Kouassi Hilaire 
  
Tchimou G E N'takpe 
email: tchimou.ntakpe@gmail.com
  
Philippe Duquenne 
  
  
Toulouse Archive Ouverte

Keywords: ordonnancement, flexibilité opérationnelle, algorithme génétique, convergence scheduling, operational flexibility, genetic algorithm, convergence

Dans un récent article nous avons resolu le problème de la flexibilité opérationnelle d'un « flow shop » en prenant en compte la flexibilité à l'aide d'une méthode exacte. Ce qui a permis d'obtenir une solution optimale, mais au prix d'un temps de résolution relativement grand, trop important pour une gestion d'atelier en temps réel. Le problème à résoudre est de caractériser les leviers de flexibilité liés à la variation des durées opératoires et des dates de livraison des articles d'un atelier de production à cheminement unique afin d'assurer la flexibilité opérationnelle du système. Dans le présent travail, nous utilisons cette fois les algorithmes génétiques pour approcher la solution optimale en recherchant un temps de résolution plus court. Il s'agit dans cet article d'exposer cette résolution et de présenter une comparaison avec celle de la méthode exacte précédemment utilisée.

Introduction

La gestion de production a pour but la recherche et la mise en oeuvre d'une organisation efficace pour la réalisation d'un programme de fabrication. Elle doit respecter les méthodes de transformation des produits, les contraintes sur l'engagement des ressources et les délais de livraison, tout en respectant les indicateurs de performance définis par l'entreprise [START_REF] El Awady | Flexible resources allocation techniques : characteristics and modelling[END_REF]. Dans ce cadre, nous avons étudier la flexibilité d'un type d'atelier en l'occurrence le flow shop avec une métodes exactes [START_REF] Hilaire | Un modèle à évènements pour étudier la flexibilité opérationnelle d'un flow shop flexible[END_REF]. Cela a permi de trouver des solutions avec un temps relativement long. Le présent travail consiste à mettre à profit une méthode de résolution basée sur les algorithmes génétiques pour étudier la flexibilité des durées opératoires d'opérations de production, en utilisant la variation des effectifs alloués sur les postes d'un « flow shop ». Les dates de livraison des articles produits fluctuent dans un intervalle prédéterminé. La relation fondamentale entre la charge de travail d'une opération et l'effectif nécessaire est donnée par la Formule suivante : heures) (en cycle ou opératoire durée heures) (en travail de charge  Effectif [START_REF] El Awady | Flexible resources allocation techniques : characteristics and modelling[END_REF] Ce travail fait appel à la notion d'évènements associés à chaque début ou fin d'une opération sur un poste de travail. Dans cet article, nous allons dans un premier temps faire une revue des problèmes d'ordonnancement dans la littérature, en mettant l'accent sur la flexibilité opérationnelle d'un flow shop ; dans un deuxième temps, nous présenterons le modèle mathématique résultant de cette réflexion et enfin, nous proposerons une résolution basée sur les algorithmes génétiques.

Méthodologie

2-1. Etude fondamentale 2-1-1. Classification du problème général d'ordonnacement d'atelier

Parmi les problèmes d'ordonnancement étudiés, les problèmes d'ateliers de fabrication forment une classe importante d'applications [3 -8]. De ces travaux, on peut dresser une typologie de ces problèmes en fonction de l'ordre d'exécution des tâches sur les machines. On distingue principalement cinq types (Figure 1) : l'atelier à cheminements multiples (« job shop »), l'atelier à cheminement unique (« flow shop »), objet de notre étude, l' « open shop » (une tâche peut être exécutée dans un ordre quelconque, donc pas de gammes définies), le problème à une machine et le problème à machines parallèles qui est une généralisation du problème à une machine. Cette classification est donnée sur la Figure 1 effectifs alloués et la date de livraison qui se situera autour d'un intervalle défini au préalable pour chaque article. Nous exposons à présent une revue sur ce type de problème.

2-1-2. Problème de la flexibilité opérationnelle d'un flow shop

L'atelier à cheminement unique possède la caractéristique suivante : l'ordre de passage sur les différentes machines est imposé et identique pour tous les travaux notés (j). La flexibilité sur le flow shop [9 -11] est une généralisation dans laquelle un article doit subir plusieurs étapes de transformation, chacune d'elles étant constituée de plusieurs machines identiques en parallèle (Figure 2 

2-1-3. Méthode de résolution

Plusieurs méthodes de résolution ont été élaborées pour aborder les différents problèmes de flow shop flexible. On distingue les méthodes exactes [START_REF] Blazewicz | Handbook of scheduling from theory to applications[END_REF], les heuristiques et les méta-heuristiques [18 -20]. Il existe trois classes de méthodes exactes pour la résolution des problèmes d'ordonnancement à savoir la procédure par séparation et évaluation (Branch & Bound), la programmation dynamique et la programmation linéaire. La méthode de séparation et évaluation est la plus utilisée parmi les méthodes exactes pour la résolution des problèmes de flow shop flexible, pour un faible nombre de postes. Compte tenu du temps d'exécution pour des problème de taille reduite nous nous sommes tournés vers l'utilisation des méthodes approchées par le biais des algorithme génétiques.

Kouassi Hilaire EDI et al.

2-1-4. Principe et méthode des algorithmes génétiques

Les algorithmes génétiques sont utilisés pour résoudre des problèmes d'optimisation. Cependant, leur mise en oeuvre nécessite la définition des procédures et des paramètres associés [START_REF] Goldberg | Real-coded Genetic Algorithms, virtual alphabets and blocking[END_REF] : un codage approprié (génotype) permet de représenter l'ensemble des variables du problème, la valeur de chaque variable de décision prenant le nom de « gène ». Un jeu complet, dans lequel toutes les variables de décision sont représentées avec pour chacune une valeur possible, est un individu : il est représenté par un vecteur dans lequel chacun des gènes nécessaire pour décrire une solution est présent : ce vecteur s'appelle un « chromosome ». On peut ainsi générer un ensemble d'individus (une « population ») aléatoirement, de manière à balayer l'ensemble de l'espace des solutions. Ces individus sont ensuite évalués : on calcule pour chacun la valeur de la fonction objectif (valeur qu'on appelle sa « force » ou son « adaptation ») ; les individus d'une population peuvent ainsi être classés en fonction de leur adaptation au problème posé. Le principe des algorithmes génétiques consiste à faire évoluer la population de génération en génération pour voir comment évolue son adaptation, en cherchant bien sûr à ce que cette adaptation s'améliore. Le passage d'une génération à une autre peut se faire :

 par croisement : on peut procéder à des échanges de gènes de deux individus « parents » de manière à créer deux individus hybrides « enfants ».  par mutation : un individu « parent » (choisi au hasard) donne un individu « enfant » -mais au passage, un de ses gènes, tiré au hasard, aura vu sa valeur modifiée aléatoirement.  certains individus (de préférence les plus adaptés, mais pas seulement …) sont conservés à l'identique d'une génération à l'autre,  enfin, d'autres individus disparaissent (de préférence les moins adaptés, mais pas seulement…) :

de manière à conserver une population constante d'une génération à l'autre, ils sont remplacés par des individus « régénérés », c'est-à-dire générés aléatoirement, comme pour la population originelle.

Pour chaque génération, on retient soigneusement la valeur de l'adaptation du ou des meilleurs individus, ainsi que la valeur moyenne de l'adaptation de l'ensemble de la population. Et bien entendu, on conserve de génération en génération la liste réactualisée à chaque itération des meilleurs chromosomes (solutions). Le processus peut prendre fin lorsqu'après un certain nombre de générations successives, la meilleure adaptation n'évolue plus ; ou bien lorsqu'après un certain nombre de générations successives, l'adaptation moyenne de la population n'évolue plus. Dans ces deux premiers cas, on considère que l'algorithme a convergé vers une solution supposée proche de l'optimum réel recherché. Le processus peut également s'arrêter après avoir « traité » un nombre maximal de générations (défini par l'utilisateur), sans qu'il ait pu converger vers une solution. Cette sécurité empêche le processus de recherche de se poursuivre indéfiniment. Les variables discrètes Nj,k : nombre de positions disponibles sur le poste j entre les événements k et k+1, asi,j,k : variable binaire désignant l'affectation du début d'opération à l'événement k (asi,j,k = 1 si l'article i arrive sur le poste j à la date de l'événement k et = 0 sinon), aei,j,k : variable binaire désignant l'affectation de fin d'opération à l'événement k (aei,j,k = 1 si l'article i quitte le poste j à la date de l'événement k et = 0 sinon), i,j : variable binaire matérialisant un changement de durée opératoire sur le poste j entre les articles i et i+1, Ek : effectif présent dans l'atelier entre les événements k et k+1, E tot : effectif maximum présent dans l'atelier sur l'horizon de temps E tot = max(Ek), Ei,j : effectif présent sur le poste j pour l'article i, yk : variable d'écart pour un événement k possible et non affecté, ci,j : cycle de l'article i sur le poste j, i,j : date de disponibilité des éléments de l'article i pour le poste j.
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Les données cj min : valeur minimale du cycle pour le poste j, cj max : valeur maximale du cycle pour le poste j,  : nombre d'articles sur lesquels se répercutent les perturbations, Nj min : nombre minimal de positions disponibles sur le poste j (en principe égal à 0), Nj max : nombre maximal de positions disponibles sur le poste j, Nj 0 : nombre de positions initialement disponibles sur le poste j (par défaut, Nj 0 =Nj max) , Li -: date de livraison au plus tôt pour l'article i (par défaut, Li -= Li 0 -2), Li + : date de livraison au plus tard pour l'article i (par défaut, Li + = Li 0 + 2), j : charge de travail sur le poste j, vi,j : valeur de l'article i à l'entrée du poste j (en coût matière uniquement), wi,j : valeur de la matière ajoutée à l'article i sur le poste j. il établit la relation suivante, pour assurer la cohérence des données, entre vi,j et wi,j :

j i j i j i w v v j n i , , , 1 , 1        Kouassi Hilaire EDI et al.

2-2-2. Descrption du problème

Nous considérons le cas d'un atelier de fabrication, constitué de n postes et devant produire m articles, répondant aux hypothèses suivantes : le volume de la demande est connu a priori, et la date de livraison L i pour chaque article i doit appartenir à un intervalle [L i -, L i + ] déterminé ; tous les articles suivent la même gamme opératoire, et passent sur l'ensemble des postes, le nombre total d'opérations est donc connu ; les durées opératoires ou cycles sur chaque poste j et pour chaque article i, notées c ij , sont variables ; pour chaque poste j et chaque article i, il existe un couple de données (cycle minimum, cycle maximum) entre lesquelles c ij doit être compris ; chaque poste j est caractérisé par son nombre de positions N j max , correspondant au nombre d'articles pouvant être traités en même temps à un instant donné (chaque poste est constituté d'un ou pluseurs machines identiques), leurs dates d'entrée et de et de sortie du poste étant indépendantes ; chaque article doit passer une et une seule fois sur chaque poste, en occupant une seule position (une seule machine) ; aucun stock intermédiaire n'est possible entre deux postes consécutifs dans l'atelier (politique de flux tendu). Sur chaque machine sont affectées des ressources. Dans ce travail, nous ne prenons en compte que les ressources humaines, et donc la flexibilité qu'elles apportent en termes d'horaires et d'effectifs variables.

2-2-3. Formulation mathématique

2-2-3-1. Les contraintes

Dans ce paragraphe nous exprimons les contraintes du système de production par un ensemble d'équations comme présentées ci-dessous :

 Chaque événement k (fin ou début d'opération pour un article i sur un poste j) doit se produire une et une seule fois sur l'ensemble de l'horizon.

1 , 1 , 1 , , 1 , ,         T k k j i T k k j i ae j i et as j i (2)
 Relation de précédence pour un article i entre deux postes (j et j+1) de la gamme : Pour qu'une opération j débute au k ème événement, l'événement déclenchant la fin de l'opération j-1 doit être affecté à un événement antérieur (donc compris entre 1 et k).

          1 1 1 1 , 1 , k o ,o i,j i,j,k ae as k j i (3)
 Cohérence des événements de début et de fin de chaque opération : pour qu'une opération se termine au k ème événement, elle doit avoir débuté par une affectation à un événement antérieur

(de 1 à k-1).          1 1 1 , 1 , k o i,j,o i,j,k as ae k j i (4)
 Respect de la date de livraison échue : la mise à disposition de l'article peut avoir lieu dès la fin de la dernière opération, cette date étant définie par le membre de gauche de l'inégalité ci-dessous.
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         i i i i T k k k n i L L L i et L t ae i . 1 , , (5) 
 Affectation cohérente des postes : le poste dont le nombre de positions occupées initialement est connu, fait l'objet d'un bilan des actions qui débutent et qui s'achèvent lors de l'occurrence de chaque événement. La variable désignant le nombre de positions disponibles est contrainte par le nombre maximum de positions utilisables.

max , min

j k j j m i k j i m i k j i k j k j N N N avec ae as N N k j              (6) 1 , , 1 , , 1 , , 1 , 
 Définition de la durée opératoire et des dates de réalisation : la durée de chaque opération est calculée comme la différence entre les dates de fin et de début d'opération, exprimée en fonction des dates des événements et des variables binaires d'affectation. Chaque durée est contrainte entre deux bornes. De plus, les événements sont classés par ordre chronologique

k k j j i j j i T k k k j i T k k k j i t t k et c c c avec c t as t ae j i               1 max , min , 1 , , 1 , , 1 . 
. , [START_REF] Baptiste | Gestion de production et ressources humaines -Méthodes de planification dans les systèmes productifs[END_REF]  Relation entre l'effectif et le cycle sur chaque poste et pour chaque article : l'effectif requis pour exécuter une opération sur le poste est égale au rapport de la charge de travail par le cycle.

    i j E c i j i j j , . , ,  0 (8) 
 Détermination de l'effectif dans l'atelier : l'effectif total de l'atelier à chaque état (entre deux événements consécutifs) est calculé comme la somme des effectifs sur les postes entre les événements qui délimitent l'état. La variable E tot interviendra dans la fonction coût, afin de chiffrer le coût total du travail. 

tot k m i n j i,j i,j,k m i n j i,j i,j,k k- k E E k .E ae .E as E E k et E               0 0 1 1 1 1 1 0 (9) 
k y k                                       1 1 1 , , 1 1 , , 1 1 , , 1 1 , , 1 1 1 1 
et 1 0 [START_REF] Logendran | Sequence-dependent group scheduling problems in flexible flow shops[END_REF]  Ecart minimal entre deux événements affectés : afin d'éviter que deux événements distincts ne soient associés à deux dates égales, nous définissons un écart minimal  entre deux dates consécutives (la valeur de  doit être petite par rapport aux cycles de production, nous avons retenu une valeur de 0,5 unités de temps). Si les événements ne sont pas affectés, ils peuvent être associés à des dates égales.

  1 1 . 1       k k k t y t k  (11)
 Respect des dates de disponibilité : une opération ne peut commencer que lorsque les éléments matériels nécessaires (fournitures, approvisionnements) à sa réalisation sont disponibles sur le site de l'atelier. De plus, l'hypothèse d'une alimentation à débit constant permet de calculer l'ensemble des dates d'alimentation pour tous les articles et pour tous les postes à partir de la première date ( 1,1 ), en utilisant la durée entre deux approvisionnements dans l'atelier, noté , et la durée entre l'approvisionnement de deux postes consécutifs, noté . La date  1,1 intervient dans le terme de la fonction objectif ; elle prendra donc la valeur maximale permettant de respecter la contrainte, afin de minimiser le coût total. [START_REF] Logendran | Group scheduling in flexible flow shops[END_REF] avec : di,j : date de début de l'opération j pour l'article i, ; vi,0 : valeur de l'article i avant le début de l'opération 1.

    1 . 1 . . , 1 , 1 , , 1 , ,           j i avec t as j i j i j i T k k k j i      (12) 2-2-3-2.
                                                                    m i T k k k i n j T k k k j i j i m i i i n j j i j i j i i t as v j i t as w d v d w F i i 1 1 , 1 1 , 1 , 1 1 , 1 1 , , , 1 1 , 1 , 1 , , , 1 1 . 
. . 1 . 1 . . . . . . . 0 , 0 ,         

2-2-3-2-2. Les articles en cours de production et les stocks intermédiaires (F2)

Les encours sont calculés, article par article, entre la date d'entrée de l'article dans l'atelier (d 1,1 ) et sa date de mise à disposition (f i,n ), en prenant en compte l'évolution de sa valeur. Soit f i,j , la date de fin de l'opération j pour le poste i, on a :

          F f d v d f v d d v f d v v as as t i j i j i j j n i m i j i j i j j n i m i j i j i j j n i n i n i n i m i j i j k i j k k k 2 1 1 1 1 1 1 1 1 1 1 1                                                    . . . . . . . . , , , , , , , , , , , , , , , , ,   1 
1 1 1 1 1 T j n i n i n k i n k k k T i m i m v ae as t                           , , , , , . . (14) 
2-2-3-2-3. Stockage des produits finis avant la livraison (F3)

Le stockage des produits finis s'étale sur la période comprise entre la date de mise à disposition de l'article et sa date de livraison (L i ), au cours de laquelle la valeur n'évolue plus, et le risque d'obsolescence sera considéré comme négligeable.

                  m i n i T k k k n i i m i n i n i i v t ae L v f L F 1 , 1 , , 1 , , 3 . . . . .   (15)
2-2-3-2-4. Pénalités de retard (F4) La fonction P i (t) est la loi de pénalité applicable pour un retard de livraison de l'article i ; elle peut varier selon le client. Elle est a priori croissante au sens strict.  

F t dt i f L P i i 4 0    (16) 
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2-2-3-2-5. Coût du travail (F5) et de l'inactivité (F6)

Les composantes permettant de chiffrer le coût du travail réellement effectué F 5 et l'inactivité F 6 , et peuvent être évaluées ensemble ou indépendamment l'une de l'autre. En effet, la somme de ces deux termes correspond à la rémunération du nombre maximum d'opérateurs entre le début et la fin du plan de production ; on peut ainsi écrire, en notant U le coût du travail par unité de temps :

           T k k k n m k tot tot n m as ae t U E U E d f F F 1 , 1 , 1 , , 1 , 1 , 6 5 
. . . . . [START_REF] Blazewicz | Handbook of scheduling from theory to applications[END_REF] Si l'on souhaite dissocier activité et inactivité, par exemple en leur affectant des coûts différents, notés respectivement U et S (si l'on considère que l'inactivité n'est pas totalement perdue mais peut être utilisée à d'autres activités, telles que formation, action d'amélioration, etc.), on obtient alors :

  F U E t t k k k k T 5 1 1 1       . . ( 18 
)     F S E E t t tot k k k k T 6 1 1 1        . . (19) 
2-2-3-2-6. Coût des perturbations (F7)

Chaque changement de cycle (durée opératoire) sur un poste entraîne une modification de la composition de l'équipe qui lui est affectée ; des perturbations sont ainsi générées selon le sens et l'amplitude de la variation. La diminution d'un cycle n'a pas la même influence sur le coût qu'une augmentation de même amplitude. Pour un poste j donné, le coût d'un changement de cycle entre deux articles consécutifs aura la forme suivante (où  est un coefficient pondérateur caractérisant l'importance donnée aux perturbations et f désigne le coût de la perturbation entre les articles i et i+1) :

si c i+1,j > c i,j , alors

f U c c j i j i j 7² 1 1            . . . , ,   , et si c i,j > c i+1,j , alors f U c c j i j i j 7 1 1            . . . , ,   et nous retiendrons finalement :   F U c c c c j i j i j i j i j i j i j j n i m 7 1 1 1 1 1 1 1                    . . . . . , , , , , ,     
(20)

2-3. Choix et méthodes de résolution

La modélisation aboutit à un problème de programmation non-linéaire en variables mixtes, sa résolution nécessite l'utilisation d'un code capable de traiter l'arborescence des solutions (capacité des algorithmes, temps de calcul, etc. qui explorent aléatoirement l'ensemble de l'espace des solutions possibles, et permettent généralement d'obtenir une réponse de bonne qualité, voisine d'un optimum démontré.

2-4. Résolution du problème

Nous envisageons une approche séquentielle, caractérisée par la décomposition du problème en sousproblèmes, optimisant chacun un jeu de variables en se fondant sur une fonction objectif appropriée. Cette décomposition conduit à la résolution séparée : d'une part, du problème de l'optimisation des dates de livraison (on désignera par « date de livraison » la date d'achèvement du programme d'activités étudié), et d'autre part, du problème d'optimisation des durées opératoires.

2-4-1. Décomposition en sous-problèmes : Algorithme général de résolution

Les ensembles de variables distinctes (dates de livraison et cycles de production), précédemment mis en évidence, permettent de décomposer le problème en sous-problèmes : chacun d'entre eux correspond à une optimisation locale de chaque groupe de variables. La procédure est la suivante :  optimisation des dates de livraison, les cycles étant constants et fixés, en minimisant les perturbations ;  optimisation des cycles, en utilisant comme données les dates de livraison obtenues à l'étape 1, et en minimisant la fonction coût (les dates de livraison sont alors fixées) ;  si la solution après l'étape 2 diffère de la solution avant celle-ci (en quoi diffère-t-elle si l'étape 1 se focalise sur des dates de livraison qui sont respectées par l'étape 2 ?), retourner à l'étape 1, sinon arrêter, puisque aucune amélioration n'a été possible.

2-4-2. Résolution successive des sous problèmes

2-4-2-1. Détermination des dates de livraison optimales La première étape de la résolution est la détermination de la date de livraison L(i) optimale pour chaque ordre de fabrication (programme d'activités) i, à l'intérieur de l'intervalle de tolérance défini avec le client. Les valeurs des cycles sont alors des données du problème (égales pour chaque poste à la valeur minimale du cycle autorisé), elles ne seront donc pas modifiées au cours de cette étape.

Le nombre de variables L(i) est égal au nombre d'ordre de fabrications à traiter, et les valeurs discrètes autorisées pour L(i) sont les entiers appartenant à l'intervalle de tolérance pour la date de livraison de l'article i. On peut ainsi calculer la planification au plus tard en fonction de ces dates, et en déduire le plan de charge des effectifs : la durée de passage retenue étant la durée minimale pour chacun des postes, il en résulte les plans de charge correspondant à une mobilisation maximale des effectifs. La démarche de détermination de la planification et du plan de charge des effectifs suit l'algorithme suivant :
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« m = nombre d'articles n = nombre de postes Eff(i,j) = effectif sur le poste j pour l'article i E(k) = effectif total pour le jour k T = durée de l'horizon de temps Pour i ← m à 1 par pas de -1 faire f(i,n) ← L(i) L(i) : date de livraison de l'article i Pour j ← n à 2 par pas de -1 faire d(i,j) ← f(i,j) -c(i,j) c(i,j) : cycle de l'article i sur le poste j f(i,j-1) ← d(i,j) fin pour d(i,1) ← f(i,1) -c(i,1) fin pour Pour i ← 1 à m faire Pour j ← 1 à n faire de k ← d(i,j) à f(i,j) faire E(k) ← E(k) + Eff(i,j) où Eff(i,j)= i,j /c i,j fin faire fin faire fin faire » Si nous appellons G la fonction d'évaluation correspondant aux perturbations du plan de charge, on peut alors en déterminer la valeur, puis la pénaliser si la solution proposée entraîne la violation de contraintes d'occupation des postes (càd si deux livraisons L i et L i+1 sont prévues à un intervalle inférieur au plus long des cycles de l'article i, M i ) :

« G ← 0 Pour k ← 1 à T-1 faire G ← G + |E(k+1) -E(k)| fin pour Pour i ← 1 à m-1 faire si L i+1 -L i < M i alors G ← G + K * (L i -L i+1 + M i ) fin si fin pour »
Le coefficient K ci-dessus est un coefficient de pénalisation ; il permet de dégrader les solutions violant cette contrainte, sans toutefois les éliminer totalement : il est essentiel lors de l'utilisation d'algorithmes génétiques de préserver, au moins durant les premières générations, des solutions « décevantes » afin de conserver une certaine diversité dans la population [START_REF] Delahaye | Optimisation de la sectorisation de l'espace aérien par algorithmes génétiques[END_REF], gage d'exhausitivité dans l'exploration du domaine des solutions. La meilleure solution obtenue est alors utilisée pour le calcul des cycles associés à chaque poste et à chaque ordre de fabrication.

2-4-2-2. Modulation des durées opératoires

On considère maintenant que les dates de livraison obtenues lors de l'étape précédente sont figées, et l'on fait varier la durée opératoire c(i,j) sur chaque poste et pour chaque ordre de fabrication. Le nombre de ces variables c(i,j) est alors égal au produit du nombre d'articles par le nombre de postes de travail. Les valeurs discrètes pouvant être prises par c(i,j) sont des données du problème. On calcule tout d'abord la planification, en respectant cette fois les contraintes de capacité :

« f(m, n) ← L(n) POUR j ← n à 2 par pas de -1 FAIRE d(m, j) ← f(m, j) -c(m, j) f(m,j-1) ← d(m, j) FIN POUR d(m,1) ← f(m,1) -c(m,1) POUR i ← m-1 à 1 par pas de -1 FAIRE f(i, n) ← min(L(i), L i+1 -M i ) POUR j ← n à 2 par pas de -1 FAIRE d(i, j) = f(i, j) -c(i, j) f(i,j-1) = d(i, j) (pas de stockage intermédiaire) FIN POUR d(i,1) ← f(i,1) -c(i,1) FIN POUR POUR i ← 1 à m FAIRE POUR j ← 1 à n FAIRE POUR k ← d(i, j) à f(i, j) FAIRE E(k) ← E(k) + Eff(i, j) FIN POUR FIN POUR FIN POUR »
On cherche alors à minimiser la fonction coût F. La valeur de F pour chaque chromosome est calculée après avoir déterminé la planification et le plan de charge, en pénalisant les solutions pour lesquelles le niveau maximal autorisé pour les effectifs est dépassé. De plus, lorsqu'il existe des contraintes sur la disponibilité des matières en stock avant chaque poste, les solutions violant ces contraintes sont pénalisées, proportionnellement à l'ampleur de cette violation. En appliquant séquentiellement les principes développés ci-dessus, il est possible de résoudre le problème. La Après la phase d'initialisation, qui voit la constitution de la génération initiale, la répétition des itérations, constituées de la détermination successive des dates de livraison et des durées opératoires, se poursuit tant que le critère F est amélioré. Si celui-ci n'est pas amélioré par la dernière itération, l'algorithme se termine en retenant la meilleure solution obtenue. 

Résultats et discussion

Figure 1 :

 1 Figure 1 : Classification des problèmes d'ordonnancement classiques

  ). Dans ce schéma, un article subit trois opération j1, j2 et j3 (j1 sur une machine 1, j2 sur une machine 2 et j3 sur une machine 3). les machines M11 et M12 sont identiques et constituent la première étape, idem pour M21, M22 et M23 et la deuxième étape ainsi que pour M31 et M32 et la troisième étape. Pour fabriquer cet article, on a le choix de fait passer l'opération j1 soit sur la machine M11, soit sur la machine M12 (pas sur les deux machines) et ainsi de suite.

Figure 2 :

 2 Figure 2 : Flow shop flexible



  Assignation effective des événements possibles et classement par ordre chronologique : la variable d'écart y k prend la valeur 1 si aucune action n'est observée lors de l'événement k ; les variables d'écart sont classées par valeurs décroissantes afin de regrouper tous les événements non affectés (pour lesquels la variable d'écart est égale à 1) en début de liste. Si un événement est associé à une action, la variable d'écart prend une valeur nulle. Kouassi Hilaire EDI et al.

Figure 3

 3 Figure 3 ci-dessous (où l'opérateur « > » signifie « meilleure que ») présente le principe de fonctionnement de l'algorithme.

Figure 3 :

 3 Figure 3 : Organigramme des itérations

L

  'amélioration porte notamment sur le terme F3, dans la mesure où l'on n'observe plus de stockage de produits finis. De plus, les encours sont moins importants, puisque la modulation des durées opératoires (Tableau 6) permet d'utiliser le cycle minimum sur les postes 1 et 2, respectivement pour les articles 4 et 3 ; ceci correspond, comme dans la solution optimale obtenue dans [1], à une « fermeture » successive de chacun de ces postes, plutôt qu'à un travail simultané, comme dans la solution à débit constant. Le diagramme de Gantt correspondant à l'itération 2 est présenté en Figure 5.

Figure 5 : 2 Kouassi Hilaire EDI et al. 3 - 2 - 3 . * Itération 3 Tableau 7 :

 5232337 Figure 5 : Diagramme de Gantt de l'itération 2

  Les durées opératoires (Tableau 7) ne varient pas par rapport à la solution précédente. Cependant, une légère modification de la date de livraison pour l'article 1 (retardé de 1 unité de temps) permet de réduire la durée totale de la période travaillée ; or, celle-ci intervient dans le calcul des termes F5 (coût du travai) et F6 (coût de l'inactivité), ce qui permet d'améliorer la fonction coût. Le diagramme de Gantt de cette solution est présentée sur la Figure6.

Figure 6 :

 6 Figure 6 : Diagramme de Gantt de l'itération 3

Hilaire EDI et al. 2-2. Modélisation du problème 2-2-1. Les variable et les données

  

		i indice pour l'article et m le nombre total d'articles sur la période, 1  i  m
	Les indices	j indice pour le poste et n le nombre total de postes, 1  j  n
		k,o indices pour les événements et T le nombre total d'événements, 1  k  T et 1  o  T
		avec m n T    2. . m n
	Les variables continues tk : date d'occurrence de l'événement k,
		Li 0 : date de livraison théorique de l'article i.

  La fonction objectif à minimiserLa fonction objectif à optimiser est la somme de plusieurs coûts, exprimés en unités monétaires : F 1 : coûts liés au stockage amont (matières premières et approvisionnement des postes) ;  F 2 : coûts liés aux en-cours et stocks intermédiaires ;  F 3 : coûts liés au stockage de produits finis ;

	2-2-3-2-1. Les stocks de matière avant chaque poste (F1)
	Les coûts liés à l'immobilisation de la matière première et des articles stockés avant leur entrée dans
	l'atelier sont calculés en fonction de la valeur de chacun des éléments, sur la durée comprise entre leur date
	de disponibilité et leur date d'entrée sur le poste correspondant.
	 F 4 : pénalités de retard ;
	 F 5 : coût du travail effectif ;
	 F 6 : coût de l'inactivité ;
	 F 7 : coût des perturbations.

Notre objectif est d'obtenir une solution optimale, non contrainte par des limites sociales, et de mesurer les effets de perturbations. En désignant par  le taux d'actualisation, les coûts imputés à l'immobilisation d'un capital V durant une période d sont de la forme : V.[(1+) d -1]. Lorsque cette durée d est courte, nous Kouassi Hilaire EDI et al. pouvons nous livrer à l'approximation suivante : V.[(1+) d -1]  V.'.d , et lorsque  est petit, l'approximation  = ' est acceptable.

  avons choisi d'utiliser les algorithmes génétiques qui fournissent une réponse efficace au traitement de l'aspect fortement combinatoire de ce type de problèmes, et font partie des méthodes les mieux adaptées lorsque la fonction n'est ni continue, ni dérivable. Ils présentent l'avantage de traiter simultanément un grand nombre de solutions potentielles (l'ensemble des chromosomes d'une génération)

). Les fonctions que nous devons optimiser ne présentent pas les propriétés mathématiques requises pour l'utilisation de méthodes classiques, efficaces et rigoureuses (linéarité, continuité, dérivabilité, etc.). Nous nous sommes donc orientés vers des métaheuristiques, parmi lesquelles Kouassi Hilaire EDI et al.

nous

3-1. Données du problème

  La formulation décrite est appliquée à la résolution d'un exemple ; l'atelier étudié est constitué de deux postes de travail, P1 et P2, sur lesquels doivent être traités dix articles, suivant une gamme identique. Chaque article doit d'abord passer sur le poste P1 avant de passer sur le poste P2 ; de plus, chaque poste ne compte qu'une seule position. L'ensemble des pièces devant être intégrées dans l'atelier arrivent dans le stock amont selon un principe « à débit constant» ; le rythme d'arrivée (intervalle entre deux arrivées) est connu a priori, mais la date d'arrivée du premier lot dans le stock ( 1,1 ) est une variable, qui détermine l'arrivée de tous les autres lots. Les valeurs discrètes autorisées pour les cycles des postes P1 et P2 sont au nombre de deux, et sont présentées dans le Tableau 1, ainsi que les charges de travail sur chaque poste (en hommes.unités de temps) : exemple considéré, la solution est obtenue en trois itérations « utiles » (la quatrième ne servant qu'à confirmer que la solution ne peut pas être améliorée) . Les résultats intermédiaires sont donnés dans les En contrepartie, certains articles seront stockés entre la fin du dernier poste et leur livraison ; le terme F3 prend alors une valeur élevée, par rapport au stockage avant entrée dans l'atelier de production (F1).

	3-2. Interprétation 3-2-2. * Itération 2						
	Tableau 5 : Solution intermédiaire, itération 2 pour l'Tableaux 3 à 8 ci-dessous et sur les Figures 4 à 6 (diagramme de Gantt), où les flèches en pointillés représentent le stockage avant livraison. N° de l'article Dates de livraison Durée poste P1 Durée poste P2
	3-2-1. * Itération 1 1		26		8		8
		2	Tableau 3 : Solution intermédiaire, itération 1 35 8	8
		3		42		8		5
	4 N° de l'article Dates de livraison Durée poste P1 Durée poste P2 57 6 8 5 65 8 8
	1	6	27	73	8	8	8	8
	2	7	36	81	8	8	8	8
	3	8	42	89	8	8	8	8
	4	9	55	97	8	8	8	8
	5	10	66 104	8	8	8	5
	6		73		8		8	
	7		79		8		8	
	8 9 10 F 1 Cycle minimum (en u. t.) min 90 Tableau 6 : Fonction coût, itération 2 8 Tableau 1 : Cycles et charge de travail par poste Poste P1 96 8 103 8 F 2 F 3 F 4 F 5 F 6 F 7 j c 6 4 080 18 120 0 0 2 224 380 732 25 536 8 8 5 F Poste P2 5
	Cycle maximum (en u. t.) max j c		8		8
	Charge de travail (en h. u. t.)		48		60
	De plus, l'effectif total disponible sur l'atelier ne peut en aucun cas dépasser 15 opérateurs, qui est donc une
	borne supérieure pour E tot . Les intervalles autorisés pour la livraison de chacun des articles sont énumérés
	dans le Tableau 2 ci-dessous.					
	Tableau 2 : Date de livraison théorique et intervalles de livraison pour chaque article
	N° de l'article 1 F 1 F 2 2 3 150 18 750 1 500 F 3	L i -26 F 4 35 0	F 5 2 224	L i 0 28 F 6 37 344	+ L i 30 39 180 26 156 F 7 F
		3		38		40	42
	4 5 La première itération permet l'obtention d'une solution satisfaisant les contraintes sur l'occupation des 55 57 59 65 67 69 6 73 75 postes, ainsi que sur le niveau des opérateurs disponibles. Les durées opératoires sont constantes, à 77 l'exception du dernier article sur le dernier poste (Tableau 3) ; le terme F7 (perturbations) a donc une
	7 8 9 10 valeur très faible (Tableau 4). Kouassi Hilaire EDI et al. 78 80 87 89 93 95 101 103 Kouassi Hilaire EDI et al.	82 91 97 105

Figure 4 : Diagramme de Gantt pour l'itération 1 Tableau 4 : Fonction coût, itération 1 La deuxième itération permet l'obtention d'une solution meilleure que la précédente (Tableau 6 ).