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Abstract

When pointing to parts of our own body (e.g., the opposite index finger), the position of the

target is derived from proprioceptive signals. Consistent with the principles of multisensory

integration, it has been found that participants better matched the position of their index fin-

ger when they also had visual cues about its location. Unlike vision, touch may not provide

additional information about finger position in space, since fingertip tactile information theo-

retically remains the same irrespective of the postural configuration of the upper limb. How-

ever, since tactile and proprioceptive information are ultimately coded within the same

population of posterior parietal neurons within high-level spatial representations, we never-

theless hypothesized that additional tactile information could benefit the processing of pro-

prioceptive signals. To investigate the influence of tactile information on proprioceptive

localization, we asked 19 participants to reach with the right hand towards the opposite

unseen index finger (proprioceptive target). Vibrotactile stimuli were applied to the target

index finger prior to movement execution. We found that participants made smaller errors

and more consistent reaches following tactile stimulation. These results demonstrate that

transient touch provided at the proprioceptive target improves subsequent reaching preci-

sion and accuracy. Such improvement was not observed when tactile stimulation was deliv-

ered to a distinct body part (the shoulder). This suggests a specific spatial integration of

touch and proprioception at the level of high-level cortical body representations, resulting in

touch improving position sense.

Introduction

To execute a hand reaching movement, the central nervous system needs to localize the target

with respect to the hand. Its position can be derived from inputs provided by one or multiple

sensory modalities such as vision, audition or somatosensation. Multisensory integration is

referred to as the combination of information arising from different sensory modalities to

form a unified and coherent representation of our environment and body. Accordingly, the

brain combines all the relevant sensory information about the object of interest in order to

decrease the variance (the uncertainty) and build a more reliable representation of that object
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[1,2]. Indeed, it has been shown that spatial localization was less variable for visual-auditory

targets than for targets specified by vision or audition only [3,4]. These findings suggest that

the more sensory information available about the target, the more accurate its estimate.

When pointing to unseen parts of our own body (e.g. the opposite index finger), the posi-

tion of the target is derived from proprioceptive signals. Proprioception corresponds to the

sense of our body position in space. Consistent with the principles of multisensory integration,

it has been found that participants better matched the position of their index finger when they

could see their opposite arm during movement than when being blindfolded during the task

[5,6]. The localization of the fingertip was more precise in the presence of both vision and pro-

prioception than when using visual or proprioceptive signals only. These results provide evi-

dence that fingertip localization can be more precise if another sensory modality, in addition

to proprioception, provides further information about the finger position.

Unlike vision, touch may not provide additional information about finger position in

space, since fingertip tactile information theoretically remains the same irrespective of the pos-

tural configuration of the upper limb. However, touch can be regarded as a possible source of

additional information for position sense, since touch and proprioception, although consid-

ered as separate modalities, have been shown to closely interact with each other. Behavioral

studies have shown that tactile perception can be modulated by changes in proprioceptive sig-

nals, induced by active changes in hand posture [7] or tendon vibration [8]. Conversely, a fin-

ger-position matching task has been reported to be affected by nerve block and cutaneous

anesthesia [9], indicating that cutaneous afferents may provide a crude position sense for the

fingers. Moreover, it has been shown that the localization of a proprioceptive target (i.e., the

fingertip) was improved when participants contacted a surface with their target fingertip,

which provides them with tactile feedback [10–12]. Similarly, accuracy in pointing movements

was enhanced when endpoint contact occurred with the effector fingertip [13]. In contrast,

digital anesthesia resulted in impaired fingertip localization [11] as well as decreased move-

ment accuracy during typing [14]. This relationship between touch and proprioception is

likely to be explained by the convergence of proprioceptive and tactile signals at the cortical

level; electrophysiological recordings in monkey have shown that neurons in the hand repre-

sentation of the primary somatosensory cortex code both tactile and proprioceptive modalities

during a reach-to-grasp task [12,15]. It has also been established that neurons in the somato-

sensory cortex have both cutaneous and proprioceptive receptive fields [16,17]. Taken

together, these findings suggest that tactile afferent information may contribute to propriocep-

tion and improve the accuracy of the hand proprioceptive estimate.

The skin contains several mechanoreceptors, including Meissner and Pacinian corpuscles.

Meissner corpuscles are located in the superficial layers of the skin and are sensitive to light

touch while Pacinian corpuscles are found in deeper layers and respond to deep skin pressure

and vibration. The properties of these two receptors suggest that they might be activated by

fingertip contact; Pacinian and Meissner corpuscles are fastadapting receptors which are both

sensitive to abrupt but not sustained stimuli [18], such as when a finger makes or breaks con-

tact with an object. Therefore, it is difficult to distinguish the relative contributions of Pacinian

and Meissner corpuscules to the enhancement of proprioception following fingertip contact

with a surface [10–13]. However, these two types of mechanoreceptors show different

responses to cutaneous vibrations. Meissner corpuscles respond to low frequencies, 10–80 Hz,

whereas Pacinian corpuscles are sensitive to vibrations at higher frequencies, 80–450 Hz [19].

Consequently, by stimulating either of these receptors, it would be possible to know which one

contributes to the enhancement of proprioceptive localization.

It has been shown that the ability to detect flexion and extension movements imposed at

the interphalangeal joints of a finger was impaired when 300 Hz vibrations were applied to the
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adjacent or the test digit. In contrast, vibrotactile stimuli at 30 Hz did not alter proprioception

in the finger [20,21]. The detection of passive finger movements at the interphalangeal joints is

thus impaired by the specific activation of Pacinian, but not Meissner, afferents. These results

demonstrate that vibrotactile stimulation can modulate proprioceptive acuity in a passive per-

ceptual task, in which no action is involved. However, to our knowledge this has not been

tested in a motor task, such as reaching, where the target location corresponds to the position

of the fingertip.

The goal of the present study was to investigate the influence of vibrotactile information on

the proprioceptive localization of the finger in a motor context. To this purpose, we asked par-

ticipants to perform reaches to proprioceptively defined targets. They reached with the right

index finger (reaching finger) to the unseen left index finger (target finger), which was pas-

sively displaced to different locations. Tactile vibrations at 30 or 300 Hz were delivered to the

target index fingertip prior to movement onset. When vibrations are applied, the left index fin-

ger receives tactile information, in addition to existing proprioceptive information, about its

location in space. In order to reach accurately, we presume that the brain constructs a reliable

estimate of the target finger position using all the sensory information available. As suggested

by previous studies [19– 21], high- and low-frequency vibrations are more likely to activate

Pacinian and Meissner corpuscles, respectively. We thus used 30 and 300 Hz vibrotactile stim-

ulations to determine if one of these two mechanoreceptors contribute more than the other to

touch-proprioception integration, or whether they both contribute to finger proprioceptive

localization. We measured reach endpoint accuracy and precision to assess the effect of vibra-

tions. We found that vibrotactile stimulations delivered at low and high frequencies improved

both accuracy and precision of finger localization in a proprioceptive reaching task. A control

condition in which the vibration was applied elsewhere on the body showed that this improve-

ment in proprioceptive localization cannot be attributed to a global arousal enhancement

induced by the tactile stimulus.

Methods

Participants

Nineteen participants took part in this study (12 females, mean ± SD age = 25.3 ± 10.7 years).

They were all right-handed, as assessed by the Edinburgh Handedness Inventory and all had

normal or corrected-to-normal vision. Participants were administered a questionnaire to

ensure that they did not suffer from neurological, sensory or motor deficits, which may have

interfered with their performance. All gave informed written consent to participate in this

experiment which conformed to the Declaration of Helsinki (2008) for experiments on human

subjects. All experimental procedures were approved by the health research ethics committee

in France (CPP Nord-Ouest I, Lyon, 2017-A02562-51) and at the University of Montreal (17-

034-CERES-D).

Apparatus

Participants sat in a dark room on a height-adjustable chair in front of a slanted table. Their

head was held steady on a chin rest, aligned with their body midline. A wide-screen OLED

monitor (55 inches diagonal, 1920 x 1080 pixels, LG) was placed facing downwards above the

table and a half-reflecting mirror was positioned in between the screen and the table so that

the screen was projected onto the tabletop surface. The half-reflecting mirror prevented partic-

ipants from seeing their hands unless there was light underneath the mirror; in that case vision

of the hand was possible. Participants performed a proprioceptive pointing task. They were

asked to reach with the right index finger (reaching finger) to the unseen left index finger
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(target finger). Participants’ left forearm was resting on a platform in such a way that when the

left index finger was aligned with the body midline, the elbow was located on average 17.5 cm

on the left relative to the center (Fig 1A). The left forearm was positioned at an angle of 47˚.

The forearm platform was motorized and could move laterally (left or right) to different target

positions. The target locations for the left index finger were at -10, -5, 0, +5 and +10 cm with

respect to the body midline. A tactor was positioned on the left index fingertip and connected

to an amplifier (TactAmp 4.2, Dancer Design, England, United Kingdom) that delivered tactile

vibrations at a frequency of either 30 or 300 Hz. Eye movements were monitored using an Eye-

Link 1000 Plus (SR Research, Mississauga, Ontario, Canada) at a sampling rate of 1000 Hz.

The positions of both left and right index fingers were measured using an Optotrak 3D Investi-

gator recording system (NDI, Waterloo, Canada). This system recorded the position of two

infrared emitting diodes, each one attached to the tip of each index finger. The movement of

the infrared markers was tracked and sampled at a rate of 500 Hz.

Procedure

The sequence of a trial is depicted in Fig 1B. At the beginning of each trial, a light was switched

on for 1500 ms so that participants could see their hands. At the same time, a red dot aligned

with the body midline and 15 cm distant from the torso was displayed also for 1500 ms. The

red dot served as a start position and participants were asked to align their right index fingertip

with the red dot and to keep it in this position until they began reaching. They kept their right

fingertip balanced in the air above the table (no surface contact). As soon as the start position

disappeared, a white fixation cross was displayed and participants were required to fixate the

cross until the end of the trial. The fixation cross was aligned with the body midline above the

target positions. After two seconds, the motorized platform moved the left target index finger

to one of the 5 possible target locations. To prevent participants from learning proprioceptive

Fig 1. Schematic of the apparatus, top view (A) and sequence of a trial (B). (A) Participants’ left forearm was resting

on a motorized platform that could move laterally to the five proprioceptive target positions (grey circles). The left

forearm was positioned at an angle of 47˚ approximately. When the left index finger was aligned with the central

target, the left elbow was 17.5 cm left relative to the body midline. The start position (white circle) for the right index

finger was 15 cm ahead of the participants’ torso. The fixation cross (black cross) was located further than the

proprioceptive target positions. (B) The hang light and the start position were first turned on for 1500 ms and

participants were asked to align their right index finger with the start position. Then, the fixation cross appeared and

participants maintained gaze on the cross until the end of the trial. After 2000 ms, the platform started moving the left

target hand for a variable amount of time (between 2 and 9 s). Afterwards, a tactile vibration was delivered to the left

index finger for 1000 ms. Then a first auditory tone served as a “go” signal for participants to start reaching with their

right index finger towards their left index fingertip. After 2000 ms, a second auditory tone was presented and

participants put their right index finger back to the start position. The next trial started 750 ms later.

https://doi.org/10.1371/journal.pone.0199627.g001
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target positions across trials, the platform made several back-and-forth movements (from 1 to

5) before stopping on a target location. Then, a vibrotactile stimulation was applied to the left

target index fingertip for 1000 ms. Vibrations could be delivered at 0 (no vibration condition),

30 or 300 Hz. After the tactile stimulation, a first auditory tone signaled to the participants that

they could begin reaching with their right hand. Participants had 2 s to complete their reach

before a second auditory tone instructed them to return to the start position. Participants were

instructed to reach to a location just above their left fingertip, pause in the air, then return to

the start position. Specifically, participants were asked to reach to where they thought their left

index fingertip was as accurately as possible and to avoid contacting their left target index fin-

ger with their right hand. To ensure that participants performed the task properly, they first

did a practice block and were asked to report when finger-finger contact occurred during the

experiment. The next trial began after 750 ms.

Each block was composed of 15 trials (3 vibration frequencies x 5 target positions). Each of

the possible combinations of target and vibration frequency was presented in a random order.

Each participant completed between 10 and 20 blocks to obtain at least 4 trials for each combi-

nation of target and vibration frequency.

To test for a possible effect of the fingertip vibration by arousal enhancement, participants

performed 2 additional control blocks in which the location of the vibrotactile stimulus was

varied. The trials were identical to those in the main experiment except that the vibration was

delivered to the left shoulder. The order of the blocks (control and main experiments) was

counterbalanced across participants.

Data analysis

In this proprioceptive reaching task, errors were defined as the difference between the posi-

tions of the left (target) index finger and the right (reaching) index finger at the end of the

movement. Since the position of the target hand was varied in the horizontal axis, we only con-

sidered reaching errors in the x-direction. Errors in the x-direction were computed for each

trial by subtracting the x-position of the target hand from the xposition of the right-hand end-

point. The constant x-error was expressed in mm and corresponded to the mean error in the

x-direction for each target; this measure provides an estimate of the accuracy of the localiza-

tion of the fingertip position. We used dispersion error as a measure of reach precision [22].

The dispersion error corresponded to the surface area of the endpoints around each corre-

sponding target, it was expressed in mm2 and computed with the following formula: SDx ×
SDy × π. With SDx and SDy corresponding to the standard deviations of reach endpoints in the

x- and y-direction, respectively. Dispersion error provides an estimate of the precision of the

localization of the fingertip position. Constant x-errors and dispersion errors were first calcu-

lated for each participant, vibration condition and target position, then averaged across target

positions and participants. To test the influence of the vibration frequency on constant xerrors

and dispersion errors, a one-way repeated measures ANOVA was performed for each type of

error separately. Similarly, one-way repeated measures ANOVAs were performed on constant

x-errors and dispersion errors for each of the two attention control experiments. Tukey HSD

tests were used for post-hoc comparisons of the means.

The threshold for statistical significance was set at 0.05 for all analyses.

Results

Reach endpoints relative to the five possible proprioceptive target locations are depicted in Fig

2 for one participant. Endpoints are represented for all three experimental conditions: the no

vibration condition, the 30 Hz and the 300 Hz vibration conditions (in red, green and blue,
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respectively). The one-standard-deviation ellipses correspond to the dispersion of reach end-

points and the center of ellipses represents the mean reach error. For this participant, reach

endpoints were overall more scattered when no tactile stimulus was delivered to the target

index fingertip (in red) compared to the 30 Hz and the 300 Hz vibration conditions (in green

and blue).

Constant x-errors

A one-way repeated measures ANOVA was performed on the reach errors in the xdirection. It

revealed a significant effect of the vibration frequency (F2,36 = 7.56, p = 0.002, η2 = 41.30). Con-

stant x-errors were equal to 12.3 ± 2.5 mm (mean ± SE) when no vibration was applied prior

to the proprioceptive reach onset (Fig 3). Constant x-errors in the 30 Hz and the 300 Hz vibra-

tion conditions were 8.9 ± 2.1 mm and 9.1 ± 2.2 mm, respectively. Post-hoc tests showed that,

compared to the no vibration condition, constant x-errors were significantly reduced when

either a 30 Hz (mean ± SE of the difference = 3.4 ± 1.2 mm, t18 = 3.29, p = 0.004) or a 300 Hz

vibration (3.2 ± 1.0 mm, t18 = 3.09, p = 0.006) was delivered to the left target index finger.

However, constant x-errors were not significantly different between the 30 Hz and the 300 Hz

vibration conditions (-0.2 ± 0.7 mm, t18 = 0.02, p> 0.05).

Dispersion errors

The one-way repeated measures ANOVA on the dispersion errors was also significant (F2,36 =

4.61, p = 0.017, η2 = 46.83). As depicted in Fig 4, the greatest dispersion errors are observed in

the no vibration condition (923.1 ± 91.3 mm2), followed by dispersion errors in the 30 Hz

(819.7 ± 82.3 mm2) and then in the 300 Hz vibration condition (805.6 ± 68.8 mm2). Post-hoc

tests showed that these errors significantly decreased when vibrotactile stimuli were delivered

at 30 Hz (103.3 ± 41.6 mm2, t18 = 2.10, p = 0.050) and 300 Hz (117.5 ± 44.0 mm2, t18 = 2.49,

p = 0.023). Dispersion errors between the 30 and 300 Hz vibration conditions did not signifi-

cantly differ from each other (14.2 ± 37.6 mm2, t18 = 0.08, p> 0.05).

Fig 2. Reach endpoints for one participant. The participant reached in the dark with his right hand towards his

unseen left target index finger under three conditions. A vibrotactile stimulation could be applied to the left index

fingertip prior to movement onset at either 30 Hz (in green) or 300 Hz (in blue). Alternatively, no vibration was

delivered (in red). Black crosses correspond to the average position of the target index finger to reach for. One-

standard-deviation ellipses were computed for each target and each vibration condition. The center of the ellipses

corresponds to the mean error in each condition.

https://doi.org/10.1371/journal.pone.0199627.g002
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Control experiment

We found that both high- and low-frequency vibrations applied to the target fingertip reduced

constant x-errors and dispersion errors, suggesting that tactile information was combined

with proprioception and improved spatial localization of the left target finger. It could be due

to an effect of the vibration by arousal enhancement. To test for this, we investigated whether

constant x-errors and dispersion errors changed when the vibration was delivered elsewhere.

Thus, participants performed a control experiment where the vibrotactile stimulus was applied

to the left shoulder. If reduced errors consecutive to the vibration of the left fingertip result

from an effect of arousal, they should also be observed in this control condition. If they rather

result from a specific spatial multi-sensory integration, then stimulation on the shoulder

should not improve constant or dispersion errors compared to the no vibration condition.

The constant x-errors and the dispersion errors when the vibration was applied on the left

shoulder are shown in Fig 5A and 5B, respectively. Constant x-errors in the no, 30 Hz and 300

Hz vibration conditions were equal to 8.1 ± 3.5 mm, 13.4 ± 3.1 mm and 11.3 ± 2.8 mm, respec-

tively (Fig 5A). The one-way repeated measures ANOVA on the constant x-errors showed that

the vibration frequency effect was significant (F2,36 = 3.7, p = 0.035, η2 = 41.30). Post-hoc tests

showed that constant x-errors were specifically increased when vibrotactile stimulation was

delivered at 30 Hz (-5.2 ± 2.2 mm, t18 = 2.39, p = 0.028) and not when delivered at 300 Hz

(-3.2 ± 1.8 mm, t18 = 1.22, p> 0.05). However, constant x-errors were not different between

low- and high-frequency vibrotactile stimulations (2.0 ± 1.6 mm, t18 = 0.61, p> 0.05). As for

Fig 3. Constant x-errors (in mm) as a function of the vibrotactile stimulation applied. Errors when no vibration is

applied to the left target index finger are represented by the white bar. Errors when 30 and 300 Hz vibrations are

delivered are represented in light and dark grey bars, respectively. The error bars correspond to the standard error of

the mean across participants. ��p< 0.01.

https://doi.org/10.1371/journal.pone.0199627.g003
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Fig 4. Dispersion errors (in mm2) as a function of the vibrotactile stimulation applied. Errors when no vibration is

applied to the left target index finger are represented by the white bar. Errors when 30 and 300 Hz vibrations are

delivered are represented in light and dark grey bars, respectively. The error bars correspond to the standard error of

the mean across participants. �p< 0.05.

https://doi.org/10.1371/journal.pone.0199627.g004

Fig 5. Constant x-errors (A) and dispersion errors (B) for the control experiment. In this experiment, vibrotactile

stimulations are delivered to the left shoulder. Errors when no vibration is applied are represented by the white bar.

Errors when 30 and 300 Hz vibrations are delivered are represented in light and dark grey bars, respectively. The error

bars correspond to the standard error of the mean. (A) Constant x-errors (in mm) as a function of the vibrotactile

stimulation applied to the left shoulder. (B) Dispersion errors (in mm2) as a function of the vibrotactile stimulation

applied to the left shoulder. �p< 0.05.

https://doi.org/10.1371/journal.pone.0199627.g005
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dispersion errors, there was no significant effect of vibration frequency when the left shoulder

was stimulated (F2,36 = 0.26, p> 0.05; Fig 5B). These findings suggest that the improved spatial

localization of the left target finger following vibrotactile stimulus on the fingertip is unlikely

due to global arousal effect of the vibration.

Discussion

In the context of multisensory information, it is acknowledged that the brain combines all the

available sensory information to build a precise and robust representation of the world [1,23].

For instance, accurate reaching movements require precise target localization prior to motor

execution and several studies have shown that this localization was better when more than one

sensory modality provided information about the target position [3,4,24]. When pointing to

our body parts (e.g. the opposite index finger), the target is proprioceptively defined and

reaches tend to be more variable than those directed to visual targets [25]. This might be

related to a greater uncertainty in the localization of proprioceptive versus visual targets [26].

Hence, proprioceptive reaching might be improved if a second sensory modality provides

additional information about the spatial location of the target. The interaction between touch

and proprioception that has been reported in previous studies [7–9] suggests that tactile infor-

mation could be used as a second source of sensory information to improve the localization of

a proprioceptive target.

The goal of this study was to investigate the influence of tactile information on the proprio-

ceptive localization of the index finger in a motor context. In order to do so, we had partici-

pants perform a position-matching task in which they were asked to make reaches with the

right index finger to a proprioceptive target (i.e., the opposite left index finger). No visual feed-

back of the hand was provided during reach execution and 30 or 300 Hz vibrotactile stimula-

tions were applied on the left target index fingertip prior to movement onset. Trials in which

no tactile vibration was delivered to the left index finger were also included. Constant x-errors

and dispersion errors were measured and compared across all three experimental conditions.

Constant x-errors represent the reach accuracy, that is to say how close the right reaching fin-

ger is from the left target finger; the smaller the constant x-error, the greater the reach accu-

racy. Dispersion errors refer to reach precision which reflect how consistent reach endpoints

are when repeated; the smaller the dispersion error, the greater the reach precision.

We found that reach accuracy and precision, measured as constant and dispersion errors

respectively, were both affected by the application of vibrotactile stimulations on the left target

index fingertip. Indeed, both the constant and the dispersion errors were reduced when 30 or

300 Hz vibrations were delivered, as compared to the no vibration condition. Thus, it seems

that cutaneous vibrations at either low or high frequencies provided the nervous system with

additional (though slightly different) tactile information about the left index finger position.

As a result, the spatial localization of the proprioceptive target was enhanced and both the

accuracy and the precision of reaching were improved relative to the condition with no tactile

stimulation. These results suggest that tactile information from the cutaneous vibrations is

integrated with proprioceptive information about the position of the target index finger. In

accordance with multisensory integration principles, the congruent proprioceptive and tactile

information enhanced the finger proprioceptive localization, and ultimately improved propri-

oceptive reach performance.

The finding that both 30 and 300 Hz vibrotactile stimulations similarly improve reaching

performance does not allow us to conclude about the specific contributions of Meissner and

Pacinian corpuscles to touch-proprioceptive integration. According to previous studies, low-

and high-frequency cutaneous vibrations appear to have distinct effects on proprioceptive

Touch-proprioception integration for reaching

PLOS ONE | https://doi.org/10.1371/journal.pone.0199627 July 6, 2018 9 / 13

https://doi.org/10.1371/journal.pone.0199627


acuity [20,21]. Performance in a passive finger movement detection task was impaired when

stimulations at 300 Hz were delivered to the finger. In contrast, the application of 30 Hz vibra-

tions did not alter task performance. However, in our study we found similar results when

either 30 or 300 Hz vibrotactile stimulation was applied to the proprioceptive target of the

reach (i.e., the left index finger). Both high- and low-frequency tactile stimulations led to an

improvement in reach accuracy and precision when pointing to the left index finger. These

discrepancies might be explained by the fact that the tasks used in these studies were funda-

mentally different. Participants in Weerakkody’s studies [20,21] performed a perceptual task

in which they reported whether the movement imposed to their finger was a flexion or an

extension. In contrast, in our study, participants were asked to localize a proprioceptive target

and match its position by reaching with the opposite index finger. It has been proposed that

somatosensory, and thus proprioceptive and tactile information is processed differently for

perception and for action [27]. Similar to the two cortical processing streams described in the

visual system [28], the “ventral” pathway is concerned with conscious somatosensory percep-

tion and object recognition while the “dorsal” pathway is relevant for guidance of action. The

functional dissociation between the two somatosensory pathways has been established by stud-

ies in brain-damaged patients showing that they could perform motor actions towards

somatosensory targets which were not consciously perceived [29–31]. These two separate

somatosensory streams might explain why vibrotactile information is processed differently in

perceptual and motor tasks. Nevertheless, it has been reported that separating the different tac-

tile afferent fibers is challenging. It does not only depend on the stimulus frequency, but also

on other parameters such as skin temperature [32]. Moreover, Meissner and Pacinian corpus-

cles are likely to have partially overlapping sensitivities, and thus detection thresholds which

are relatively close to each other [19,32,33]. In the present study, it is therefore possible that the

two vibrotactile frequencies delivered to the left target index finger might have activated both

Meissner and Pacinian corpuscles. That could also explain why we did not observe difference

between the 30 and 300 Hz vibration conditions.

In the present study, we found that tactile information provided on fingertip was integrated

with proprioception, resulting in an improved spatial localization of the target fingertip during

proprioceptive reaching. It could be that this improvement in spatial localization produced by

the tactile stimuli was due to arousal enhancement related to the presence of an additional sig-

nal (i.e., the vibration). However, we found in a control experiment that putting the same

vibration on the left shoulder did not improve reach precision (dispersion errors) as it did

when the finger was vibrated, and while it produced changes to reach accuracy (constant x-

errors), these were in the opposite manner as expected. Indeed, there was a decrease in accu-

racy rather than an increase as would be expected by increased arousal. Furthermore this effect

was not consistent across the two vibration frequencies. Alternatively, enhanced spatial locali-

zation of the left target finger following vibrotactile stimuli could be explained by spatial atten-

tional cueing effects. The vibration would act as a cue driving attention to the left index finger.

If this was the case, a cue from another sensory modality (e.g. audition) delivered nearby the

hand should improve fingertip localization as well. We believe that this is unlikely to account

for our results since it has recently been shown that auditory cueing does not modulate hand

localization accuracy [34]. Thus, we can rule out arousal and spatial attentional cueing effects.

Our effect results from a specific spatial integration of tactile and proprioceptive informa-

tion. However, the exact mechanisms underlying this multisensory integration remain to be

determined. According to the classic view of somatosensory processing, although both ascend-

ing through the dorsal column-medial lemniscal pathway, tactile and proprioceptive inputs

remain segregated and are transmitted to distinct areas of the primary somatosensory cortex

(S1) [35]. Somatosensory signals are not merged together until they reach higher-order
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somatosensory areas, such as the posterior parietal cortex. This integration is thought to be

mediated by area 5 in the intraparietal cortex, where both tactile and proprioceptive inputs

converge [36]. However, electrophysiological recordings (mainly in areas 3b, 1 and 2) have

provided evidence that some neurons in S1 respond to both tactile and proprioceptive signals

[16,17,37]. These findings support an alternative but not exclusive hypothesis that multimodal

interaction, and thus integration, between touch and proprioception might also occur at the

level of S1, presumably in all sub-areas. Indeed, about half of S1 neurons, located in multi-

modal areas 1 and 2 but also in the previously thought modality-specific areas 3a (propriocep-

tion) and 3b (cutaneous), showed responses to both proprioceptive and tactile stimuli [38].

Further research is needed to elucidate the mechanisms underpinning touch-proprioceptive

integration and determine how tactile inputs influence the processing of proprioceptive

information.
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