˇn/. We work in ˛ �Dq.
“Horizontal”, for a vector field or a foliation, means parallel to the ˛ factor. Denote by
y@˛ the union of the hyperfaces of ˛ other than ˇ , by �˛ the first projection ˛�Dq!˛ ,
and by F˛ the slice foliation of ˛�Dq parallel to Dq.

The extension of the cleft foliation Gn�1 , defined on OpM .R [Mn�1/, to a cleft
foliation Gn on OpM .R[Mn/, will be in two steps: first, an extension only to P.˛/;
then, a microextension from P.˛/ to OpM .P.˛//, by means of the civilizations C .˛/

and C .ˇ/.

Lemma 4.11 For each cell 
 of K, the cleft foliation Gn�1 is pullable through the
map e
 restricted to Op
 .
 \Kn�1/�Dq, and defines on such a neighbourhood a
pullback cleft foliation e�
 .Gn�1/ quasicomplementary to the slices parallel to Dq.

Proof Consider any point .x; y/ 2 .
 \ Kn�1/ � Dq. Let ı � 
 \ Kn�1 be the
smallest face containing x . By Property 4.10(3) applied to ı at order n� 1 and by
Lemma 4.8(3), C
 is tangential to Gn�1 on OpM .x; y/. Since the embedding e

is transverse to C
 at the point .x; y/, the pullability and the quasicomplementarity
follow (see Section 3.1.3(e)).

Lemma 4.12 There is on ˛�Dq a cleft foliation G˛ such that

(1) G˛ is quasicomplementary to F˛ on ˛�Dq ;

(2) G˛ coincides with e�˛.Gn�1 D G / on Op˛�Dq .˛� @D
q/;

(3) G˛ coincides with e�˛.Gn�1/ on Op˛�Dq .y@˛�Dq/;

(4) G˛ coincides with e�˛.Gn�1 D G / on Op˛�Dq
�
e˛
�1.R.ˇ//

�
;

(5) e�˛.Cˇ / is tangential to G˛ on Op˛�Dq .ˇ�Dq/.
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Figure 4: Foliating the prism, in the case i D q D 1 .

Proof The construction of G˛ is the main part of the inflation process (Figure 4).
Informally, after Thurston’s image [36], we can think of the prism ˛�Dq, which we
have to foliate, as a room. The back wall is y@˛�Dq ; the ceiling and floor are ˛�@Dq

(here of course the image is less realistic for q > 1); the front wall ˇ �Dq splits as
the union of a window e˛

�1.P.ˇ// and a corona e˛�1.R.ˇ//; there are no side walls
in our prismatic version.

A cleft foliation e�˛.Gn�1/ is already defined close to the back wall, the ceiling and
floor, and the corona. Close to the ceiling, floor and corona, the foliation e�˛.Gn�1/
is not cleft; actually it is essentially horizontal (parallel to ˛ ) there. On the contrary,
close to the back wall, e�˛.Gn�1/ is in general cleft and complicated, being produced
by the previous steps of the induction.

The general idea is to pull back this foliation through the room by means of a flow
crossing the room from the front wall to the back wall and tangential to the ceiling and
to the floor.

Geometry & Topology, Volume 25 (2021)



680 Gaël Meigniez

The difficulty is that, in general, it is not possible to make the pullback foliation match
the horizontal foliation on the corona. This is solved at the price of a new cleft (or
hole), which will allow us to somehow divert the complicated part of the back wall
foliation from the corona, and make it exit, instead, through the window.

Some technicalities arise from the fact that the foliation to be pulled back is cleft,
that the flow must be tangential to this foliation where it is already defined, that the
extended cleft foliation must be quasicomplementary to the verticals (condition (1)
above) and tangential to the civilization of the front wall ˇ�Dq (condition (5)), this last
condition being crucial in view of the subsequent microextension from ˛�Dq ŠP.˛/

to OpM .P.˛//.

First, some normalizations will fix the ideas and simplify the notation. We have some
choice in the parametrization e˛ of P.˛/: we can change e˛ to e˛ ıF, where F is
any isotopy of ˛�Dq vertical with respect to �˛ (Definition 3.16).

(I) The boundary component ˛ � @Dq is saturated for the foliation e�˛.G / (recall
Lemma 4.4), which on ˛ � @Dq restricts to the slice foliation parallel to ˛ . Hence,
after a first vertical isotopy, we can arrange, on Op˛�Dq .˛� @D

q/, that e�˛.G / (which
coincides with e�˛.Gn�1/ there by Property 4.10(2) at order n� 1) is horizontal there.

(II) In Rq, denote by Dr (resp. Ar ) the compact disk (resp. corona) defined by jyj� r
(resp. r � jyj � 1). After a second vertical isotopy, relative to Op˛�Dq .˛� @D

q/, we
can arrange that

e˛
�1.P.ˇ//D ˇ�D1=2 and e˛

�1.R.ˇ//D ˇ�A1=2:

(III) Since e�˛.G /jˇ�A1=2 is a foliated product whose base ˇ is simply connected, this
foliated product is trivial. Hence, after a third vertical isotopy, relative to ˇ �D1=2
and to Op˛�Dq .˛ � @D

q/, we can moreover arrange that e�˛.Gn�1 D G / is horizontal
on Op˛�Dq .ˇ�A1=2/.

In the case i D 0, Lemma 4.12 is trivial: ˛ is an interval whose endpoints are ˇ and y̨ .
The foliation C .˛/ being of codimension 1 in M, tangentiality, Property 4.10(3), at
order n� 1 simply means that the prism P.˛/ does not meet Cn�1 . Hence, ˛�Dq

is endowed along y̨ � Dq, along ˛ � @Dq and along ˇ � A1=2 with a germ of 1–
dimensional foliation e�˛.Gn�1/ (not cleft), complementary to F˛ and horizontal on
˛ � @Dq (Property 4.10(1)–(2) at order n � 1). One has an obvious extension of
e�˛.Gn�1/ by a 1–dimensional foliation complementary to F˛ on all of ˛�Dq.

For the rest of the proof of Lemma 4.12 , we assume that i � 1.
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Claim 4.13 There are

� on ˛ , a nonsingular vector field r ;

� on ˛�Dq, a nonsingular vector field zr ;

such that

(1) r is transverse to every hyperface of ˛ ;

(2) every orbit of r enters ˛ through ˇ and exits ˛ through y@˛ ;

(3) zr lifts r through �˛ ;

(4) zr is tangential to e�˛.G / on Op˛�Dq .˛� @D
q );

(5) zr is tangential to e�˛.G / on Op˛�Dq .ˇ�A1=2 );

(6) zr is tangential to e�˛.Gn�1/ on Op˛.y@˛/�Dq.

For (6), recall Definition 3.5.

The construction requires a little care because ˛ is an arbitrary linear .iC1/–simplex
in the Euclidean space RpC1 ; for example, some of the dihedral angles of ˛ along the
hyperfaces of ˇ can be obtuse.

Proof For simplicity, in the proof of this claim, denote by C
 , G and Gn�1 the
pullbacks of C
 , G and Gn�1 in ˛�Dq through e˛ .

For each face 
 � ˛ , its barycenter [.
/ is a vertex of the first barycentric subdivision
Bar.˛/ of ˛ . Let S
 � ˛ be the open star of [.
/ with respect to Bar.˛/ (the interior
of the union of the cells of Bar.˛/ containing [.
/). The interest of these stars is that
for every two faces 
; ı � ˛ , one obviously has

(a) Int.
/� S
 ;

(b) S
 intersects ı if and only if 
 � ı ;

(c) S
 intersects Sı if and only if 
 � ı or ı � 
 .

Subclaim A There is, for every face 
 � ˛ , an open subset U
 � ˛ such that , for
every two faces 
; 
 0 � ˛ ,

(i) Int.
/� U
 � S
 ;

(ii) C
 is defined on U
 �Dq, and C
 � G on U
 �OpDq .@D
q/;

(iii) every leaf of C
 jU
�Dq is mapped diffeomorphically onto a leaf of N
 jU


through �˛ ;
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(iv) if 
 ¤ ˛; ˇ , then Gn�1 is defined on U
 �Dq, and C
 is tangential to Gn�1
on U
 �Dq ;

(v) Cˇ � G on Uˇ �OpDq .A1=2/;

(vi) if 
 � 
 0 then C
 0 � C
 on .U
 \U
 0/�Dq.

The proof of Subclaim A is straightforward by means of a descending induction on
dim.
/, using Lemma 4.8, and (a) above, and the induction, Property 4.10(2)–(3), at
the order n� 1.

We now resume the proof of Claim 4.13. By (i), the family .U
 /
�˛ is an open cover
of ˛ . Let .u
 /
�˛ be on ˛ a partition of the unity subordinate to this cover.

Definition of r Consider the vector v˛ WD [.˛/� [.ˇ/, and, for each 
 � @˛ , the
orthogonal projection v
 of v˛ into the linear subspace 
? �RpC1 orthogonal to 
 .
Put

r WD

X

�˛

u
v


Verification of (1) Given a hyperface ��˛ , let n� 2RpC1 be the unit vector parallel
to ˛ and normal to �, pointing inwards ˛ if �D ˇ , and outwards if �¤ ˇ . Since ˛
is a linear simplex, hv˛; n�i > 0 (Euclidean scalar product in RpC1 ). Consider any
point x 2 �. For every face 
 � ˛ such that x 2 U
 , by (i) and (b) one has 
 � �,
hence n� 2 
? , hence hv
 ; n�i D hv˛; n�i. Finally,

hr.x/; n�i D hv˛; n�i> 0:

Verification of (2) For every face 
 � @˛ , clearly v˛ is not parallel to 
 , hence
v
 ¤ 0 and

hv˛; v
 i D jv
 j
2 > 0:

It follows, in view of the definition of r , that hv˛;ri > 0 at every point of ˛ . So,
every orbit of r is proper in ˛ (a compact segment with endpoints on @˛ ). Since
hr.x/; n�i > 0 at every point x of every hyperface �, necessarily every orbit goes
across ˛ from ˇ to y@˛ .

Definition of zr The constant vector field on ˛ parallel to v˛ lifts through �˛ to a
vector field zv˛ on ˛�Dq, which we can choose tangential to G close to ˛� @Dq. On
the other hand, for each face 
 � @˛ , by (iii), the constant vector field on U
 parallel

Geometry & Topology, Volume 25 (2021)



Quasicomplementary foliations and the Mather–Thurston theorem 683

to v
 , being tangential to N
 , lifts in ˛�Dq through �˛ to a unique vector field zv

on U
 �Dq tangential to C
 . Put

zr WD

X

�˛

.u
 ı�˛/zv
 :

(3) holds by definition; (4) follows from (ii). We are left to verify (5) and (6).

First, note that for every x 2 ˛ , the set of the faces 
 � ˛ such that x 2 spt.u
 /
has a smallest element ı.x/: indeed, this finite set is totally ordered by the inclusion
relation, because of (i) and (c). Moreover, for every x0 2 ˛ close enough to x , one has
ı.x/� ı.x0/ (since the supports spt.u
 / for 
 � ˛ are compact and finite in number.)
Consequently, for x 2 @˛ , the set

Nx WD fx
0
2 Uı.x/ j x

0
… spt.u˛/ and ı.x/� ı.x0/g

is an open neighbourhood of x in ˛ .

Subclaim B For every x 2 @˛ , x0 2Nx and y 2Dq,

zr.x0; y/ 2 �.x0;y/Cı.x/:

Indeed, for each proper face 
 � @˛ such that x0 2 spt.u
 /, one has

ı.x/� ı.x0/� 
 I

hence, thanks to (vi),

zv
 .x
0; y/ 2 �.x0;y/C
 � �.x0;y/Cı.x/:

Subclaim B follows by definition of zr .

Verification of (5) Fix x 2 ˇ . There are two cases.

In the case ı.x/D ˇ , for every x0 2Nx , by definition of Nx , necessarily ı.x0/D ˇ
also; hence, by definition of zr and zvˇ , for every y 2Dq,

zr.x0; y/D zvˇ .x
0; y/ 2 �.x0;y/Cˇ :

Thus, provided that y is close enough to A1=2 in Dq, after (v),

zr.x0; y/ 2 �.x0;y/G :

Now, consider the second case ı.x/ ¤ ˇ . On the one hand, by Subclaim B and
by (iv) applied to 
 D ı.x/, the vector field zr is tangential to Gn�1 on Nx �Dq.
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On the other hand, by the induction, Property 4.10(2), Gn�1 coincides with G on
Op˛�Dq .ˇ�A1=2/. So, we also get (5) in that case.

Verification of (6) For every x 2 y@˛ , by Subclaim B and by (iv) applied to 
 WD ı.x/,
the tangency property (6) holds on Nx �Dq. The proof of Claim 4.13 is complete.

Let us resume the proof of Lemma 4.12. By (4) and (5) of Claim 4.13, the vector
field zr is horizontal on Op˛�Dq .˛ � @D

q/ and on Op˛�Dq .ˇ �A1=2/. By a fourth
vertical isotopy relative to Op˛�Dq .˛�@D

q/ and to Op˛�Dq .ˇ�A1=2/ and to ˇ�Dq,
we can moreover arrange that

(a) zr is horizontal everywhere on ˛�Dq.

Denoting by x0 the barycentric coordinate function on ˛ that restricts to 0 on ˇ and
to 1 on the opposite vertex, fix � > 0 small enough that

(b) the domains ˛ �A1�� and x0�1.Œ0; ��/�A1=2�� do not intersect Cn�1 , and,
on some neighbourhood of these domains, the foliations e�˛.Gn�1/ and e�˛.G /
are both defined, coincide, and are horizontal.

Since r enters ˛ through ˇ (recall (1) and (2) of Claim 4.13), provided that � is small
enough, after rescaling r (and accordingly rescaling zr , so that (3) of Claim 4.13 still
holds), we can moreover arrange that

(c) the derivative r � x0 equals � on x0�1Œ0; ��.

Let prr W ˛! ˇ denote the projection along the flowlines of r . Decompose ˛ into
three subsets ˛0, ˛00, ˛000 and ˇ into two subsets ˇ0 and ˇ00, as follows (Figure 5):

� ˛0 WD x0
�1Œ�; 1�.

� ˇ0 D prr.˛
0/.

˛0

˛000

˛00
˛000

ˇ00 ˇ0 ˇ00

Figure 5: Decomposition of the simplices ˛ and ˇ .
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� ˛00 WD x0
�1Œ0; ��\ prr

�1.ˇ0/.

� ˇ00 WD topological closure of ˇ nˇ0 .

� ˛000 WD prr
�1.ˇ00/.

Fix a self-diffeomorphism v of I , supported in the open interval
�
1
2
� �; 1

�
and such

that

(d) v.1� �/ < 1
2

.

Define the self-diffeomorphism  1 of Dq as

 1 W y 7! v.jyj/y=jyj

for y ¤ 0, and  1.0/D 0. Fix a 1–parameter family  WD . t /t2I of self-diffeomor-
phisms of Dq, supported in the interior of A1=2�� , such that  t D id for t close to 0
and  t D  1 for t close to 1. Let .Yt /t2I be the 1–parameter family of vector fields
on Dq whose flow is . t /. Define a nonsingular vector field V on ˛�Dq by

(e) V.x; y/ WD r.x/˚ 0 if x 2 ˛0 ;

(f) V.x; y/ WD r.x/˚�Y1���1x0.x/.y/ if x 2 ˛00[˛000.

Note that

(g) V lifts r through �˛ .

The vector fields zr and V being both horizontal on Op˛.y@˛/ � Dq (after (a), (e)
and (f)), and both of them lifting r there (Claim 4.13(3) and (g)), let U be an open
neighbourhood of y@˛ in ˛ so small that V D zr on U �Dq. Provided that U is small
enough, one has, on U �Dq (after the induction, Property 4.10(1), at the order n� 1
and after Claim 4.13(6)),

(h) e�˛.Gn�1/ is quasicomplementary to F˛ on U �Dq ;

(i) V is tangential to e�˛.Gn�1/ on U �Dq.

Recalling Claim 4.13(1)–(2), let � be on ˛ a nonnegative real function such that

� � vanishes on a neighbourhood of y@˛ ;

� the time t D 1 of the flow .r 0t / of the vector field r 0 WD �r embeds ˛ into U.

Put V 0 WD .� ı�˛/V and consider the time t D 1 of the flow .V 0t /.
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Obviously, since V 01.˛ � Dq/ � U � Dq and since V is tangential to e�˛.Gn�1/

there ((g), (i)), the cleft foliation e�˛.Gn�1/ is pullable (Section 3.1.3(c)) through V 01 .
Consider on ˛�Dq the pullback cleft foliation

G0 WD .e˛ ıV
01/�.Gn�1/

and write G0 D .C 0; Œc0�;G 0/. Put H WD ˛000 �A1�� .

Claim 4.14 (1) The cleft foliation G0 is quasicomplementary to F˛ on ˛�Dq.

(2) The fissure C 0 does not intersect H.

(3) The fissure C 0 does not intersect ˛0 �A1�� nor ˛ � @Dq, and G 0 is horizontal
on Op˛�Dq .˛

0 �A1��/ and on Op˛�Dq .˛� @D
q/.

(4) G0 and e�˛.Gn�1/ coincide on Op˛.y@˛/�Dq.

(5) V is tangential to G0 on ˛�Dq.

(6) G0 is invariant by the flow of V .

(7) The fissure C 0 does not meet ˇ0 �A1=2 , and G 0 is horizontal on some open
neighbourhood of ˇ0 �A1=2 in ˛�Dq .

(8) The foliation e�˛.Cˇ / is tangential to G0 on Op˛.@ˇ/�Dq.

Proof (1) The quasicomplementarity that holds, (h), on U �Dq extends to all of
˛�Dq, since, the vector field V 0 being projectable (g) through �˛ , its flow preserves
the foliation F˛ .

(2) Since, by (e)–(f), the domain H is saturated for the flow of V , and since e�˛.Gn�1/
is not cleft in H (recall (b)).

(3) Clear by (b), (e) and (f).

(4)–(6) After the very definition of G0 .

(7) On the one hand, by (3) of the present Claim 4.14, for � < � close enough to � ,
in restriction to x0�1.�/�A1�� , the foliation G0 is not cleft, and G 0 is horizontal
(ie parallel to ˇ/ there. On the other hand, by (c) and (f), the projection prV of the
hypersurface x0�1.�/�Dq into ˇ�Dq along the flowlines of V is

prV W .x; y/ 7! .prr.x/;  1.y//:

Since moreover G 0 is V t –invariant by (6), it follows that G 0 is horizontal in restriction
to the image prV .x0

�1.�/�A1��/, which is an open neighbourhood of ˇ0 �A1=2 in
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ˇ�Dq, since v.1��/< 1
2

by (d). The horizontality holds in fact on Op˛�Dq .ˇ
0�A1=2/,

since V is horizontal on Op˛.ˇ/�Dq (in view of (e) and (f)).

(8) Fix any point x 2 @ˇ . Let 
 be the smallest face of ˇ containing x . By Lemma
4.8(3), one has e�˛.Cˇ /� e

�
˛.C
 / on Op˛.x/�Dq. By the induction, Property 4.10(3),

at the order n� 1, the civilization e�˛.C
 / is tangential to e�˛.Gn�1/ on Op˛.x/�Dq.
By (4), the cleft foliations Gn�1 and G0 coincide on Op˛.x/�Dq.

Note that G 0 is not horizontal on ˇ00 �A1=2 ; in other words, it does not match Gn�1

there. This is why we need to modify G0 in H, introducing a new fissure there.

Decompose @˛00 as
@˛00 D @1˛

00
[ @2˛

00
[ˇ0;

where
@1˛
00
WD ˛00\˛0 and @2˛

00
WD ˛00\˛000:

First, we define a cleft foliation G1 D .C 1; Œc1�;G 1/ on .˛ �Dq/ nH, and we also
define it as a germ along @H inside H. Let

(j) G1 coincide with G0 on .˛�Dq/ nH ;

(k) G1 coincide with G0 on Op˛�Dq .@1˛
00�A1=2��/ and Op˛�Dq .˛

00�@A1=2��/;
in other words, G 1 is horizontal there;

(l) G1 coincide with G0 on Op˛�Dq .@2˛
00 �A1=2��/;

(m) C 1 not intersect ˇ00�A1=2�� , and G 1 be horizontal on Op˛�Dq .ˇ
00�A1=2��/.

This turns H into a hole (Definition 3.13) of core Si�1, fibre A1=2�� and monodromy  
(in view of (f)).

Claim 4.15 Provided that we take some extra care in the choice of  , the cleft
foliation G1 extends over H, giving on ˛ � Dq a cleft foliation, still denoted by
G1 D .C 1; Œc1�;G 1/, of monodromy ' and quasicomplementary to F˛ . Moreover,
C 1 has a component interior to H, whose core is a finite disjoint union of spheres Si�1 ,
each of which embeds into Int.˛/ through �˛ .

Proof In every codimension q � 2, consider the diffeomorphism  01 WD  1jA1=2�� .
Fix an arbitrary equidimensional embedding of Dq in the interior of A1=2�� . Thus,
' becomes a family of self-diffeomorphisms of A1=2�� . It is easy, in the above con-
struction of V , to choose the diffeomorphism vjŒ1=2��;1� in the group Diff

��
1
2
� �; 1

��
as a product of commutators. Consequently, so is  01 in the group Diff.A1=2��/0 .
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Since '1 is not the identity, and since A1=2�� is connected, by Epstein’s perfectness
theorem [8, Proposition 1.2 and Theorem 1.4],  01 belongs to the normal subgroup of
Diff.A1=2��/0 generated by '1 ; hence some lift Œ 0� 2 Diff.A1=2��/I of  01 (recall
Notation 3.1) lies in the normal subgroup of Diff.A1=2��/I generated by ' . In other
words, one has in the group Diff.A1=2��/I a splitting

 0 D �1 : : : �`;

where �1 , . . . , �` are conjugate to ' in Diff.A1=2��/I . In the above construction
of V , we choose the family . t / to represent this particular lift  0.

Then, by Section 3.1.7 and an obvious induction on `, we partially fill the hole H by
a foliation complementary to F˛ (thanks to the property (1) in 3.1.7), leaving some
smaller holes Hj (1� j � `) of core Si�1 , fibre A1=2�� , and respective monodromies
�1 , . . . , �` . Equivalently, each hole Hj is of monodromy ' (Section 3.1.6). Then,
each hole Hj is vertically shrunk (Section 3.1.8) into a hole H 0j of core Si�1 , fibre Dq

and monodromy ' . Finally (Section 3.1.4), each H 0j is horizontally shrunk into a
fissure of core Si�1 , fibre Dq and monodromy ' .

This core does embed into Int.˛/ through �˛ , after the note that ends Section 3.1.7.

The case q D 1 is similar, but we need two arbitrary equidimensional embeddings
of D1 in the interior of A1=2�� Š S0 � I , one in each connected component.

In view of Claim 4.14(1), (3), (4) and (7), and of (j), (l) and (m), the cleft foliation G1

on ˛ �Dq matches the properties (1) through (4) of Lemma 4.12 with G1 instead
of G˛ . However (Claim 4.14(8)), the property (5), namely the tangentiality of Cˇ

to G1 , only holds on W �Dq for some open neighbourhood W of @ˇ in ˛ . To rectify
this, consider on ˛ the unit vector field B normal to ˇ and that enters ˛ through ˇ ;
consider on Op˛.ˇ/�Dq the lift zB of B tangentially to e�˛.Cˇ / (Lemma 4.8, (2)).
Let .u; 1�u/ be on ˛ a partition of the unity subordinate to the open cover .W; ˛n@ˇ/.
Define vector fields Z on ˛ and zZ on ˛�Dq by

Z WD .1�u/r CuB and zZ WD .1�u ı�˛/V C .u ı�˛/ zB:

Claim 4.16 zZ is tangential to G1 on Op˛.ˇ/�Dq.

Proof On the one hand, V is tangential to G1 on Op˛.ˇ/�Dq : indeed, outside H,
this follows from (5) of Claim 4.14 together with (j); while on Op˛�Dq .ˇ

00�A1=2��/,
both V and G 1 are horizontal (by (e) and (m)). On the other hand, zB is tangential
to G1 on U �Dq, by the above definition of U.
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Since B and Z both enter ˛ through ˇ and coincide on Op˛.@ˇ/, there is an isotopy
f D .ft /t2I of self-diffeomorphisms of ˛ (with f0 D id˛ ) such that, for every t 2 I ,

� the support of ft is contained in a small neighbourhood of ˇ and disjoint
from y@˛ ;

� ft induces the identity on ˇ ;

� f �t .Z/D .1� t /ZC tB on Op˛.ˇ/.

Claim 4.17 There is an isotopy zf D . zft /t2I of self-diffeomorphisms of ˛�Dq (with
f0 D id˛�Dq ) such that , for every t 2 I ,

(1) �˛ ı zft D ft ı�˛ ;

(2) the vector field @ zft=@t is at the time t horizontal , ie tangential to e�˛.G /, on
˛�OpDq .@D

q/ and on Op˛�Dq .ˇ�A1=2/;

(3) zft is supported in .˛ n y@˛/�Dq ;

(4) zft induces the identity on ˇ ;

(5) zf �t .
zZ/D .1� t / zZC t zB on Op˛.ˇ/�Dq.

Proof On Op˛.ˇ/�Dq, the isotopy zf is uniquely determined by (4) and (5). There,
(1) is satisfied, since zZ and zB respectively lift Z and B through �˛ . Also, on
Op˛.ˇ/ � Dq, (2) is satisfied, since V , zB and hence zZ are horizontal there (after
(e), (f), Lemma 4.8(1) applied to ˇ , and after (III)). Also, on Op˛.ˇ/ �Dq, (3) is
satisfied, since zZ D zB on Op˛.@ˇ/. Finally, by the standard extension property for
vertical isotopies, zf admits an extension to all of ˛�Dq which obeys the conditions
(1), (2) and (3).

Define the cleft foliation G˛ on ˛�Dq as zf �1 .G
1/; let us verify that the conditions

(1)–(5) of Lemma 4.12 are obeyed:

(1) By Claim 4.15 and by Claim 4.17(1).

(2) By (I), by Claim 4.14(3), by (j), by (k), and by Claim 4.17(2).

(3) By Claim 4.14(4), by (j), by (k), and by Claim 4.17(3).

(4) By Claim 4.14(7), by (j), by (m), and by Claim 4.17(2).

(5) By Claim 4.16 and by Claim 4.17(5) applied for t D 1.

Lemma 4.12 is proved.
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Recall that the notation ˛ , ˇ and i holds for ˛n , ˇn and dim.ˇn/.

It remains to us, in order to complete the inflation induction, to microextend G˛

from ˛ �Dq Š P.˛/ to OpM .P.˛// so as to match Gn�1 on the intersection with
OpM .R[Mn�1/, and to satisfy Property 4.10(1)–(5). To this end, we use the civiliza-
tions of the prisms.

For every cell 
 of K, denote by h
i �RpC1 the affine subspace spanned by 
 , and
consider the local retraction along the leaves of C
 ,

�pr
 W OpM .P.
//! Oph
i�Dq .P.
//:

Actually, the object of interest is the germ of �pr
 along P.
/. Also, denote by pr

the orthogonal projection RpC1! h
i. Obviously, by Lemma 4.8:

Corollary 4.18 (1) G D �pr�
 .G jh
i�Dq / on OpM .e
 .
 � @D
q//.

(2) x� ı�pr
 D pr
 ı x� on OpM .P.
//.

(3) �prı ı�pr
 D �prı on OpM .P.ı// for every face ı � 
 .

Also, Lemma 4.11 admits the following complement:

Lemma 4.19 For each cell 
 of K, the cleft foliation Gn�1 coincides with the
pullback �pr�
 .Gn�1jP.
// on

OpM
�
Int.P.
//

�
\OpM ..R[Mn�1/\P.
//:

Proof Consider any point .x; y/ 2 .R[Mn�1/\P.
/. Let ı � 
 be the smallest
face containing x . We claim that Cı is tangential to Gn�1 on OpM .x; y/.

Indeed, ı�Kn�1 or y 2R.ı/. In the case where ı�Kn�1 , the claim follows from the
induction, Property 4.10(3), applied to ı at the order n�1. In the case where y 2R.ı/,
on OpM .x; y/, the foliation Gn�1 coincides with G (induction, Property 4.10(2), at
the order n� 1), while Cı � G (after Lemma 4.8(1)). The claim is proved.

In view of Lemma 4.8(3) , C
 is also tangential to Gn�1 on OpM .x; y/. Since P.
/
is transverse to C
 , the wanted coincidence follows on

OpM
�
Int.P.
//

�
\OpM .x; y/

(see Section 3.1.3 and Remark 4.6).
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Claim 4.20 (1) Gn�1 coincides with .e˛�1 ı�pr˛/
�.G˛/ on

OpM .R[Mn�1/\OpM
�
Int.P.˛//

�
:

(2) Gn�1 coincides with .e˛�1 ı�prˇ /
�.G˛/ on

OpM .R[Mn�1/\OpM
�
Int.P.ˇ//

�
:

(3) .e˛
�1 ı�pr˛/

�.G˛/ coincides with .e˛�1 ı�prˇ /
�.G˛/ on

OpM
�
Int.P.˛//

�
\OpM

�
Int.P.ˇ//

�
:

Proof (1) One has

e˛
�1.R[Mn�1/D .˛� @D

q/[ .y@˛�Dq/[ .ˇ�A1=2/:

After Lemma 4.12(2)–(4), on some open neighbourhood of this subset in ˛�Dq, one
has G˛ D e�˛.Gn�1/. Hence, the claim (1) amounts to Lemma 4.19 applied to ˛ .

(2) One has
e˛
�1.R[Mn�1/\ .ˇ�D1=2/D @.ˇ�D1=2/:

After Lemma 4.12(3)–(4), on some open neighbourhood of this subset in ˛ � Dq,
one has G˛ D e�˛.Gn�1/. After Lemma 4.12(5), this cleft foliation is restrictable to
ˇ�D1=2 . Hence, the claim (2) amounts to Lemma 4.19 applied to ˇ .

(3) After Lemma 4.12(5), on Op˛�Dq .ˇ�Dq/, the cleft foliation G˛ coincides with
the pullback of G˛jˇ�Dq through the local retraction of Op˛�Dq .ˇ�Dq/ onto ˇ�Dq

along the leaves of e�˛.Cˇ /. Hence, the claim (3) follows from Corollary 4.18(3)
applied to the pair ˇ � ˛ .

Globally, we have got a cleft foliation Gn on OpM .R[Mn/ such that

(i) Gn DGn�1 on OpM .R[Mn�1/;

(ii) Gn D .e˛
�1 ı�pr˛/

�.G˛/ on OpM
�
Int.P.˛//

�
;

(iii) Gn D .e˛
�1 ı�prˇ /

�.Gˇ / on OpM
�
Int.P.ˇ//

�
.

We are left to verify that Gn matches Property 4.10(1)–(5):

(1) After Section 3.1.3(e).

(2) After the very definition (i) above, and after the induction, Property 4.10(2), at the
order n� 1.
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(3) The only two cells to consider are ˛ and ˇ . The civilization C˛ (resp. Cˇ ) is
indeed tangential to Gn on OpM

�
Int.P.˛//

� �
resp. OpM

�
Int.P.ˇ//

��
by the very

definition (ii) (resp. (iii)), and on OpM .R.˛// because Gn coincides with G there,
and because of Lemma 4.8(1).

(4) Let us recollect the construction of the core †n from †n�1 . Recall or agree
that Gn�1D .Cn�1; Œcn�1�;Gn�1/, G0D .C 0; Œc0�;G 0/, G1D .C 1; Œc1�;G 1/, G˛ D
.C˛; Œc˛�;G˛/ and Gn D .Cn; Œcn�;Gn/. Consider the cores †n�1 WD cn�1�1.0; 0/,
†0 WD .c0/�1.0; 0/, †1 WD .c1/�1.0; 0/, †˛ WD c˛�1.0; 0/ and †n WD cn�1.0; 0/.
Put

y† WD†n�1\ .y@˛�Dq/:

By Claim 4.14(5), †0 is the saturation of e˛�1.y†/ by the flow of V . Hence, it is easy
to extend the complex e�˛.�n�1/, which is a subdivision of e˛�1.†0/, by a smooth
triangulation �0 of †0 collapsing on e�˛.�n�1/.

Also (Claim 4.15), †1 is nothing but the disjoint union of †0 with the core †1\H
of the new fissure in the hole, which is a finite disjoint union of .i�1/–spheres disjoint
from y@˛�Dq. Let �H be an arbitrary smooth triangulation of †1\H.

Also, recalling the definition of G1 , the core †˛ D zf1�1.†1/ is isotopic with †1 in
˛�Dq rel y@˛�Dq (by Claim 4.17 and (3)).

By the above definition (i)–(iii) of Gn , one has

(3) †n\Mn D .†n�1\Mn�1/[y† e˛.†˛/:

We define a partial smooth triangulation �n of †n as the union of �n�1 with
e˛. zf1

�1.�H // and e˛. zf1�1.�0//. Property 4.10(4) is verified for Gn .

(5) Will follow as well from the preceding recollection of the successive constructions
of the cores. Briefly, by the induction, Property 4.10(5), at the order n � 1, the
projection x� is one-to-one on every connected component of †n�1 \Mn�1 , and
thus, in particular, of y†. By (g), the projection x� is one-to-one on every connected
component of †0 . On the other hand, in view of the construction in the proof of
Claim 4.15, each .i�1/–sphere composing †1 \H embeds into Int.˛/ through x�
(and the image is an embedded .i�1/–sphere, close to @ˇ for the Hausdorff distance).
Hence, x� is one-to-one on every connected component of †1 . Since the isotopy zf1 is
projectable (by (1) of Claim 4.17), the projection x� is one-to-one on every connected
component of †˛ . Finally, after (3), x� is one-to-one on every connected component
of †n\Mn .
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This completes the induction on n, the proof of Proposition 4.3, and the proof of
Theorem A0.

4.4 Topology of the cores

We now give a complement to Theorems A and A0 by making explicit the topologies
of the cores of the fissures and of the multifold Reeb components resulting from the
above proofs (Figure 6).

Recall the notation from Theorem A0.

fissure
core

Dq
Dq

P.˛n/
P.ˇn/

M � 0 M � 1

�
!

x� Ip � 0
Ip � 1

˛n ˇn

I

Figure 6: Schematic view on a fissure component which appears while foliat-
ing P.˛n/ (Claim 4.15), on its propagation during the rest of the induction,
and on its projection into the base IpC1 . Beware that this schematic low-
dimensional drawing can be misleading in several ways: actually, there
appears a fissure while foliating P.˛n/ only for i WD dim.ˇn/ � 1; in the
topology of the core, here the factor Si�1 has been assimilated to two points;
in the base IpC1 , the projection of the core is actually of codimension 2 ,
not 1 .
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Proposition 4.21 The core † WD c�1.0; 0/ of the cleft �q –structure � built in
the above proof of Theorem A0 is diffeomorphic with a disjoint union of products
Si�1 �Dp�i, where p WD dim.M/� q and where 1� i � p .

In particular , the core †\ .M �1/D @† of the cleft foliation �jM�1 is diffeomorphic
with a disjoint union of products Si�1 �Sp�i�1 , where 1� i � p� 1.

Proof By Property 4.10(4) for nDN, the smooth compact manifold †D†N admits
a smooth (global) triangulation �N collapsing on a system of spheres (Vocabulary 4.9)
interior to †. After excising an open tubular neighbourhood of these spheres, and
after an obvious restoration of the triangulation close to the new boundary components,
one is reduced to the well-known fact that every collapsing cobordism is trivial (see
Proposition A.1).

Now, recall the notation from Theorem A.

Corollary 4.22 The core of the multifold Reeb component of the foliation 
 0 built
in the above proof of Theorem A is diffeomorphic with a disjoint union of products
Si�1 �Sp�i�1 , where 1� i � p� 1.

5 Proof of the Mather–Thurston theorem as a corollary of
Theorem A0

Let q � 1. Recalling Notation 3.1, fix an element ' 2Diff.Dq/I which is a product of
commutators,

' D Œ˛1; ˇ1� : : : Œ˛g ; ˇg �

with ˛1; ˇ1; : : : ; ˛g ; ˇg 2 Diff.Dq/I , and such that the image '1 2 Diff.Dq/ is not
the identity.

Remark 5.1 In fact, every ' 2 Diff.Dq/I is of this form, but we don’t need this
difficult perfectness result, for which one can find references and a discussion in [30].
Moreover, in view of Remark 1.4, recall that it remains unknown whether perfectness
holds in the differentiability class C qC1 .

The interest for us of such a commutators decomposition is that it allows an (obvious)
suspension construction over a surface. Namely, let Sg be the compact orientable
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surface bounded by S1 and of genus g , with a basepoint on the boundary. Consider
the representation

� W �1.Sg/! Diff.Dq/I

mapping the canonical free basis to ˛1; ˇ1; : : : ; ˛g ; ˇg ; hence �.@Sg/D ' : the sus-
pension S' of ' over the circle @Sg bounds the codimension-q foliation S� on
Sg �Dq that is the suspension of � .

Proof of Theorem 1.8 Let X, V , FV and 
 be as in the hypotheses of Theorem 1.8;
to fix ideas, assume moreover that X is closed. Recall that V WD V � I , that yV � V is
the union of V � 0 with @V � I , that �pr is the restriction to yV �X of the projection
V � I�X ! V �X, and let �V W V �X ! V denote the first projection.

The hypothesis that 
 restricts to a foliated product over @V amounts to say that at
every point a 2 @V �X, the differential da
 is a linear retraction of �a.V �X/ onto
�a
 D �aFV . Hence, Theorem A0 provides a cleft �q –structure on V �X which
coincides with �pr�.
/ over OpV .

yV / and which is, over V � 1Š V , complementary
to FV on the complement of the fissure. Our proof of the Mather–Thurston theorem
will consist in enlarging the fissure into a hole and filling the hole by a foliation
complementary to the fibres, at the price of changing the base V into a more general
cobordism. To this end, the main tool will be the pullback construction that has been
described in Section 3.1.3. A difficulty is that in V , the projections of the connected
components of the fissure will in general intersect each other. To solve this difficulty,
we need an inductive process, filling at each step only a union of components whose
projections are pairwise disjoint, and performing successive surgeries on the base.
During the process, the cores of the remaining components will get surgered too.

More precisely, one can paraphrase the conclusions of Theorem A0 by the following
properties (1)–(3) and (I)–(IV), where V � WD V , where W WD V � I , and where
†1; : : : ; †` are the connected components of †. One has

(1) an oriented cobordism .V;W; V �/ rel @V ;

(2) on W �X, a cleft �q –structure � D .C; Œc�; x
/ whose monodromy is ' , and
whose normal bundle is �FW ;

(3) a partition of † WD c�1.0; 0/ as a finite disjoint sum of compact components

†D†1 t � � � t†`

(each †i is thus a union of connected components of †)
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such that

(I) C is disjoint from yV �X, and x
 coincides in restriction to yV �X with �pr�.
/;

(II) C is in standard position with respect to FW (Definition 3.7);

(III) �jV ��X is on V � �X a cleft foliation quasicomplementary to FV � (recall
Definitions 3.4 and 3.8);

(IV) the projection �W is one-to-one in restriction to each component †1; : : : ; †` .

(Recall that, after the remarks following Definitions 3.2 and 3.3, in the case dim.W /D1,
a “cleft �q –structure” has no cleft at all: C and † are empty, and the proof of
Theorem 1.8 is complete. From now on, we assume that dim.W /� 2.)

Let us describe how such data can be modified so that the length ` of the partition
drops by one.

Fix a smooth map ˛ W Sg ! D2 inducing the identity between the boundaries. Let
H D h.†�D2 �Dq/ be a thin neighbourhood of C in W �X as in Lemma 3.10.
By (III), provided that we choose H thin enough, the equidimensional immersion

j W†` �D2!W; .�; z/ 7! �W .h.�; z; 0//;

is an embedding. Let W 0 (resp. .V �/0 ) be the .pC1/–fold (resp. p–fold) obtained
from W (resp. V � ) by cutting j.†`�D2/ (resp. j.@†`�D2/) and pasting †`�Sg
(resp. @†` �Sg ). The triple .V;W 0; .V �/0/ is a new oriented cobordism rel @V . Let
a WW 0!W be the smooth map defined on †` �Sg �W 0 as

.�; x/ 7! j.�; ˛.x//

and as the identity on the complement. Consider the product map

A WD a� idX WW 0 �X !W �X:

The map A being leafwise étale (Section 3.1.3(a)) with respect to FW 0 and FW ,
according to Lemma 3.12, after a generic small horizontal perturbation of the fissure C,
one can arrange that C is pullable through A. The above properties (I)–(III) still hold
(Section 3.1.2); we choose the perturbation small enough that (IV) also still holds.

On the one hand, on A�1.H/Š†`�Sg�Dq, define x
 0 as .pr2�pr3/
�.S�/: a genuine

foliation complementary to FW 0 there. On the other hand, consider the complement
R WD .W �X/ n Int.H/ and, on A�1.R/, the cleft �q –structure A�1.�jR/.
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The two constructions obviously coincide on OpW 0�X .A
�1.@H//, thus defining on

W 0 �X a global cleft �q –structure � 0. The above properties (I)–(III) hold for W 0,
.V �/0, � 0 instead of W , .V �/, � (after Section 3.1.3(c), (e)). As for (IV), the core
of the fissure of � 0 is the disjoint union of †0i WD A

�1.†i / for 1 � i � `� 1. Since
for each i the projection �W is one-to-one on the component †i , clearly �W 0 is
one-to-one on †0i .

After the last step of the inductive process, `D 0; in other words, there is no fissure
any more, and Theorem 1.8 is proved.

Appendix The “collapsing cobordism theorem”

Proposition A.1 Let .V0; W; V1/ be a cobordism between two closed manifolds V0
and V1 . Assume that W admits a smooth triangulation K collapsing onto V0 . Then
W is diffeomorphic with V0 � I .

This fact, which Thurston used [37, last lines of paragraph 7] for the same purpose
as we do in the present paper, is of course covered by the classical theorems of PL
topology (I thank Larry Siebenmann for pointing this out to me). Indeed, by the normal
neighbourhood theorem [17], K is PL–isomorphic with the product .KjV0/� I . Then,
by the product smoothing theorem (eg [16]), W is diffeomorphic with V0 � I .

If dim.W /� 6, alternatively, a collapsing cobordism being a s–cobordism, one can
apply the s–cobordism theorem. This second argument, which does not use the
smoothness of the triangulation, is restricted to the large dimensions.

Both these arguments involving some rather elaborate results, we give a direct, com-
paratively short and pedestrian proof. (We also believe that it is worth giving because
the product smoothing theorem is a particular case of Proposition A.1: the case where
K is a Whitney product triangulation).

Our proof consists in building a smooth Morse function on W whose critical points
are exactly the barycenters of the cells of K, and such that for each (or most) of the
elementary collapses composing the given global collapse, the corresponding pair of
critical points is cancellable. After the cancellations, one obtains a noncritical smooth
function, and thus a diffeomorphism of W with V0 � I . The only subtleties in the
construction lie of course in some smoothness topics.
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We begin with some elementary tools for handling smooth triangulations. A simplex
of dimension at least 2 being a smooth manifold with cornered boundary, the (short)
proofs are given.

For 0�p� n, endow Rn with the Euclidean coordinates x1 , . . . , xn ; define the sector
Rnp �Rn by xi � 0 for n�pC 1� i � n; and consider for each n�pC 1� i � n
the hyperface �i �Rnp defined by xi D 0.

Lemma A.2 Every real function f on @Rnp whose restriction to each hyperface �i
is smooth extends to a smooth real function on Rnp . Moreover , this extension process
can be made continuous with respect to the smooth topologies on spaces of smooth
functions.

Proof There is indeed a simple formula, playing with the projections to the faces. Let
I be the finite set n�pC 1, . . . , n; for every subset J � I, let �J �Rnp be the face
defined by xi D 0 for every i 2 J, and let

prJ WR
n
p! �J

be the orthogonal projection. It is enough to verify that, on @Rnp ,

(4)
X
J�I

.�1/jJ jf ı prJ D 0

(indeed, this equation amounts to express the term f , corresponding to J D ∅, as
minus the sum of the other terms, which obviously extend smoothly to Rnp ).

Fixing i 2 I, one verifies (4) on �i by splitting the set of subsets P.I / into pairs J
and J 0, where i … J and J 0 D J [fig. On �i , one has prJ D prJ 0 , hence the terms
of (4) cancel by pairs.

Lemma A.3 Given a simplicial complex K and a subcomplex L � K, every real
simplexwise smooth function f on L extends to a real simplexwise smooth function F
on K. Moreover, the support of F can be contained in any neighbourhood of the
support of f ; and the extension process can be made continuous with respect to the
smooth topologies on spaces of smooth functions.

Proof By induction on the number of cells of K not in L, one is reduced to the case
where K is a single cell ˛ , and L D @˛ . Every point x 2 @˛ admits in ˛ an open
neighbourhood Ux diffeomorphic to a sector. By Lemma A.2, a smooth extension Fx
of f jUx\@˛ exists on Ux . Pick any mathematical object � … @˛ ; put X WD @˛[f�g
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and U� WD Int.˛/; let .ux/ (x 2X ) be a smooth partition of the unity on ˛ subordinate
to the open cover .Ux/ (x 2X ); define

F WD
X
x2@˛

uxFx :

Definition A.4 (i) A smooth partial triangulation K of a manifold with boundary
W consists of a finite linear geometric simplicial complex jKj and a topological
embedding h W jKj !W such that
� h embeds smoothly each cell of jKj into W ;
� h�1.@W / is a subcomplex of jKj.

(ii) If moreover h.jKj/DW , then K is a smooth triangulation of W .

(iii) An isotopy of the smooth partial triangulation K is a continuous family .ht /
(t 2 I ) of topological embeddings ht W jKj !W such that
� h0 D h;
� for each cell ˛ of jKj, the restriction .ht j˛/ is a smooth isotopy of smooth

embeddings of this cell;
� ht

�1.@W /D h�1.@W / for every t 2 I .

(iv) Given an isotopy as in (iii), consider the simplexwise smooth, time-dependent
vector field vt WD @ht=@t . Fix an auxiliary smooth (resp. simplexwise linear)
embedding of W (resp. jKj) in a large-dimensional Euclidean space. All
Euclidean norms are denoted by j � j. We define the C 1–norm of the isotopy as

sup
x2˛

�
jvt .x/jC j@˛vt .x/j

�
;

where @˛vt .x/ is the spatial differential of vt j˛ at x .

Lemma A.5 Given a smooth partial triangulation K of a manifold W and a subcom-
plex L � K, every isotopy .ht / of L which is C 1–small enough , extends to some
isotopy .Ht / of K which we can make arbitrarily C 1–small. Moreover, the support
of .Ht / can be contained in any neighbourhood of the support of .ht /.

Proof By induction on the number of cells of K not in L, one is reduced to the case
where K D L[˛ for a cell ˛ such that @˛ D ˛\L. Since everything takes place in
W in a small neighbourhood of the embedded simplex ˛ , we can assume that W is
the half-space Rn1 .

The time-dependent vector field @ht=@t amounts over @˛ to a simplexwise smooth
1–parameter family of maps vt W @˛!Rn . By Lemma A.3, this family extends to a
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simplexwise smooth 1–parameter family of maps Vt W ˛!Rn . If h.˛/� @W DRn�1 ,
one has vt .@˛/ � Rn�1 , hence one can choose Vt to take values in Rn�1 . We can
choose the values Vt .x/ and the spacial differential @˛Vt to be arbitrarily close to 0
on ˛ , provided that those of vt are close enough to 0 on each proper face of ˛ . We
can also choose Vt to be supported in an arbitrary neighbourhood of the support of vt .
Integrating the time-dependent vector field Vt , one obtains an isotopy of immersions
h˛t W ˛! W such that each h˛t is close to hj˛ in the C 1 topology. If close enough,
then the global map

Ht WD ht [ h
˛
t WK!W

is one-to-one, hence a simplexwise smooth global embedding.

Recall that a local coordinate chart for W at a point y is a smooth diffeomorphism �

between an open neighbourhood of y in W and an open neighbourhood of �.y/ in
the half-space Rn1 .

Definition A.6 The smooth partial triangulation K of the n–manifold W is linear at
the point y D h.x/ with respect to the local coordinate chart � if the germ of � ı h
at x is linear in every cell of jKj through x . We call K linearizable at y if there
exists such a local coordinate chart.

Note A.7 Beware that the linearizability property generically fails provided that the
combinatorial link of x in K is complicated enough — here, “generically” refers to
the simplexwise smooth embedding h. Indeed, the linear representations of quivers
come into play.

For a simple example, consider a smooth triangulation K of a manifold of dimension
n � 3, and a codimension-2 cell ˛ of K lying in the boundary of at least four
codimension-1 cells, �i of K for 1 � i � 4. At every point y 2 ˛ , the four lines
�y�i=�y˛ have in the 2–plane �yW=�y˛ a cross-ratio c.y/ 2 R n f0; 1g; and the
function c on ˛ is in general not constant on any neighbourhood of a given point
y0 2 ˛ . Then K is not linearizable at y0 .

In the same spirit, note that for any vector field r of class C 1 which is tangential to
each cell of K, the derivative r �c must vanish identically on ˛ . For a generic position
of �1 , . . . , �4 , the function c is Morse on ˛ . Then r must be tangential to its level
sets, and vanish at the critical points. If ˛ is contained in at least nC1 codimension-1
cells, then one gets a number dim.˛/ of such cross-ratio functions on ˛ ; and for a
generic position of these cells, r must vanish identically on ˛ .
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Lemma A.8 Given a smooth partial triangulation K D .jKj; h/ of a manifold W , a
point y D h.x/, and a local coordinate chart � W OpW .y/! Rn1 , there is an isotopy
.ht / of smooth partial triangulations such that h0 D h and that h1 is linear at y with
respect to � .

Moreover , one can choose the isotopy to be supported in an arbitrarily small neighbour-
hood of x .

Given moreover a subcomplex L�K containing x which is already linear at y with
respect to � , there is such an isotopy .ht / which is stationary on L.

Proof By induction on the number of cells of jKj not in jLj and containing x .
Consider a minimal such cell ˛ ; in particular,

@˛\St.x/D ˛\ jLj \St.x/;

where St.x/ is the open star of x (the interior of the union of the cells of jKj contain-
ing x ). The 1–jet at x of the smooth embedding � ıhj˛ extends to a linear embedding
` W ˛ ,! Rn coinciding with � ı h on @˛ \ Op˛.x/. The obvious local isotopy of
embeddings

ht .z/ WD �
�1
�
.1� t /�.h.z//C t`.z/

�
.z 2 Op˛.x/; t 2 I/

is arbitrarily C 1–small (Definition A.4(iv)) on a small enough neighbourhood of x , and
stationary on Op@˛.x/. By the ordinary isotopy extension property for embeddings, the
germ of .ht / at x extends to a global isotopy of embeddings h˛t W ˛ ,!W , stationary
on @˛ . Clearly, h˛t can be chosen to be supported in an arbitrarily small neighbourhood
of x , arbitrarily C 1–small, and stationary on jLj. One thus gets a C 1–small isotopy
of L[ ˛ stationary on L and coinciding with .h˛t / on ˛ , which extends to the rest
of K with support in an arbitrarily small neighbourhood of x (Lemma A.5).

We now begin to prove Proposition A.1. Let W , V0 , V1 and K be as in this proposition.
First, we somehow normalize K close to the upper boundary V1 .

Lemma A.9 After changing K, one can arrange that , moreover, there is a smooth
function w WW ! Œ0; 1� such that

(1) Vi D w
�1.i/ for i D 0; 1;

(2) every critical value of w lies in the open interval
�
0; 1
2

�
;

(3) the smooth hypersurface w�1
�
1
2

�
is a subcomplex of K ;

(4) the subcomplex K1=2 WDKjw�1.Œ0;1=2�/ collapses onto V0 .
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Proof Consider the triangulation KjV1 of the manifold V1 ; put an arbitrary total order
on the set of its vertices; then the Whitney subdivision L of the cartesian product
.KjV1/�I (see [39, page 365]) is on V1�I a smooth triangulation, and LjV1�0DKjV1 ,
and L collapses onto V1 � 0. The manifold �W WDW [V1 .V1 � I/ is diffeomorphic
with W , and �W admits the smooth triangulation yK WD K [KjV1 L. Composing the
collapses L&V1�0 and K&V0 , one gets a global collapse yK&V0 . The function yw
on �W is defined as yw.x; t/ WD 1

2
.1C t / in V1 � I , and its extension to the rest of �W

is not less obvious.

Lemma A.10 After changing K again , one can arrange that , moreover , K is lineariz-
able at the barycenter of each of its cells.

Proof Consider the hypersurface H WD w�1
�
1
2

�
and its smooth triangulation KjH.

For every cell ˛ of KjH , apply Lemma A.8 at the barycenter of ˛ . One gets a
smooth triangulation of H isotopic to KjH and linearizable at each barycenter. Then,
extend this isotopy into an isotopy of K supported in a small neighbourhood of H
(Lemma A.5). Finally, applying Lemma A.8 at the barycenter of each cell of K with
LDKjH , one obtains a triangulation linearizable at the barycenter of each cell.

Each triangulation bears a canonical, piecewise Euclidean, Riemannian metric. Pre-
cisely, for each d � 0, the Euclidean metric on RdC1 , restricted to the standard
d –simplex �d � RdC1 (the convex hull of the canonical basis), is invariant by the
symmetric group SdC1 . One thus obtains a natural Riemannian metric on each linear
simplex, and in particular on each cell of jKj. Its image under h is a Riemannian
metric g˛ on each cell ˛ of K. Define on ˛ the quadratic function

q˛ W x 7!
1
2
jx� [.˛/j2;

where j�j denotes of course the g˛ –distance. On every face ˇ�˛ , one has g˛jˇ Dgˇ
and (after Pythagoras)

(5) q˛jˇ � qˇ D constant:

Still consider any cell ˛ of K. On a small open neighbourhood U˛ of [.˛/ in W ,
let � D .x1; : : : ; xn/ be a local coordinate chart linearizing K (Definition A.6 and
Lemma A.10). Put d WD dim.˛/ and a WD �.[.˛// 2Rn1 . Composing � with an affine
automorphism of Rn preserving Rn1 , we arrange that moreover

� ˛\U˛ is defined in U˛ by the equations xi D ai for d C 1� i � n;

� g˛j˛\U˛ D
Pd
iD1 dx

2
i .
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Endow U˛ with the quadratic function

f˛ WD d �
1

2

dX
iD1

.xi � ai /
2
C
1

2

nX
iDdC1

.xi � ai /
2

(hence, f˛ D q˛C d on ˛\U˛ ) and with the linear vector field

r˛ WD

dX
iD1

.xi � ai /
@

@xi
�

nX
iDdC1

.xi � ai /
@

@xi
:

Lemma A.11 (1) r˛ is tangential in U˛ to every cell of K containing ˛ .

(2) For every face ˇ � ˛ , one has rˇ � q˛ > 0 on Op˛.[.ˇ// n [.ˇ/.

The verifications are immediate.

Lemma A.12 There are a global , continuous vector field r on W , and real values
0 < �0 <

1
2
< �1 < 1, such that for every cell ˛ 2K :

(1) r coincides with r˛ on some neighbourhood of [.˛/ in W .

(2) r is tangential to ˛ and smooth on ˛ .

(3) r � q˛ > 0 on Int.˛/ n [.˛/.

(4) w.[.˛// … .0; �0�[
�
1
2
; �1
�
.

(5) Every critical value of w is > �0 .

(6) r �w < 0 on w�1.�i / for i D 0; 1.

Proof On every cell ˛ of K, let the vector field r˛ be the (ascending) g˛–gradient
of q˛ .

Let us first fix �0 and �1 . Recall that w�1.0/D V0 and w�1
�
1
2

�
are subcomplexes

of K.

Claim For i D 0; 1, let ˛ be a cell of K contained in w�1
�
i
2
; 1
�

but not in w�1
�
i
2

�
.

Then r˛ �w < 0 on ˛\w�1
�
i
2

�
.

Indeed, the intersection ˛ \ w�1
�
i
2

�
, if not empty, is a proper face of ˛ . At any

point x on this face, the vector field r˛ exits ˛ , transversely to every hyperface of ˛
containing x . On the other hand, in the tangent vector space �xW , the convex cone
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tangent to ˛ admits ker.dxw/ as a supporting hyperplane at point 0. Hence, r˛ �w <0
at x . The claim is proved.

For i D 0; 1, we choose �i > i
2

so close to i
2

that (5) is satisfied and that for every
cell ˛ of K, (4) is satisfied, and (thanks to the claim) r˛ �w < 0 on .wj˛/�1.�i /.

One builds r cell after cell, by induction on the dimensions of the cells. Let ˛ be a
cell of K ; assume by induction that a continuous vector field r is already defined
on @˛ ; that (1)–(3) are satisfied for every proper face of ˛ instead of ˛ ; and that (6)
holds at every point of @˛\w�1.�i / for i D 0; 1.

The extension of r to ˛ will be a local construction: we shall first define, for every point
x 2 ˛ , a vector field Xx on an open neighbourhood Nx of x in ˛ . The construction
of Xx depends on x being the barycenter of ˛ , or the barycenter of a proper face, or
not a face barycenter.

On N[.˛/ WD Int.˛/, let X[.˛/ WD r˛ . In particular, X[.˛/ � q˛ > 0 on N[.˛/ n [.˛/.

For each proper face ˇ ˛ , let N[.ˇ/ be a small open neighbourhood of [.ˇ/ in ˛ (not
containing any other face barycenter, and disjoint from w�1.�0/ and w�1.�1/) such that
the linear vector field X[.ˇ/ WD rˇ j˛ , which is tangential to ˛ there (Lemma A.11(1)),
satisfies X[.ˇ/ � q˛ > 0 on N[.ˇ/ n [.ˇ/ (Lemma A.11(2)).

Now, consider a boundary point x 2 @˛ which is not the barycenter of any face. Call
ˇ � @˛ the smallest face of ˛ through x . By induction, r is already defined on
each hyperface � of ˛ through x , and tangential to �. Let Nx be in ˛ a small open
neighbourhood of x diffeomorphic to a sector. By Lemma A.2, there is a smooth
vector field Xx on Nx which coincides with r on every hyperface of ˛ through x .
By the induction hypothesis (3) applied to ˇ and by (5), one has r � q˛ > 0 at x .
After shrinking Nx , it does not contain any cell barycenter; and Xx � q˛ > 0 on Nx .
Moreover, if w.x/D 0 or 1

2
, by induction, (6) holds at x ; hence, after shrinking Nx ,

one has Xx �w < 0 on Nx .

Finally, one defines r on ˛ as

r WD

X
x2@˛[[.˛/

uxXx;

where .ux/ is a partition of the unity on ˛ subordinate to the open cover .Nx/. The
properties (1)–(3) hold on ˛ , and (6) holds on ˛\w�1.�i / for i D 0; 1.
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For every cell ˛ of K, the stable manifold W s.[.˛// and the unstable manifold
W u.[.˛// of the barycenter [.˛/ with respect to r are well defined, since r , being
simplexwise smooth, is Lipschitz.

Corollary A.13 (1) W s.[.˛// is contained in the open star of ˛ (the interior of
the union of the cells of K containing ˛ ).

(2) W u.[.˛//D Int.˛/.

This follows immediately from Lemma A.12(1)–(3).

Lemma A.14 There is on W a smooth Morse function f such that

(1) f coincides with f˛ on a neighbourhood of [.˛/ in W for every ˛ 2K ;

(2) r �f < 0 except at the barycenters of the cells of K.

Proof Let ˛ be a cell of K. By induction on d WD dim.˛/, assume that a smooth
function fU is already defined on some small open neighbourhood U of @˛ in W ;
that for every proper face ˇ   ˛ , one has fU D fˇ on a neighbourhood of [.ˇ/ in U ;
and that r �fU < 0 on U, except at the barycenters of the proper faces of ˛ .

First, let us extend fU to ˛ itself. To this aim, note that, by Corollary A.13(2), every
local maximum of the continuous function fU j@˛ is the barycenter [.�/ of a hyperface
�� ˛ , while

fU .[.�//D f�.[.�//D d � 1:

Hence, shrinking U if necessary, one has fU < d � 1
2

on U.

Again by Corollary A.13(2), there is on Int.˛/ a smooth function g such that

� g D f˛ on a neighbourhood of [.˛/;

� r �g < 0 on Int.˛/ n [.˛/;

� g > d � 1
2

.

Again by Corollary A.13(2), one has on ˛ a smooth plateau function u such that uD 1
on a neighbourhood in ˛ of ˛ n .U \˛/, and spt.u/� Int.˛/, and r �u � 0. On ˛ ,
define

F WD .1�u/fU Cug:

Then, on Int.˛/ n [.˛/,

r �F D .1�u/r �fU Cur �gC .g�fU /r �u < 0:

Hence, any smooth extension of F to W coinciding with f˛ close to [.˛/ and with
fU close to @˛ will also satisfy (2) on a neighbourhood of ˛ .
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Note that f is self-indexing.

Informally, at this step, the vector field r is in some sense gradient-like for f ; and every
pair of critical points [. j̨ / and [. ǰ / for 1� j � J is in some sense in cancellation
position with respect to r . The problem is that r is in general not smooth, and in
many cases cannot be smooth (Note A.7). In particular, for every cell ˛ of K, the
stable manifold W s.[.˛// is in general not smooth. However, the germ of W s.[.˛//

at [.˛/ is smooth (Lemma A.12(1)).

Recall (Lemma A.9(4)) that the subcomplex K1=2 WDKjw�1.Œ0;1=2�/ collapses to V0 ;
such a collapse means a filtration of the simplicial complex K1=2 by subcomplexes
.Kj / for 0 � j � J such that K0 D KjV0 , and KJ D K1=2 , and that, for each
1� j � J,

� Kj�1 �Kj ;

� Kj has exactly two cells j̨ and ǰ not in Kj�1 ;

� ǰ � j̨ is a hyperface.

Lemma A.15 There are real values .vj / for 1� j � J such that

(1) dim. ǰ / < vj < dim. j̨ /

(2) the compact disk

Dsj WDW
s.[. ǰ //\f

�1.�1; vj �

is contained in U
ǰ

, and thus smooth ;

(3) w < �1 on Dsj ;

(4) if 1� j < j 0 � k and if ǰ � j̨ 0 , then vj < vj 0 .

Proof One defines vj by descending induction on j. At each step, any value close
enough to dim. ǰ / from above works.

Also consider, for 1� j � J, the smooth compact disk

Duj WD j̨ \f
�1Œvj ;C1/:

In view of Corollary A.13(2), of Lemma A.12(1)–(2), and of Lemma A.15(1), in the
regular level set f �1.vj /, the two attachment spheres @Dsj and @Duj obviously meet
transversely in a single point.
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Now, apply the elementary Weierstrass approximation theorem. The continuous vector
field r on W being already smooth on a neighbourhood of the barycenter of every
cell, and on every disk Duj for 1� j � J, and on a neighbourhood of every disk Dsj
for 1� j � J, we can approximate r on W , arbitrarily closely in the C 0 topology, by
a smooth vector field zr which coincides with r on a neighbourhood of the barycenter
of every cell, and on every disk Duj for 1� j � J, and on a neighbourhood of every
disk Dsj for 1 � j � J. We can choose zr to be, like r , tangential to V0 and V1 ;
hence the flow zrt is well defined on W for t 2R. We choose zr so close to r , in the
C 0 topology, that zr �f < 0 except at the barycenters of the cells, and that zr �w < 0
on w�1.�i / for i D 0; 1.

Thus, zr is a genuine smooth, gradient-like vector field for f . Consider, for every
1� j � J, the unstable manifold �W u.[. j̨ // of the critical point [. j̨ / for zr , and the
stable manifold �W s.[. ǰ // of the critical point [. ǰ / for zr . By the above definition
of zr , one has

Duj �
�W u.[. j̨ //;(6)

Dsj �
�W s.[. ǰ //:(7)

We can arrange moreover that

(8) wjDu
j
> �0 .1� j � J /:

Indeed, after the inclusion (6) and Lemma A.12(4), for a large enough time T > 0,
one has w ı zr�T > �0 on each Duj . We change w on W to w ı zr�ıw, where � is
any smooth function on I such that �.�0/D�T and �.�1/D 0.

Then consider W 0 WD w�1Œ�0; �1�, a cobordism between V 00 WD w
�1.�0/ and V 01 WD

w�1.�1/, diffeomorphic with W since the critical values of w lie between �0 and �1 .
We shall prove that W 0 is diffeomorphic with V 00 � I .

The critical points of f in W 0 are exactly the pairs [. j̨ / and [. ǰ / for 1 � j � J .
For each j, one has Duj �W

0 (by the inequality (8), and since zr �w < 0 on V 01 ) and
Dsj �W

0 (by Lemma A.15(3), and since zr �w < 0 on V 00 ).

The major consequence of the inclusions (6)–(7) is of course that �W u.[. j̨ // and�W s.[. ǰ // meet transversely on a single gradient line. It follows that the pair of
critical points [. j̨ / and [. ǰ / can be cancelled in Morse’s way by changing f in an
arbitrarily small neighbourhood of the bouquet Duj [D

s
j . For this localization, see

[27, Lemma 2.3] — or alternatively choose � > 0 so small that no critical value of f
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is �–close to vj ; then apply, in an arbitrarily small neighbourhood of the bouquet,
the standard modification of f that brings both critical values to vj ˙ 1

2
� without

changing the pseudogradient; and finally verify in the proof of Theorem 5.4 in [28]
that the modification of f in the cobordism f �1Œvj � �; vj C �� takes place in an
arbitrary small neighbourhood of the union of the stable and unstable manifolds of the
two critical points.

After Corollary A.13(1)–(2) and Lemma A.15(4), the bouquets Duj [D
s
j for 1� j � J

are pairwise disjoint. Hence, one can perform simultaneously the J cancellations,
yielding on W 0 a function f 0 without critical points which coincides with f on
neighbourhoods of V 00 and V 01 .

The end of the proof of Proposition A.1 is much classical: By means of a partition of the
unity, one makes on W 0 a smooth vector field r 0 such that r 0D zr on neighbourhoods
of V 00 and V 01 , and that r 0 � f 0 < 0 on W 0. Consequently, every orbit of r 0 must
descend from V 01 to V 00 . After a rescaling of r 0, the time t D �1 of the flow .r 0/t

carries V 00 onto V 01 . The mapping .x; t/ 7! .r 0/�t .x/ thus yields a diffeomorphism of
V 00 � I with W 0.
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