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QUASI-COMPLEMENTARY FOLIATIONS AND THE
MATHER-THURSTON THEOREM

Abstract. We establish a form of the h-principle for the existence
of foliations quasi-complementary to a given one; the same methods
are also used to prove the classical Mather-Thurston theorem.

Gaël Meigniez

1. introduction

1.1. Quasi-complementary foliations. Given, on a manifold M , a
dimension-q foliation F , the existence of a foliation G complemen-
tary to F (that is, G is of codimension q and transverse to F ) is of
course in general an intractable problem. In this paper, we weaken the
transversality condition, prescribing a simple (and classical) model for
the tangentialities between F and G which implies that G is a limit of
plane fields complementary to F but themselves not necessarily inte-
grable. We establish, when q ≥ 2, a form of Gromov’s h-principle for
such “quasi-complementary” foliations.

Here is a very elementary example similar to what we call quasi-
complementarity, although q = 1. Consider the Hopf foliation F of
the 3-sphere S3 by circles. The classical geometric theory of foliations
shows that F admits no complementary foliation G : indeed, by the
Novikov closed leaf theorem (see for example [2] or [3]), G would have a
compact leaf which would separate S3, in contradiction to the transver-
sality to F ; alternatively, one can argue that the Hopf fibration would
then be a foliated bundle ([2] pp. 99-100, or [3] example 2.1.5) over
a simply-connected base S2; hence all leaves of G would be diffeomor-
phic to the base; and by the Reeb global stability theorem ([2] ch. IV
theorem 4, or [3] theorem 6.1.5), the total space would be S2×S1, not
S3.

However, it is easily verified that the sphere has a Reeb foliation G
which is complementary to the circles but on its unique compact leaf,
which is tangential to them. Moreover, G is a limit of 2-plane fields
complementary to the circles, provided that one makes its two Reeb
components “turbulize” in appropriate directions: precisely, the holo-
nomy of G along any circle fibre in the compact leaf must be contracting
on one side of the leaf, and expanding on the other.

1



2 QUASI-COMPLEMENTARY FOLIATIONS

\-
G

. l, -\ q' ù ,^ s § ll ,N
. o /n § /\ ,n

N
\

Figure 1. Thurston’s movie

The models for the tangentialities are classical, being nothing but
W. Thurston’s constructions to fill holes in codimensions 2 and more
([26], paragraph 4). To fix ideas, the smooth (C∞) differentiability class
is understood everywhere, unless otherwise specified. On the interval
I := [0, 1], fix a smooth real function r 7→ u(r) such that u′(r) > 0 for
0 < r < 1, and u is flat on 0 at 0 (in the sense that u(r) and all its
derivates vanish at r = 0), and u(r) + u(1 − r) = 1. Write Dn (resp.
Sn−1) for the compact unit ball (resp. sphere) in Rn; endow D2 with
the polar coordinates ρ, θ; endow S1 with the coordinate s; on D2×S1,
one has the smooth 1-parameter family (ωr)r∈I of smooth nonsingular
integrable 1-forms defined for 0 ≤ r ≤ 1/2 by

ωr := u(1− 2ρ)ds+ u(2ρ)dρ

(on {ρ ≤ 1/2}) and

ωr := u(2− 2ρ)dρ+ u(2ρ− 1)(ds− u(1− 2r)dθ)

(on {ρ ≥ 1/2}); while for 1/2 ≤ r ≤ 1:

ωr := u(2− 2r)ω1/2 + u(2r − 1)ds

(Figure 1). Fix p, q ≥ 2. For every closed (p− 2)-fold Σ, we define the
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multifold Reeb component of core Σ as the (p+ q)-fold

CΣ := Σ×D2 ×Dq−1 × S1

(whose projection to the i-th factor, 1 ≤ i ≤ 4, will be denoted by pri)
endowed with two foliations:

• The dimension-q foliation FΣ parallel to the factor Dq−1 × S1;
• The codimension-q foliation GΣ obtained by endowing, for every
a ∈ Dq−1, the fibre pr3

−1(a) with its codimension-1 foliation
pullback of the 1-form ω|a| under pr2 × pr4.

definition 1.1. On a (p+ q)-fold M , the codimension-q foliation G is
quasi-complementary to the dimension-q foliation F if they are trans-
verse but maybe for finitely many disjoint multifold Reeb components
CΣ ↪→M , in which F (resp. G ) coincides with FΣ (resp. GΣ).

The components may have different cores; one can of course also
consider the union of the components as one component whose core
may be not connected. Note that G is complementary to F on M
but on the subset defined in each component CΣ by ρ ◦ pr2 = 1/2 and
‖pr3‖ ≤ 1/2, which is a hypersurface tangential to F . Also, it is easily
verified that G is a limit of codimension-q plane fields complementary
to F on M .

The elements on Haefliger structures, their regularity, their differen-
tial, their concordances and their relations to foliations will be recalled
on Section 2 below. Recall the Foliation theorem in codimensions 2
and more, also known as “h-principle for foliations”, on closed man-
ifolds ([26], see also [4] and [23]). We use the notation OpX(Y ) for
“some open neighborhood of Y in X”.

theorem 1.2 (Thurston). On a compact manifold M , let ν be a real
vector bundle of dimension q ≥ 2, let γ be a Γq-structure whose normal
bundle is ν, and let ω be a 1-form valued in ν of constant rank q;
assume that dγ = ω on OpM(∂M).

Then, M admits a regular Γq-structure γ′ of normal bundle ν such
that:

• γ′ = γ on OpM(∂M), and γ′ is concordant to γ on M (rel.
∂M);
• dγ′ is homotopic to ω on M (rel. ∂M) among the 1-forms

valued in ν of constant rank q.

Our main result is a refinement of this classical one for a manifold
already foliated.

theorem A. On a compact manifold M , let F be a foliation of di-
mension q ≥ 2, let γ be a Γq-structure whose normal bundle is τF ,
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and let ω be a 1-form valued in τF such that ω|τF is of constant rank
q; assume that dγ = ω on OpM(∂M).

Then, M admits a regular Γq-structure γ′ of normal bundle τF such
that:

(1) γ′ = γ on OpM(∂M), and γ′ is concordant to γ on M (rel.
∂M);

(2) dγ′ is homotopic to ω on M (rel. ∂M) among the 1-forms
valued in τF of constant rank q;

(3) The foliation induced by γ′ is quasi-complementary to F on M .

note 1.3. We put no restriction on the position of F with respect to
∂M .

note 1.4. Theorem A holds in every differentiability class Cr, 1 ≤ r ≤
∞, with the same proof. A parametric form also holds.

note 1.5. By construction, for p := codim(F ) ≥ 2, the core Σ of
each multifold Reeb component will be a bisphere Si−1 × Sp−i−1, with
1 ≤ i ≤ p− 1. One can if one likes better, by a trick due to Thurston,
arrange that Σ is the (p−2)-torus [28]; or, for p ≥ 3, that Σ = S1×Sp−3

[21].

note 1.6. This result and our proof also hold for p = 1, in which
case there exist no multifold Reeb components at all, hence “quasi-
complementary” means “complementary”. Of course, it is not a great
deal to produce a foliation complementary to a given codimension-1
foliation; however, the point is that there is one in every concordance
class of Γq-structures whose normal bundle is τF ; and this holds in
every differentiability class, including Cq+1.

Denote, as usual, by BΓrq (resp. BΓ̄rq) the Haefliger classifying space
for the Γ-structures (resp. parallelized Γ-structures) of codimension
q and differentiability class Cr. One has in particular the following
corollaries of Theorem A, since BΓ̄1

q is contractible [29] and since BΓ̄∞q
is (q + 1)-connected [27].

corollary 1.7. Let F be a C∞ foliation of dimension at least 2 on
a closed manifold.

Then, F admits a quasi-complementary foliation of class C1. If
moreover the codimension of F is 2, or if the bundle tangent to F is
trivializable, then F admits a quasi-complementary foliation of class
C∞.

About the proof — Theorem A is better established under a version
A’ producing a foliation G with holes (see Section 3) instead of multi-
fold Reeb components; the holes have a product structure D2×Σ×Dq;
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in that frame, quasi-complementarity means that outside the holes, G
is complementary to F , and that inside the holes, the slices parallel to
Dq are plaques of F . For q ≥ 2, the versions A and A’ are straightfor-
wardly equivalent to each other through Thurston’s method to fill the
holes; but A’ also holds in codimension q = 1.

To prove A’, the problem is translated, using the Gromov-Phillips-
Haefliger parametric Foliation theorem on open manifolds, into an ex-
tension problem whose proof falls to an adaptation of the original “in-
flation” process that Thurston introduced to prove Theorem 1.2. We
feel that the present work illustrates the power and the accuracy, in
the frame of Gromov’s h-principle, of the tools that Thurston left to
us after his early works on foliations.

1.2. A proof of the Mather-Thurston theorem. A second appli-
cation of our method deals with the construction of foliated products.
In the case where the given foliation F is a product foliation, we shall
get full complementarity at the price of modifying the base factor of
the product by some surgeries; in other words we give a proof of the
classical Mather-Thurston theorem [27], by means of a geometric con-
struction pertaining to the h-principle.

See [15] for J. Mather’s proof in codimension 1; see [17], pp. 79–80,
for a mention of Thurston’s three proofs, of which the first seems to be
lost; see [16][17][18][19][25] for the two other proofs.

Precisely, fix a manifold X (compact or noncompact, and, to fix
ideas, without boundary) of dimension q ≥ 1. For a compact oriented
p-fold V maybe with smooth boundary (p ≥ 0), say that a codimension-
q foliation, or a Γq-structure, on V × X, is horizontal at infinity if it
coincides with the slice foliation parallel to V , but maybe on some
compact subset. Recall that a foliated X-product over V means a
codimension-q foliation on V ×X complementary to the fibres v ×X
and horizontal at infinity. We use the notation V̂ ⊂ V × I for the
union of V × 0 with ∂V × I. An oriented cobordism (V,W, V ′) rel. ∂V
means as usual a compact oriented p-fold V ′ such that ∂V ′ ∼= ∂V and a
compact oriented (p+ 1)-fold W bounded by −V̂ ∪∂V V ′. We write pr2

for the projections V ×X → X and W ×X → X; we write pr1 × pr3

for the projection V × I×X → V ×X.
We shall prove:

theorem 1.8 (Mather-Thurston, version “for geometrically minded
topologists”). Let V be a compact oriented p-fold; let γ be a Γq-structure
on V × X, of normal bundle pr∗2(τX), horizontal at infinity, and in-
ducing a foliated X-product over ∂V .
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Then, there are an oriented cobordism (V,W, V ′) rel. ∂V and a Γq-
structure on W ×X, of normal bundle pr∗2(τX), horizontal at infinity,

coinciding with (pr1 × pr3)∗(γ) on V̂ ×X, and inducing a foliated X-
product over V ′.

In order to get the classical version of the theorem, realize BΓq as a
fibred space over BOq with fibre BΓ̄q, and consider:
• The group Diffc(X) of the compactly supported diffeomorphisms

of X, endowed with the smooth topology; the same group Diffc(X)δ
with the discrete topology; the homotopy-theoretic fibre Diffc(X) of
the identity map Diffc(X)δ → Diffc(X); and the classifying space

BDiffc(X); recall that BDiffc(X) classifies the foliated X-products;
• The space Γc(τX) of the maps

f : X → BΓq

such that f lifts the map X → BOq that classifies τX, and such that f
classifies X at infinity (in particular, for X = Rq, the space Γc(τR

q)
coincides with the q-th loop space Ωq(BΓ̄q));
• The map

BDiffc(X)
α−→ Γc(τX)

adjoint to the map

X ×BDiffc(X)→ BΓq

that classifies the Γq-structure of the total space of the universal foliated
X-product [15][27].

Theorem 1.8 amounts to say that α induces an isomorphism in ori-
ented bordism. Equivalently, by the “Hurewicz theorem for bordism
groups” ([1], see also [6], appendix B), α induces an isomorphism in
integral homology. That last wording is the classical one.

Jenseits des Homotopieprinzips — One could maybe speak of a “c-
principle”, with a “c” for ”cobordism”. Recall that when Gromov’s
famous h-principle holds for a problem, then every “formal solution”
is homotopic to a genuine solution through the formal solutions. In
the same way, let us say that the c-principle holds when every formal
solution is cobordant to a genuine solution through the formal solu-
tions. For example, the three following existence results pertain to
the c-principle: the Mather-Thurston theorem for foliated products,
the Madsen-Weiss theorem for fibrations whose fibres are surfaces (see
[6]), and the realization of taut compactly generated pseudogroups by
foliations of dimension 2 and codimension 1 [20]. See [8] for an early in-
troduction to this subject, for an interpretation of the Mather-Thurston
theorem close to ours, and for more examples.
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Figure 2. A Γq-structure.

The author thanks the referee for many relevant questions, critics
and suggestions which have been of great help in improving the text.

2. Haefliger structures

In this section, we recall A. Haefliger’s notion of Γq-structure [10][11]
[12][13], under the form of microfoliated bundle (this form was intro-
duced in [11]; see also [22]). We fix some vocabulary, point out a few
elementary facts, and prove the two parametric forms of the Foliation
theorem on open manifolds.

We denote every real vector bundle ν over a manifold M as ν =
(E, π, Z) where E is the total space, π : E →M is the projection, and
Z : M → E is the zero section.

2.0.1. Definition. A Γq-structure γ on M is given by

• A real vector bundle ν = (E, π, Z) of dimension q over M ;
• An open neighborhood U of Z(M) in E;
• On U , a codimension-q foliation M transverse to every fibre.

One calls ν the normal bundle, and M the microfoliation (Figure 2).
One regards two Γq-structures as equal if they have the same normal
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bundle and if their microfoliations coincide on some open neighborhood
of the zero section; in other words, γ is the germ of M along Z(M);
we shall also denote γ by [ν, U,M ].

A Γ̄q-structure means a Γq-structure whose normal bundle is M×Rq.

2.0.2. Canonical form and differential. Consider a Γq-structure γ =
[ν, U,M ] on a manifold M , where ν = (E, π, Z).

On the manifold U , let Ω be the differential 1-form valued in π∗(ν),
defined at every point v ∈ U as the projection of τvE onto ker(dvπ) =
νπ(v) parallelly to τvM . If one likes better, Ω is the unique 1-form
defining the foliation M (in the sense that τM = ker Ω) and whose
restriction to every fibre of π is the identity. We call Ω the canonical
form of the Γq-structure γ.

Let us define the differential dγ of the Γq-structure γ as Z∗(Ω): a
differential 1-form on M valued in ν.

note 2.1. The notion of the differential of a Haefliger structure does
not seem to appear in the literature. In the case where dγ is of rank q,
of course dγ admits a convex set of left inverse vector bundle monomor-
phisms ν ↪→ τM , which are the objects that the authors have consid-
ered instead. The differential exists for every Haefliger structure at
every point, not only at the regular ones. It is functorial with respect
to pullbacks (see further down). We feel that speaking in terms of
dγ, the analogy between the h-principle for foliations and several other
avatars of Gromov’s h-principle becomes more transparent. From our
viewpoint, the Foliation theorem homotopes a given differential form
of maximal rank to an integrable one.

2.0.3. Pullback. Given a Γq-structure γ = [ν, U,M ] on M , and given
a smooth mapping f : N → M , one defines a pullback Γq-structure
f ∗(γ) on N whose normal bundle is the usual pullback bundle f ∗(ν),
and whose microfoliation is the preimage of M under the canonical
bundle morphism f ∗(ν)→ ν.

2.0.4. Isomorphisms. Milnor’s notion of microbundle (here smooth) is
the natural one for the bundle normal to a Haefliger structure. For
simplicity, one rather speaks in terms of vector bundle; but this under-
lying fact is reflected in the morphisms that one admits. It is enough
to define isomorphisms.

Let γ = [E, π, Z, U,M ] and γ′ = [E ′, π′, Z ′, U ′,M ′] be two Γq-
structures on M . We define an isomorphism between γ and γ′ as a
germ of diffeomorphism ϕ : U → U ′ along Z(M) such that Z ′ = ϕ ◦ Z
and π = π′ ◦ϕ and M = ϕ∗(M ′). Note that ϕ is not necessarily linear
in the fibres, and that ϕ covers the identity of M .
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If moreover the normal bundles (E, π, Z) and (E ′, π′, Z ′) are equal
and if the differential of ϕ at every point of Z(M) is the identity, we
call ϕ a special isomorphism between γ and γ′.

2.0.5. Concordance. A concordance, also known as a homotopy, be-
tween two Γq-structures γ0, γ1 on M which have the same normal
bundle ν, is a Γq-structure γ on M × I whose normal bundle is pr∗1(ν)
and such that γ|(M × i) = γi, for i = 0, 1.

For example, any two specially isomorphic Γq-structures are concor-
dant.

The concordance extension property, which is obvious from Hae-
fliger’s original viewpoint on the Γ-structures [10] and almost as ob-
vious from the geometric viewpoint adopted here, will be often used
without mentioning it: given a Γq-structure γ on M and a submanifold
N ⊂M , every concordance of γ|N extends to a concordance of γ.

2.0.6. Regular Haefliger structures and foliations. A Γq-structure γ =
[E, π, Z, U,M ] on M is called regular at a point x if dγ is of maximal
rank q at x; in other words, Z is transverse to M at x. If γ is regular
on M , then it induces a codimension-q foliation Z∗(M ) on M .

Conversely, given a codimension-q foliation G on M , and choos-
ing a Riemannian metric on M , there corresponds the regular Γq-
structure γG whose normal bundle is τM/τG and whose microfoliation
is exp∗(G ), where exp is the exponential map τM → M restricted to
the subbundle τG ⊥ ∼= τM/τG . Note that dγG is the canonical projec-
tion τM → τM/τG .

It is easily verified that any two regular Γq-structures on M with the
same normal bundle and the same differential are specially isomorphic.
One thus gets a one-to-one correspondence between the isomorphism
classes of regular Γq-structures on M , and the codimension-q foliations
on M . One can speak of the concordance class of a foliation G and of
the differential dG .

Also, the following self-induction property is useful: given a Γq-
structure γ = [E, π, Z, U,M ] on M , consider on U the Γq-structure γM

corresponding to the foliation M . Then, on M , the pullback Z∗(γM )
is specially isomorphic with γ.

2.0.7. The parametric Foliation theorem on open manifolds. The clas-
sical Foliation theorem on open manifolds admits two parametric ver-
sions, that we respectively call “nonintegrable” and “integrable”. The
second will be used repeatedly in the proof of Theorem A’ below. It
does not seem to appear explicitly in the literature, although all proofs
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of the nonintegrable version (for example the one in [14]) actually prove
the integrable one as well.

The space of parameters will be a compact manifold A; fix a compact
submanifold B ⊂ A, maybe empty. Consider, over a manifold M , a
real vector bundle ν = (E, π, Z); and its pullback ν̃ over M × A.

definition 2.2. By a family of Haefliger structures (γ(a))a∈A whose
normal bundle is ν, one means, for every a ∈ A, a Γq-structure γa on M
whose normal bundle is ν; denote its microfoliation by M (a); such that
the (germ of) plane field τM (a) on OpE(Z(M)) depends smoothly on
a.

Call the family (γ(a))a∈A integrable (with respect to the parameter)
if moreover, there is a global Γq-structure γ̃ on M × A whose normal
bundle is ν̃ and whose restriction to the slice M × a is γ(a), for every
a ∈ A.

Fix a compact submanifold N ⊂ M (maybe empty) such that the
pair (M,N) is open, in the usual sense that every connected component
of the complement M \ N which is relatively compact in M meets
∂M . Assume that M carries a parametric family (ω(a))a∈A of ν-valued
differential 1-forms of constant rank q such that dγ(a) = ω(a) holds on
OpM(N) for every a ∈ A, and on M for every a ∈ OpA(B). Consider
the projection pr1 : (x, t) 7→ x and the embedding ιt : x 7→ (x, t)
(x ∈M , t ∈ I).

theorem 2.3. Consider a family (γ(a))a∈A of Γq-structures on M .
Under the above hypotheses:

(i) There is a smooth family (γ̄(a))a∈A of Γq-structures on M × I
such that for every a ∈ A:

(1) ι∗0(γ̄(a)) = γ(a);
(2) γ̄(a) = pr∗1(γ(a)) on OpM(N)× I;
(3) If a ∈ B, then γ̄(a) = pr∗1(γ(a)) on M × I;
(4) γ′(a) := ι∗1(γ̄(a)) is regular.

(ii) Moreover, the family (dγ′(a))a∈A is homotopic on M , relatively
to (N × A) ∪ (M × B), to the family (ω(a))a∈A among the families of
ν-valued, rank-q 1-forms.

(iii) If the family (γ(a))a∈A is moreover integrable, then one can
choose the family (γ̄(a))a∈A to be also integrable.

Proof of Theorem 2.3. Haefliger’s original proof of the nonparametric
Foliation theorem on open manifolds [11][12] is a direct application of
the Gromov-Phillips transversality theorem in the frame of Γ-structures:
the transversality theorem is applied, in the total space of the normal
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bundle of the structure, to the zero section, and provides a homo-
topy that puts it transverse to the microfoliation. This argument goes
with parameters and thus proves both parametric versions, the non-
integrable and the integrable. Here are the details, for the sake of
completeness.

Choose a smooth plateau function χ on M × A such that

• χ = 1 on a neighborhood of P := (N × A) ∪ (M ×B);
• ω(a)x = dγ(a)x for every (x, a) ∈ spt(χ).

Let V ⊂ E be an open neighborhood of the zero section Z(M), so
small that M (γ(a)) is defined on V for every parameter a, and that
the plane field τM (a) on V depends smoothly on a. Let Ω(a) be on
V the canonical, π∗(ν)-valued 1-form defining M (a) (recall Paragraph
2.0.2 above).

For a ∈ A fixed, consider over Z the bundle morphism

ζ(a) : τM → τE

defined for every x ∈M and u ∈ τxM as

ζ(a)xu := χ(x, a)u⊕ (1− χ(x, a))ω(a)xu

(where the tangent space τZ(x)E is decomposed as τxM ⊕ νx). Clearly,

(1) Ω(a)Z(x) ◦ ζ(a)x = ω(a)x

Hence, ζ(a)x is transverse to τZ(x)M (a) in τZ(x)E. By the Gromov-
Phillips transversality theorem [9][24] (which, if one likes, one can to-
day obtain as an immediate application of the Eliashberg-Mishachev
Holonomic Approximation theorem [5]), one has a map

H : M × A× I→ V

and, over H, a homotopy of parametric families of bundles morphisms

η : τM × A× I→ τE

such that for every x ∈M , u ∈ τxM , a ∈ A, t ∈ I:

• H(x, a, t) = Z(x) if (x, a) ∈ P or t = 0;
• η(u, a, t) = ζ(a)xu if (x, a) ∈ P or t = 0;
• The map u 7→ η(u, a, t) maps linearly τxM into τH(x,a,t)E trans-

versely to τH(x,a,t)M (a);
• η(u, a, 1) = (∂H/∂x)(x, a, 1)u.

For every parameter a, define the Γq-structure γ̄(a) on M × I as the
preimage of M (a) through the map (x, t) 7→ H(x, a, t). The property
(1) of Theorem 2.3 follows from the self-induction property of Para-
graph 2.0.6; while (2), (3) and (4) are obvious.
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(ii): Consider on M the 1-parameter family of A-parametrized fam-
ilies of rank-q, ν-valued 1-forms:

$(a, t)xu := ΩH(x,a,t)η(u, a, t)

(where a ∈ A, t ∈ I, x ∈ M , u ∈ τxM .) By Equation (1), ω(a) =
$(a, 0). On the other hand, $(a, 1) = dγ′(a).

(iii): Assume moreover that every γ(a) is the restriction to the slice
M × a of a global Γq-structure γ̃ on M × A. Then, every γ̄(a) is the
restriction to the slice M×a×I of the global Γq-structure on M×A×I
that is the pullback of the microfoliation of γ̃ through the map

H × pr2 : M × A× I→ V × A
�

3. Holes

We shall actually prove a form A’ of Theorem A dealing with holes
instead of multifold Reeb components; this form holds as well for q = 1.
The holes are the classical ones, ubiquitous in the theory of foliations
since Thurston’s works [26][28].

For a compact q-manifold Q with smooth boundary (we are essen-
tially interested in the case Q = Dq), we denote by Diff(Q) the group
of the diffeomorphisms of Q whose support is contained in the interior

of Q; by Diff(Q)0 its identity component; by D̃iff(Q)0 the universal

cover. Fix an element ϕ ∈ D̃iff(Q)0; recall that ϕ can be interpreted
as the homotopy class, relatively to ∂I, of a path of diffeomorphisms
(ϕt)t∈I such that ϕt ∈ Diff(Q)0 and ϕ0 = id. In particular, ϕ1 is the
projection of ϕ in Diff(Q)0.

definition 3.1. The model hole of fibre Q and monodromy ϕ (Figure
3) consists of the compact manifold Hmod := D2 × Q together with a
codimension-q foliation Hmod(ϕ) on OpHmod

(∂Hmod) such that

• Hmod(ϕ) coincides with the slice foliation parallel to D2 in D2×
OpQ(∂Q);
• Hmod(ϕ) induces the suspension of ϕ on ∂D2 ×Q.

definition 3.2. For every compact manifold Σ (not necessarily con-
nected), the standard hole of core Σ, fibre Q and monodromy ϕ consists
of the manifold

HΣ,Q := Σ×D2 ×Q
together with the codimension-q foliation

H (Σ, Q, ϕ) := (pr2 × pr3)∗(Hmod(ϕ))

on OpHΣ,Q
(Σ× ∂(D2 ×Q)).
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Figure 3. Model hole.

In fact, one is interested only on the germ of the foliation H (Σ, Q, ϕ)
along Σ×∂(D2×Q). Note that this germ depends only, up to an isotopy

in HΣ,Q, on the conjugation class of ϕ in D̃iff(Q)0.

definition 3.3. On an m-fold M , a (Q,ϕ)-holed Γq-structure is a
triple (Σ, h, γ) such that

• Σ is a compact (m − q − 2)-fold, not necessarily connected,
maybe empty;
• h : HΣ,Q ↪→M is an embedding and h−1(∂M) = ∂Σ×D2 ×Q;
• γ is a Γq-structure defined on OpM(M \Int(h(HΣ,Q))): in other

words, outside the hole and slightly inside it;
• h∗(γ) coincides with H (Σ, Q, ϕ) on OpHΣ,Q

(Σ× ∂(D2 ×Q)).
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A (Q,ϕ)-holed Γq-structure has a normal bundle (resp. a differential)
defined on the all of M : the normal bundle (resp. differential) of γ is
extended over the hole by the bundle tangent (resp. by the projection)
to the Dq factor.

Sometimes we regard the connected components of the hole as several
distinct holes.

If γ is moreover regular on M \ H, one speaks of a (Q,ϕ)-holed
foliation.

definition 3.4. One calls the (Q,ϕ)-holed foliation (Σ, h, γ) quasi-
complementary to the dimension-q foliation F on M if γ is comple-
mentary to F on M \ h(HΣ,Q) and if h∗(F ) is the dimension-q slice
foliation of HΣ,Q parallel to Q.

theorem A’. Choose ϕ ∈ D̃iff(Dq)0 such that ϕ1 6= id.
On a compact manifold M , let F be a foliation of dimension q ≥ 1,

let γ be a Γq-structure whose normal bundle is τF , and let ω be a 1-
form valued in τF such that ω|τF is of constant rank q, and such that
dγ = ω on OpM(∂M). Let F̄ be the dimension-q foliation on M × I
parallel to F .

Then, M × I admits a (Dq, ϕ)-holed Γq-structure (Σ, h, γ̄) of normal
bundle τF̄ , such that:

i) h(HΣ,Dq) is disjoint from M̂ , and γ̄ = pr∗1(γ) on OpM×I(M̂);
ii) The triple (∂Σ, h|H∂Σ,Dq , γ|(M×1)) is on M×1 ∼= M a (Dq, ϕ)-

holed foliation quasi-complementary to F ; moreover its differ-
ential is homotopic (rel. ∂M) to ω through the 1-forms valued
in τF of constant rank q on τF .

Moreover, in the case where M is a product V × X and where F
is its slice foliation parallel to X, one can arrange that (iii) for every
connected component Σi of Σ, the embedding Σi ↪→ M × I through h
covers an embedding Σi ↪→ V × I.

The proof will be given in Section 4. The theorem A immediately
follows from the points (i) and (ii) of Theorem A’ by choosing the
monodromy ϕ to be a multirotation (Definition 3.5 below) other than
the identity, and then filling the holes according to Paragraph 3.1.1
below.

3.1. Toolbox. We shall use the following tools to modify the holes;
the first is classical, the others are obvious. We consider as before a
standard hole of core Σ, fibre Q and monodromy ϕ.
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3.1.1. Filling. (After [26], paragraph 4) Assume that q ≥ 2. Recall

that an element ϕ of D̃iff(Q)0 amounts to a path of diffeomorphisms
(ϕt)t∈I in Diff(Q) such that ϕ0 = id.

definition 3.5. ϕ := (ϕt)t∈I is a multirotation if there are a function
u as in the introduction, and an embedding F of Dq−1 × S1 into the
interior of Q, such that for every t ∈ I:

• ϕt(F (a, s)) = F (a, s + tu(1 − 2|a|)) for every a ∈ Dq−1 such
that |a| ≤ 1/2 and every s ∈ S1 ∼= R/Z;
• ϕt is the identity on the rest of Q.

Assuming that ϕ is a multirotation, consider the foliation H of
Σ×D2×Q equal to the foliation GΣ of the introduction in Σ× (D2×
Im(F )) ∼= CΣ, and equal to the slice foliation parallel to Σ × D2 in
the complement. Clearly, H coincides with H (Σ, Q, ϕ) close to Σ ×
∂(D2 × Q). In other words, the standard hole of core Σ, fibre Q and
monodromy ϕ can be filled with H .

3.1.2. Splitting. Given a factorization ϕ = ϕ′ϕ” in the group D̃iff(Q)0,
let S be the 2-sphere minus the interiors of three disjoint compact disks.
Obviously, S ×Q has a codimension-q foliation G such that

• G is complementary to the slice foliation parallel to Q;
• G is parallel to S on a neighborhood of S × ∂Q;
• G induces the suspensions of ϕ, ϕ′, ϕ” on the three components

of ∂S ×Q.

Pulling back G into Σ × S × Q, one obtains a partial filling of the
standard hole of fibre Q, core Σ and monodromy ϕ, leaving two holes
of fibre Q, core Σ and respective monodromies ϕ′, ϕ”.

3.1.3. Horizontal shrinking. Let D ⊂ D2 be a small disk centered at 0.
In HΣ,Q, one can extend H (Σ, Q, ϕ) radially from the vertical bound-
ary Σ× ∂D2×Q and thus foliate the subset Σ× (D2 \D)×Q, leaving
a thinner hole Σ×D ×Q with the same core, fibre and monodromy.

3.1.4. Vertical shrinking. If Q′ ⊂ Q is a domain containing the support
of ϕ in its interior, then in HΣ,Q we can foliate the subset Σ×D2×Q′
by the horizontal slice foliation parallel to Σ × D2, leaving a smaller
hole Σ×D ×Q with core Σ, fibre Q′ and monodromy ϕ|Q′.

3.1.5. Reparametrizing. In a (Q,ϕ)-holed Γq-structure (Definition 3.3),
we can change the embedding h by precomposing it with any self-
diffeomorphism of Σ × D2 × Dq of the form F × idDq , where F is a
self-diffeomorphism of Σ×D2 which is the identity on a neighborhood
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of Σ × ∂D2. Indeed, F preserves the germ of H (Σ, Q, ϕ) along Σ ×
∂(D2 ×Q).

4. Proof of Theorem A’.

In a first time, we only pay attention to the properties (i)–(ii); for
(iii), see Paragraph 4.4.

4.1. Foliating a neighborhood of a codimension-1 skeleton trans-
versely to F . Following a classical scheme, a first part of the proof
of Theorem A’ will solve the problem on a small neighborhood of the
codimension-1 skeleton of a triangulation of a large part of M ; this
part is somehow standard, pertaining to Gromov’s h-principle on open
manifolds, with the help of Thurston’s jiggling lemma.

Let M , F , γ, ω be as in Theorem A’. By the Jiggling lemma ([26]
section 5), one has a compact domain D ⊂ Int(M), large enough
that ω = dγ holds on an open neighborhood of M \ Int(D), and a
triangulation K of D which is in general position, in Thurston’s sense,
with respect to F ; we only need to recall that every simplex S of K
is transverse to F (for dim(S) < p, “transverse” means that there
is no tangency) and that, for dim(S) ≥ p, the foliation F |Int(S) is
conjugate to the standard linear codimension-p foliation on Rdim(S).

Consider a simplex S of K not contained in ∂D; by induction on
the dimension d of S, assume that ω = dγ already holds on some
neighborhood U of ∂S in M . We work in a kind of small tubular
neighborhood of S in some convenient position with respect to F ;
there are two cases.

In case d ≤ p, one has an embedding e of S ×Dp−d ×Dq in a small
neighborhood of S such that

• e(x, 0, 0) = x for every x ∈ S;
• e maps ∂S ×Dp−d ×Dq into U ;
• e∗(F ) is the slice foliation on S×Dp−d×Dq parallel to the Dq

factor.

Apply the integrable parametric Foliation theorem on open manifolds
(Theorem 2.3 of Paragraph 2.0.7) to the manifold Dq (which is open in
the sense that it is connected with nonempty boundary), the space of
parameters being S ×Dp−d: after a concordance of γ and a homotopy
of ω, both supported in a small neighborhood of S and relative to a
small neighborhood of ∂S, one gets ω = dγ on some neighborhood of
S.

In case d ≥ p, one has an embedding e of Dp ×Dd−p ×Dp+q−d in a
small neighborhood of S such that
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• e−1(S) = Dp ×Dd−p × 0;
• e maps ∂(Dp ×Dd−p)×Dp+q−d into U ;
• U ∪ e(Dp ×Dd−p ×Dp+q−d) is a neighborhood of S;
• e∗(F ) is the slice foliation on Dp ×Dd−p ×Dp+q−d parallel to

the Dd−p ×Dp+q−d factor.

Apply the integrable parametric Foliation theorem on open manifolds
to the open manifold Dd−p × Dp+q−d, the space of parameters being
Dp: after a concordance of γ and a homotopy of ω, both supported
in a small neighborhood of S and relative to a small neighborhood of
∂S, one gets ω = dγ on some neighborhood of S. The induction is
complete.

4.2. Foliating a neighborhood of M̂ transversely to F̄ . It re-
mains to extend the construction through the interior of each (p+ q)-
simplex of the triangulation K. In other words, the proof of Theorem
A’ is reduced to the case where M := Dp ×Dq, and where F is the
slice foliation parallel to Dq. We restrict the attention to this case.

In Theorem A’, a certain Γq-structure pr∗1(γ)|M̂ is given on M̂ , and
one asks for extending it through M̄ by a Γq-structure matching certain
properties on a neighborhood of M × 1; this extension being already
realized on a neighborhood of ∂M×1. Clearly, the existence of such an
extension depends only on the concordance class, relatively to ∂M ×1,
of the Γq-structure given on M̂ . Hence, Theorem A’ (reduced to (i)
and (ii)) will result immediately from Lemma 4.1 and Proposition 4.2
below.

Consider on M̄ the dimension-q slice foliation F̄ parallel to Dq; the
Γ̄q-structure pr∗1(γ), where pr1 : M×I→M is the first projection; and
the Rq-valued 1-form pr∗1(ω) of constant rank q on τF̄ .

lemma 4.1. There is on OpM̄(M̂) a foliation G complementary to F̄
there, induced by pr∗1(γ) on OpM̄(∂M × 1), concordant to pr∗1(γ) (rel.
∂M × 1), and whose differential is homotopic to pr∗1(ω) among the
Rq-valued 1-forms of rank q on τF̄ (rel. ∂M × 1).

Proof. In fact, the concordance will be relative to the subset

X := (Sp−1 ×Dq × I) ∪ (Dp × Sq−1 × 1) ⊂ M̂ ⊂ M̄

which contains ∂M × 1.
The integrable parametric Foliation theorem 2.3 is first applied to γ

and ω on the open manifold Dq, the pair of parameters spaces being

(A,B) := (Dp,Sp−1)
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One gets on M ∼= M × 0 a foliation G0 complementary to F there,
induced by γ on OpM×0(Sp−1 ×Dq × 0), concordant to γ (rel. Sp−1 ×
Dq × 0), and whose differential dG0 is homotopic (rel. Sp−1 ×Dq × 0)
to ω among the forms whose restriction to τF is of constant rank q.

Next, by the concordance extension property for Γq-structures (see
Paragraph 2.0.5) (resp. by the Homotopy extension property for sec-

tions of a bundle), G0 (resp. dG0) is extended over OpM̄(M̂) by a
Γ̄q-structure γ̂ (resp. a form ω̂ of rank q on τF̄ ), induced by pr∗1(γ) on
OpM̄(X), concordant to pr∗1(γ) (resp. homotopic to pr∗1(ω) among the
forms of rank q on τF̄ ) rel. X.

Then, the integrable parametric Foliation theorem 2.3 is applied to γ̂
and ω̂ on the open manifold Sq−1×I, seen as a small collar neighborhood
of ∂Dq in Dq; the pair of parameters spaces being

(A,B) := (Dp × I, ∂(Dp × I))

�

Note that, when we have changed pr∗1(γ) to G , the tangentiality
to Dp × Sq−1 × I has been lost. The position of G with respect to
Dp × Sq−1 × I is now arbitrary.

4.3. Inflation. Recall that M = Dp×Dq (p, q ≥ 1), that M̄ = M × I,

that M̂ = (M × 0) ∪ (∂M × I) ⊂ M̄ , and that F̄ is the q-dimensional
slice foliation of M̄ parallel to the Dq factor. Let ϕ be as in Theorem
A’.

proposition 4.2. Let G be along M̂ a germ of foliation complementary
to F̄ there.

Then, G extends to all of M̄ as a (Dq, ϕ)-holed foliation quasi-
complementary to F̄ .

Note — Here, the fact that disks are disks is actually unimportant:
the same result would hold for any two compact manifolds instead of
Dp and Dq, with the same proof.

Proof. The rest of the present subsection 4.3 is to prove Proposition
4.2. The difficulty lies in the arbitrary position of G with respect to
Dp×Sq−1×I. The “inflation” method introduced by Thurston [26][28]
to prove the Foliation theorem on closed manifolds will fit to solve this
difficulty, after some adjustment.

We shall decompose the most part of M̄ , containing the part not
already foliated, into “prisms”, each of which α×Dq will be the product
of a small simplex α of dimension at most p+ 1 by the compact q-ball,
embedded in M̄ through an embedding eα such that every parallel to
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Figure 4. Decomposition of the most part of M̄ into
prisms, in the case p = 0, q = 1.

Dq is mapped onto almost all of a leaf of F̄ , and that α × ∂Dq is
mapped tangentially to G (precisely, for every y ∈ ∂Dq, the slice α× y
will be a leaf of e∗α(G )). Then, we shall adapt the original inflation
method to this prismatic cellulation: the prisms will be foliated (with
holes) one after the other, in the order given by a collapse of a fine
triangulation of Dp × I onto (Dp × 0) ∪ (Sp−1 × I).

We give the details for three reasons. First, our frame is not exactly
the same as Thurston’s; we foliate prisms, he foliated simplices; in fact,
the inflation method seems simpler and more natural in our frame than
in the original one. Second, some have believed that the argument in
[26] was difficult, or even not fully convincing — of course, it is not the
case. Third, we feel that “inflation” deserves to be used more widely
as a general method in the h-principle, which it has not been, since the
fundamental papers [26][28], but in [14].

4.3.1. Constructing the prisms. (Figure 4) To fix ideas, endow M̄ =
Dp ×Dq × I ⊂ Rp ×Rq ×R with the Euclidian Riemannian metric.
Denote by π̄ : M̄ → Dp × I the projection to the first and third
factors. In Rq, denote by Dr (resp. Sr) (resp. Cr) the compact disk
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(resp. sphere) (resp. corona) defined by |y| ≤ r (resp. |y| = r) (resp.
r ≤ |y| ≤ 1).

The foliation G is already defined, for some ε > 0, on the open
(2ε)-neighborhood of ∂M × I, and complementary to F̄ in this neigh-
borhood.

Consider the partially defined monodromy of G . Precisely, for a path
u : I→ Dp × I and for y ∈ Dq, denote by (u(1), hu(y)) ∈ (Dp×I)×Dq

the extremity of the path (if any) in M̄ originated at (u(0), y), lifting
u through π̄, and tangential to G . Let δ > 0 be small enough that:

(*) The monodromy hu(y) is defined whenever the length |u| is at
most δ, and y ∈ S1−ε.

Of course, as |u| goes to 0, the embedding hu of the hypersphere S1−ε
into Dq goes to the identity in the C1 topology, uniformly with respect
to u; fix δ small enough that moreover:

(**) For every u with |u| ≤ δ, the q-ball bounded by hu(S1−ε) in Dq

is starred with respect to the point 0 ∈ Dq.

Fix a smooth triangulation K of Dp × I which collapses onto its
subcomplex K0 := (Dp×0)∪(Sp−1×I); such a collapse can be regarded
as a filtration of K by subcomplexes (Kn) (0 ≤ n ≤ N) such that
KN = K, and such that for every 1 ≤ n ≤ N , exactly two cells αn, βn
lie in Kn but not in Kn−1; moreover βn is a hyperface of αn.

Recall that a smooth triangulation means a homeomorphism of a lin-
ear simplicial complex with Dp×I, embedding smoothly every simplex.
In particular, every simplex α of K is endowed with an affine structure.
One can moreover choose K so fine that every linear segment [x, x′] in
α is of length at most δ in Dp × I. One has:

(***) For every three points, x, x′, x” ∈ α and every y ∈ S1−ε, the
monodromy h[x′,x”](h[x,x′](y)) is defined, and equals h[x,x”](y).

Indeed, for t ∈ I, consider xt := (1 − t)x′ + tx” and yt := h[x,xt](y).
Clearly, yt depends continuously on t and belongs to the leaf of G
through the point (x, y); hence the path t 7→ (xt, yt) lifts the path
[x′, x”] tangentially to G .

Denote by [(α) the barycenter of α.

For every simplex α of K and every point x ∈ α, consider the in-
tersection I(α, x) of the compact q-balls bounded in Dq by the hy-
perspheres h[[(σ),x](S1−ε), where σ ranges over the (p + 1)-cells of K
containing α.

lemma 4.3.
i) I(α, x) ⊂ Int(Dq) is a compact domain homeomorphic to the q-

ball (but whose boundary is not necessarily smooth);
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ii) x, x′ ∈ α implies I(α, x′) = h[x,x′](I(α, x));
iii) α ⊂ α′ implies I(α, x) ⊂ I(α′, x).

Proof. i) Indeed, by (**), the domain I(α, x) is starred with respect to
0.

ii) Follows at once from (***) applied, in every (p + 1)-simplex σ
containing α, to the two triples ([(σ), x, x′) and ([(σ), x′, x).

iii) Obvious. �

To avoid irrelevant technicalities when we shall be constructing the
foliation (Paragraph 4.3.2), it is more convenient to consider, instead
of each I(α, x), a slightly smaller, smoothly embedded q-ball.

lemma 4.4. There is, for every simplex α of K and every point x ∈ α,
a domain F (α, x) ⊂ Int(I(α, x)) such that

(1) F (α, x) is a smoothly embedded compact q-ball;
(2) F (α, x) = h[[(α),x](F (α, [(α)));
(3) β  α and x ∈ β imply F (β, x) ⊂ Int(F (α, x)).

Proof. By induction on dim(α). Assume that this already holds for
every simplex whose dimension is less than dim(α). Then, consider the
union

U(α) :=
⋃
β α

h[[(β),[(α)](F (β, [(β)))

By the induction hypothesis (3) applied to β and by (ii) and (iii) of
Lemma 4.3, the compact set U(α) is interior to I(α, [(α)). Then, de-
fine F (α, [(α)) such that (1) holds at x = [(α), and large enough to
contain U(α). Then, define F (α, x) at every x ∈ α by (2). Thus, (1) is
immediate; while (3) follows from the induction hypothesis (2) applied
to β. �

By (1) and (2) of Lemma 4.4, the union E(α) of the balls x×F (α, x),
for all x ∈ α, is the image of a smooth embedding eα : α ×Dq ↪→ M̄
covering the identity of α and sending α× y, for every y ∈ Sq−1, into a
leaf of G . Write En ⊂ M̄ for the union of the E(α)’s, where α ranges
over the cells of Kn.

4.3.2. Foliating the prism. Let C ⊂ M̄ be the compact neighborhood
of Dp × Sq−1 × I obtained as the union of the complements (Int(α)×
Dq) \ Int(E(α)), for all cells α of K. At the beginning of the inflation
process, the foliation G is defined over a small open neighborhood of
C∪E0 in M̄ (Figure 4). By induction on n, assume that G has already
been extended, as a holed foliation quasi-complementary to F̄ , over
a small open neighborhood of C ∪ En−1; here we generalize slightly
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Figure 5. Foliating the prism, in the case i = q = 1.

Definitions 3.2, 3.3 and 3.4 for an ambient manifold which is noncom-
pact without boundary, by allowing Σ to be also noncompact without
boundary; the embedding h must be proper. All the successive exten-
sions will be called G . We have to extend G again through a small open
neighborhood of E(αn) in M̄ , preserving the quasi-complementarity
property. We first describe the extension to E(αn) itself (Figure 5);
then, in Paragraph 4.3.4, we shall “microextend” G from E(αn) to a
small open neighborhood of E(αn).

For short, we shall write α, β instead of αn, βn; and i := dim(β).
Endow α with the affine coordinates x0, . . . , xi+1 relative to its vertices,
such that β = x0

−1(0). Let ∂′α be the union of the hyperfaces of α other
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than β; choose the embedding eα such that eα
−1(E(β)) = β × D1/2;

identify E(α) with α×Dq through eα.
The holed foliation G is already defined, and quasi-complementary

to F̄ , over three small open neighborhoods N1, N2, N3 in α ×Dq of
three subsets of ∂(α×Dq): respectively α× Sq−1, β ×C1/2, ∂′α×Dq.
Precisely,

• N1 := α×Cr, for some real r slightly smaller than 1; for a good
choice of eα, one can arrange that G is horizontal (i.e. parallel
to α) on N1;
• N2 := x0

−1([0, η]) × Cr′ , for some small η > 0 and some real
r′ slightly smaller than 1/2; for a good choice of eα, one can
arrange that G is also horizontal on N2 (since G |(β×C1/2) is a
trivial foliated product over β);
• N3 is the Cartesian product of some small open neighborhood

of ∂′α in α, by Dq.

In general, for i = 1, on (∂α) × C1/2 the foliation G can have some
holonomy; for i ≥ 2, on ∂′α ×Dq the foliation G can be complicated,
and already holed; for i ≥ 3, on ∂β × D1/2 the foliation G can be
complicated, and already holed.

Let ∇ (resp. ∇̄) be the constant vector field on α (resp. on α×Dq)
parallel to the vector [(β)− [(α).

On N3, since G is quasi-complementary to F̄ and ∇̄ is transverse
to ∂′α × Dq, there is an isotopy f of N3, vertical (in the sense that
π̄ ◦ f = f), relative to ∂′α × Dq and to (N1 ∪ N2) ∩ N3, and such
that f∗(∇̄) ⊂ τG on the complement of the holes. Extend f through
α ×Dq by a global vertical isotopy relative to N1 ∪ N2, also denoted
by f . Changing eα to eα ◦f , we can arrange that on N3, the horizontal
vector field ∇̄ is tangential to G on the complement of the holes.

Consider any vector field ∇̃ on α ×Dq, coinciding with ∇̄ on N1 ∪
N2 ∪ N3, and lifting ∇ through π̄ (in particular, ∇̃ being projectable
through π̄, the flow of ∇̃ will preserve F̄ ). Let G∇̃ be on α × Dq

the pullback of G |(∂′α × Dq) through the flow of ∇̃. This is a first
candidate for extending G over α×Dq. Clearly, G∇̃ is a holed foliation
quasi-complementary to F̄ on α × Dq (by the induction hypothesis,
and since the flow of ∇̃ preserves F̄ ); and G∇̃ coincides with G over

N1 ∪N3. But for i ≥ 1, in general no choice of ∇̃ will make G∇̃ match
G over β × C1/2; this is why a new hole is necessary.

Fix a self-diffeomorphism v of I, supported in the open interval (r′, 1)
and such that v(r) ≤ 1/2; define the self-diffeomorphism ψ1 of Cr′ as
ψ1(y) := v(|y|)|y|−1y; fix a 1-parameter family of self-diffeomorphisms
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ψ := (ψt)t∈I of Cr′ , supported in the interior of Cr′ , such that ψt = id
for t close to 0 and ψt = ψ1 for t close to 1.

Let pr : α→ β be the projection parallelly to [(β)−[(α); decompose
α into the three subpolyhedra

P := x0
−1[η, 1]

P ′ := x0
−1[0, η] ∩ pr−1(pr(P ))

P” := pr−1(β \ Int(pr(P )))

Hence, P is a simplex, P ′ is a prism whose base is a hyperface of
P and whose heigth is parallel to ∇, and P” is a small polyhedral
tubular neighborhood of ∂β in α. The new hole will, in a first time,
be H := P ′′ × Cr′ . On (α ×Dq) \H, extend G as the pullback G∇̃ of

G |(∂′α × Dq) by the flow of the vector field ∇̃ coinciding with ∇̄ on
(P ×Dq) ∪ (α×Dr′); while on P ′ × Cr′ ,

∇̃ := ([(β)− [(α),
1

τ

∂ψt
∂t
◦ ψt−1)

where τ := η/b([(α)) = η/(i+ 2). In particular, the time τ of the flow
maps b−1(η)× Cr′ into β × Cr′ as

(x, y) 7→ (x+ (i+ 2)η([(β)− [(α)), ψ1(y))

Since v(r) < 1/2, the foliation G∇̃ does match G in restriction to β ×
C1/2. The extension of G to E(αn) is complete, except that the new
hole H has for fibre the corona Cr′ instead of the ball Dq, and for
monodromy ψ := (ψt)t∈I instead of the prescribed ϕ = (ϕt)t∈I.

4.3.3. Rectifying the hole. Fix an arbitrary embedding of Dq in the
interior of Cr′ , hence ϕ1 (resp. ϕ) becomes a self-diffeomorphism of

Cr′ (resp. an element of the universal cover D̃iff(Cr′)0). It is easy to
choose the diffeomorphism v in Diff(I) as a product of commutators,
hence so is ψ1 in Diff(Cr′)0. Since ϕ1 is not the identity, by Epstein’s
perfectness theorem ([7], Proposition 1.2 and Theorem 1.4), ψ1 belongs
to the normal subgroup of Diff(Cr′)0 generated by ϕ1; hence some

lift ψ ∈ D̃iff(Cr′)0 of ψ1 in the universal cover belongs to the normal

subgroup of D̃iff(Cr′)0 generated by ϕ. In the above construction, one
can choose the family (ψt) to represent this particular lift ψ.

With this choice, by Tool 3.1.2, the hole H splits into a finite number
of smaller holes of core Si−1, fibre Cr′ and monodromy ϕ (recall the
note after Definition 3.2).

Finally, by a vertical shrinking (Tool 3.1.4), each of these smaller
holes becomes of core Si−1, fibre Dq and monodromy ϕ. It is convenient
to make sure, by a slight horizontal shrinking (Tool 3.1.3) and a slight
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further vertical shrinking, that each of these smaller holes is interior
to E(αn).

4.3.4. Microextension. We have just constructed a holed foliation G on
E(α); we now have to extend it to a small neighborhood of E(α) in M̄ .
The process, which is a simpler form of Thurston’s ”civilization” [26],
deserves a little care.

Given a manifold X and a submanifold with boundary Y ⊂ Int(X),
let νXY be its normal bundle, and Z : Y → νXY be the zero section.
By a ”tubular neighborhood” of Y in X, we simply mean an embedding
j into X of the compact unit ball subbundle of νXY , such that j ◦Z =
idY . (Hence, if ∂Y is not empty, it is not actually a neighborhood of
∂Y ).

One begins with the boundary: one will first make an extension of
G to a small neighborhood of E(β) in M̄ . To this end, consider a small
tubular neighborhood Tβ ⊂ M̄ of E(β) in M̄ Consider the projection
prβ : Tβ → E(β), whose fibres are small (p+ 1− i)-disks.

Recall that G is already defined on a neighborhood U of ∂E(β) in
M̄ , and quasi-complementary to F̄ on U ; in particular, G is transverse
to E(β) on the complement of the holes. Shrinking Tβ and pushing
Tβ by an isotopy f of M̄ relative to E(β) and which is vertical (in
the sense that π̄ ◦ f = π̄), one can arrange that moreover, for every
point x ∈ E(β) close enough to ∂E(β) and not in a hole of G , the fibre
prβ
−1(x) is tangential to G (in the sense that this fibre is contained in

a leaf of G ).
In the same way, since G is also already defined (as a holed foliation)

on E(α), and quasi-complementary to F̄ in E(α), shrinking Tβ and
pushing Tβ by a second vertical isotopy of M̄ relative to ∂E(α), one
can arrange that moreover, for every point x ∈ E(β) not in a hole of
G , the fibre prβ

−1(x) ∩ E(α) of prβ|E(α) over x is tangential to G .
Then, pr∗β(G |E(β)) is on Tβ a (Dq, ϕ)-holed codimension-q foliation,

quasi-complementary to F̄ , coinciding with G on OpTβ(∂E(β)) and on

E(α) ∩ Tβ. This extension of G to Tβ is also denoted by G .
Finally, a similar method will complete the extension of G to a small

neighborhood of E(α): consider a small tubular neighborhood Tα ⊂ M̄
of E(α) in M̄ and the projection prα : Tα → E(α) whose fibres are
small (p− i)-disks. Since G is already defined (as a holed foliation) on
a neighborhood V of ∂E(α) in M̄ , and quasi-complementary to F̄ in
V , shrinking Tα and pushing Tα by a vertical isotopy of M̄ relative to
E(α), one can arrange that moreover, for every point x ∈ E(α) close
enough to ∂E(α) and not in a hole of G , the fibre prα

−1(x) is tangential
to G . Then, pr∗α(G ) is on Tα a (Dq, ϕ)-holed codimension-q foliation
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quasi-complementary to F̄ , coinciding with G on OpTα(∂E(α)) and on
E(α).

This completes the induction on n, the proof of Proposition 4.2, and
the proof of Theorem A’ ((i) and (ii)).

For the use of the next paragraph 4.4, we moreover choose the tubular
neighborhoods to be projectable through π̄. Precisely, the image π̄(Tβ)
(resp. π̄(Tα)) is a tubular neighborhood of the simplex β (resp. α)
in Dp × I, and the projection prβ (resp. prα) covers through π̄ the
projection map of π̄(Tβ) (resp. π̄(Tα)) onto β (resp. α). �

4.4. Topology, propagation and projections of the holes. (Fig-
ure 6) Let us think to the topology of each hole resulting from the
inflation process, and to its projection through π̄. This is much like
the discussion in [28], paragraph 7. After Thurston’s expression, during
the process, the hole ”propagates”.

Consider a hole created while foliating the prism E(αn), for some
1 ≤ n ≤ N (a shrinking of one of the components of the splitting of
H, see Paragraph 3.1.2 above.) At its creation:

(1) This hole is an embedding h : Σ ×D2 ×Dq ↪→ Int(M̄) where
Σ := Si−1 and i := dim(αn)− 1;

(2) The image of h is interior to E(αn);
(3) h|Σ× 0× 0 covers an embedding k : Σ ↪→ Dp × I through π̄;
(4) The image k(Σ) is an (i− 1)-sphere closely parallel to ∂βn.

During the next microextension (Paragraph 4.3.4), the hole is pulled
back through prαn (because of (2)), hence the core Σ becomes Si−1 ×
Dp−i. Property (3) is preserved because prαn is projectable through π̄.

During the rest of the inflation process, for each m in the range
[n+ 1, N ], the hole is pulled back thrice:

First, in the prism E(αm), the intersection of the hole with eαm(∂′αm×
Dq) is pulled back by the flow of ∇̃;

Second, in the tubular neighborhood Tβm , the intersection of the hole
with E(βm) is pulled back by the projection prβm ;

Third, in the tubular neighborhood Tαm , the intersection of the hole
with E(αm) is pulled back by the projection prαm .

Clearly, through the pullbacks, the core of the hole remains diffeo-
morphic to Si−1 × Dp−i; and the property (3) is preserved, since the
vector field ∇̃ and the projections prβm , prαm are projectable through
π̄.

The property (iii) of Theorem A’ follows straightforwardly.
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Figure 6. Schematic view on the propagation and pro-
jection of a hole. Beware that this low-dimensional
drawing can be misleading in several ways: actually,
there appears a hole while foliating E(αn) only for i :=
dim(βn) ≥ 1; in the topology of Σ, here Si−1 has been
assimilated to one point; in Dp×I, the submanifold k(σ)
is actually of codimension 2, not 1.

5. Proof of the Mather-Thurston Theorem as a
corollary of A’

Given X, V , γ as in Theorem 1.8, recall that p = dim(V ) ≥ 0 and
q = dim(X) ≥ 1; to fix ideas, assume moreover that X is closed.
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Let F be the slice foliation of V ×X parallel to X; let V̄ := V × I;
consider the canonical projections

π : V ×X → V

π̄ : V̄ ×X → V̄

pr2 : V ×X → X

ω : τ(V ×X)→ pr∗2(τX)

Choose a product of commutators:

ϕ = [α1, β1] . . . [αg, βg]

with α1, β1, . . . , αg, βg ∈ D̃iff(Dq)0 (in fact, every ϕ ∈ D̃iff(Dq)0 is of
this form, but we don’t need this perfectness result for which one can
find references and a discussion in [23]), such that the image ϕ1 ∈
Diff(Dq)0 is not the identity.

By Theorem A’, we get on V̄ × X a (Dq, ϕ)-holed Γq-structure
(Σ, h, γ̄) (recall Definition 3.3) such that:

I) The normal bundle of (Σ, h, γ̄) is pr∗2(τX);

II) h(HΣ,Dq) is disjoint from V̂ ×X, and γ̄ = pr∗1(γ) on OpV̄ (V̂ )×X;
III) (∂Σ, h|H∂Σ,Dq , γ̄|(V × 1×X)) is on V × 1×X a (Dq, ϕ)-holed

foliation quasi-complementary to F (recall Definition 3.4);
IV) The embedding h of HΣ,Dq = Σ×D2×Dq into V̄ ×X covers an

immersion k : Σ×D2 → V̄ whose restriction to each connected
component is an embedding.

Consider first the simple case where k is a global embedding Σ×D2 ↪→
V̄ . In this case, we shall “fill the hole” by a suspension and hence obtain
a genuine foliated bundle, at the price of modifying the base through
a surgery performed along the projection of the hole.

To this end, let Sg be the compact orientable surface bounded by S1

and of genus g. Let S be the codimension-q foliation on Sg ×Dq that

is the suspension of the representation π1(Sg) → D̃iff(Dq)0 mapping
the canonical free basis to α1, β1, . . . , αg, βg. Obviously, S induces on
(∂Sg)×Dq the suspension of ϕ. On the other hand, fix a smooth map
α : Sg → D2 inducing the identity between the boundaries.

Do surgery on V̄ by cutting k(Σ×D2) and pasting Σ×Sg; let W be
the resulting (p+1)-fold: an oriented cobordism rel. ∂V between V and
an oriented compact p-fold V ′ obtained from V by cutting k(∂Σ×D2)
and pasting ∂Σ × Sg. Consider the smooth map a : W → V̄ equal to
k ◦ (idΣ×α) on Σ×Sg and to the identity on the complement; consider
the smooth map

A := a× idX : W ×X → V̄ ×X
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Define the Γq-structure γ̂ on W ×X as (pr2 × pr3)∗(S ) on

A−1(h(HΣ,Dq)) ∼= Σ× Sg ×Dq

and as A∗(γ̄) on the complement. The conclusions of Theorem 1.8 are
matched.

In the general case, the images of the different components of Σ×D2

under k can intersect. Roughly speaking, we shall apply the preceding
method with one connected component of Σ instead of the all of Σ, and
thus be able to fill this component of the hole, initiating an inductive
process; the number of connected components decreases by one at each
step; at the end there is no hole any more and the proof of the Mather-
Thurston theorem is complete. The only point that deserves some care
is the behaviour of the other components of the hole under the surgery
that fills one of them, since their projections in the base can intersect.

By induction, one has already an oriented cobordism W` between
V and a p-fold V` rel. ∂V ; and one has a (Dq, ϕ)-holed Γq-structure
(Σ, h, γ̄) on W` × X satisfying (I) through (IV) above but with W`

instead of V̄ and V` instead of V × 1. The core Σ has n− ` connected
components Σi (1 ≤ i ≤ n − `). We have to build a similar situation
where the hole has only n− `− 1 connected components.

Before making a surgery on W` along k(Σn−` × 0), we must take
precautions and change h in order that the other components behave
well under the surgery.

First, after a generic reparametrization of h (Tool 3.1.5), every k(Σi×
0) (i ≤ n− `− 1) is transverse to k(Σn−` × 0) in W`. Then,

Zi := k|(Σi × 0)−1(k(Σn−` × 0)) ⊂ Σi

is a submanifold of codimension 2 with trivial normal bundle.
Second, by a horizontal shrinking (Tool 3.1.3), we arrange that k|(Σn−`×

y) is transverse to k(Σi × y′) for every 1 ≤ i ≤ n− `− 1, every y ∈ D2

and every y′ ∈ D2; in particular k|(Σi × y′)−1(k(Σn−` × y)) is diffeo-
morphic with Zi.

Then, do surgery on W` by cutting k(Σn−`×D2) and pasting Σn−`×
Sg; let W`+1 be the resulting (p + 1)-fold: an oriented cobordism rel.
∂V between V and an oriented compact p-fold V`+1. Consider the
degree-one map a : W`+1 → W` equal to k ◦ (idΣn−` × α) on Σn−` × Sg
and to the identity on the complement. Obviously, a−1(k(Σi ×D2)) is
diffeomorphic to Σ′i×D2, where Σ′i := a−1(k(Σi× 0)) is obtained from
Σi by cutting a small tubular neighborhood of Zi and pasting Zi× Sg.
In particular, Σ′i is connected.
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Consider the smooth map

A := a× idX : W`+1 ×X → W` ×X

Clearly, the preimage under A of each hole component h(HΣi) (1 ≤
i ≤ n − ` − 1) is also the image of an embedding h′i : HΣ′i

↪→ W`+1 ×
X covering an embedding Σ′i × D2 ↪→ W`+1. On W`+1 × X, in the
complement of the A-preimages of the holes, define the Γ̄q-structure γ̄′

as A∗(γ̄); extend it by (pr2 × pr3)∗(S ) in

A−1(h(HΣn−`))
∼= Σn−` × Sg ×Dq

Let Σ′ (resp. h′) be the disjoint sum of the manifolds Σ′i (resp. maps
h′i), for 1 ≤ i ≤ n − ` − 1. The triple (Σ′, h′, γ̄′) is on W`+1 × X
a (Dq, ϕ)-holed Γq-structure which satisfies the properties (I) through
(IV) above, but with W`+1, V`+1, Σ′, h′, γ̄′ instead of V̄ , V × 1, Σ, h,
γ̄.
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