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Abstract

We study the problem of fair binary classification using the notion of Equal Opportunity.
It requires the true positive rate to distribute equally across the sensitive groups. Within this
setting we show that the fair optimal classifier is obtained by recalibrating the Bayes classifier by
a group-dependent threshold. We provide a constructive expression for the threshold. This result
motivates us to devise a plug-in classification procedure based on both unlabeled and labeled
datasets. While the latter is used to learn the output conditional probability, the former is used
for calibration. The overall procedure can be computed in polynomial time and it is shown to be
statistically consistent both in terms of the classification error and fairness measure. Finally, we
present numerical experiments which indicate that our method is often superior or competitive
with the state-of-the-art methods on benchmark datasets.

1 Introduction
As machine learning becomes more and more spread in our society, the potential risk of using
algorithms that behave unfairly is rising. As a result there is growing interest to design learning
methods that meet “fairness” requirements, see [5, 9, 10, 17, 19, 22–24, 28, 31, 33, 47, 48, 50, 52]
and references therein. A central goal is to make sure that sensitive information does not “unfairly”
influence the outcomes of learning methods. For instance, if we wish to predict whether a university
student applicant should be offered a scholarship based on curriculum, we would like our model to
not unfairly use additional sensitive information such as gender or race.

Several measures of fairness of a classifier have been studied in the literature [49], ranging from
Demographic Parity [8], Equal Odds and Equal Opportunity [22], Disparate Treatment, Impact, and
Mistreatment [48], among others. In this paper, we study the problem of learning a binary classifier
which satisfies the Equal Opportunity fairness constraint. It requires that the true positive rate of
the classifier is the same across the sensitive groups. This notion has been used extensively in the
literature either as a postprocessing step [22] on a learned classifier or directly during training, see
for example [17] and references therein.

We address the important problem of devising statistically consistent and computationally efficient
learning procedures that meet the fairness constraint. Specifically, we make four contributions.
First, we derive in Proposition 2.3 the expression for the optimal equal opportunity classifier,
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derived via thresholding of the Bayes regressor. Second, inspired by the above result we proposed
a semi-supervised plug-in type method, which first estimates the regression function on labeled
data and then estimates the unknown threshold using unlabeled data. Consequently, we establish
in Theorem 4.5 that the proposed procedure is consistent, that is, it asymptotically satisfies the
equal opportunity constraint and its risk converges to the risk of the optimal equal opportunity
classifier. Finally, we present numerical experiments which indicate that our method is often superior
or competitive with the state-of-the-art on benchmark datasets.

We highlight that the proposed learning algorithm can be applied on top of any off-the shelf
method which consistently estimates the regression function (class condition probability), under
mild additional assumptions which we discuss in the paper. Furthermore, our calibration procedure
is based on solving a simple univariate problem. Hence the generality, statistical consistency and
computational efficiency are strengths of our approach.

The paper is organized in the following manner. In Section 2, we introduce the problem and
derive a form of the optimal equal opportunity classifier. Section 3 is devoted to the description of
our method. In Section 4 we introduce assumptions used throughout this work and establish that
the proposed learning algorithm is consistent. Finally, Section 5 presents numerical experiments
with our method.

1.1 Related work

In this section we review previous contributions on the subject. Works on algorithmic fairness can
be divided in three families. Our algorithm falls within the first family, which modifies a pre-trained
classifier in order to increase its fairness properties while maintaining as much as possible the
classification performance, see [6, 20, 22, 38] and references therein. Importantly, for our approach
the post-processing step requires only unlabeled data, which is often easier to collect than its
labeled counterpart. Methods in the second family enforce fairness directly during the training
step, e.g. [2, 12, 17, 37]. The third family of methods implements fairness by modifying the data
representation and then employs standard machine learning methods, see e.g. [1, 9, 17, 25–27, 50] as
representative examples.

To the best of our knowledge the formula for the optimal fair classifier presented here is novel.
In [22] the authors note that the optimal equalized odds or equal opportunity classifier can be derived
from the Bayes optimal regressor, however, no explicit expression for this threshold is provided. The
idea of recalibrating the Bayes classifier is also discussed in a number of papers, see for example
[35, 38] and references therein. More importantly, the problem of deriving efficient and consistent
estimators under fairness constraints has received limited attention in the literature. In [17], the
authors present consistency results under restrictive assumptions on the model class. Furthermore,
they only consider convex approximations of the risk and fairness constraint and it is not clear how
to relate their results to the original problem with the miss-classification risk. In [2], the authors
reduce the problem of fair classification to a sequence of cost-sensitive problems by leveraging the
saddle point formulation. They show that their algorithm is consistent in both risk and fairness
constraints. However, similarly to [17], the authors of [2] assume that the family of possible classifiers
admits a bounded Rademacher complexity.

Plug-in methods in classification problems are well established and are well studied from statistical
perspective, see [4, 16, 46] and references therein; in particular, it is known that one can build a
plug-in type classifier which is optimal in minimax sense [4, 46]. Until very recently, theoretical
studies on such methods were reduced to an efficient estimation of the regression function. Indeed, in
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standard settings of classification the threshold is always known beforehand, thus, all the information
about the optimal classifier is wrapped into the distribution of the label conditionally on the feature.

More recently, classification problems with a distribution dependent threshold have emerged.
Prominent examples include classification with non-decomposable measures [30, 45, 51], classification
with reject option [15, 32], and confidence set setup of multi-class classification [11, 14, 40], among
others. A typical estimation algorithm in these scenarios is based on the plug-in strategy, which
uses extra data to estimate the unknown threshold. Interestingly, in some setups a practitioner does
not need to have access to two labeled samples and optimal estimation can be efficiently performed
in semi-supervised manner [11, 14].

2 Optimal Equal Opportunity classifier
Let (X,S, Y ) be a tuple on Rd×{0, 1}×{0, 1} having a joint distribution P. Here the vector X ∈ Rd
is seen as the vector of features, S ∈ {0, 1} a binary sensitive variable and Y ∈ {0, 1} a binary
output label that we wish to predict from the pair (X,S). We also assume that the distribution
is non-degenerate in Y and S that is P(S = 1) ∈ (0, 1) and P(Y = 1) ∈ (0, 1). A classifier g is
a measurable function from Rd × {0, 1} to {0, 1}, and the set of all such functions is denoted by
G. In words, each classifier receives a pair (x, s) ∈ Rd × {0, 1} and outputs a binary prediction
g(x, s) ∈ {0, 1}. For any classifier g we introduce its associated miss-classification risk as

R(g) := P (g(X,S) 6= Y ) . (1)

A fair optimal classifier is formally defined as

g∗ ∈ arg ming∈G {R(g) : g is fair} .

There are various definitions of fairness available in the literature, each having its critics and its
supporter. In this work, we employ the following definition introduced in [22]. We refer the reader
to this work as well as [2, 17, 35] for a discussion, motivation of this definition, and a comparison to
other fairness definitions.

Definition 2.1 (Equal Opportunity [22]). A classifier (x, s) 7→ g(x, s) ∈ {0, 1} is called fair if

P (g(X,S) = 1 |S = 1, Y = 1) = P (g(X,S) = 1 |S = 0, Y = 1) .

The set of all fair classifiers is denoted by F(P).

Note, that the definition of fairness depends on the underlying distribution P and hence the
whole class F(P) of the fair classifiers should be estimated. Further, notice that the class F(P) is
non-empty as it always contains a classifier g(x, s) ≡ 0.

Using this notion of fairness we define an optimal equal opportunity classifier as a solution of the
optimization problem

ming∈G {R(g) : P (g(X,S) = 1 |Y = 1, S = 1) = P (g(X,S) = 1 |Y = 1, S = 0)} . (2)

We now introduce an assumption on the regression function that plays an important role in
establishing the form of the optimal fair classifier.
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Assumption 2.2. For each s ∈ {0, 1} we require the mapping t 7→ P (η(X,S) ≤ t |S = s) to be
continuous on (0, 1), where for all (x, s) ∈ Rd × {0, 1}, we let the regression function

η(x, s) := P (Y = 1 |X = x, S = s) = E [Y |X = x, S = s] .

Moreover, for every s ∈ {0, 1}, we assume that P (η(X, s) ≥ 1/2 |S = s) > 0.

The first part of Assumption 2.2 is achieved by many distributions and has been introduced in
various contexts, see e.g. [11, 15, 32, 40, 45] and references therein. It says that, for every s ∈ {0, 1}
the random variable η(X, s) does not have atoms, that is, the event {η(X, s) = t} has probability
zero. The second part of the assumption states that the regression function η(X, s) must surpass the
level 1/2 on a set of non-zero measure. Informally, returning to scholarship example mentioned in
the introduction, this assumption means that there are individuals from both groups who are more
likely to be offered a scholarship based on their curriculum.

In the following result we establish that the optimal equal opportunity classifier is obtained by
recalibrating the Bayes classifier.

Proposition 2.3 (Optimal Rule). Under Assumption 2.2 an optimal classifier g∗ can be obtained
for all (x, s) ∈ Rd × {0, 1} as

g∗(x, 1) = 1{1≤η(x,1)
(

2− θ∗
P(Y=1,S=1)

)}, g∗(x, 0) = 1{1≤η(x,0)
(

2+ θ∗
P(Y=1,S=0)

)} (3)

where θ∗ ∈ R is determined from the equation

EX|S=1

[
η(X,1)1{

1≤η(X,1)
(

2− θ∗
P(Y=1,S=1)

)}]
P(Y=1 |S=1) =

EX|S=0

[
η(X, 0)1{1≤η(X,0)

(
2+ θ∗

P(Y=1,S=0)

)}]
P (Y = 1 |S = 0) .

Furthermore it holds that |θ∗| ≤ 2.

Proof sketch. The proof relies on weak duality. The first step of the proof is to write the minimization
problem for g∗ using a “min-max” problem formulation. We consider the corresponding dual “max-
min” problem and show that it can be analytically solved. Then, the continuity part of Assumption 2.2
allows to demonstrate that the solution of the “max-min” problem gives a solution of the “min-max”
problem. The second part of Assumption 2.2 is used to prove that |θ∗| ≤ 2.

Before proceeding further, let us define a notion of unfairness, which plays a key role in our
statistical analysis; it is sometimes referred to as difference of equal opportunity (DEO) in the
literature [see e.g. 17].

Definition 2.4 (Unfairness). For any classifier g we define its unfairness as

∆(g,P) = |P (g(X,S) = 1 |S = 1, Y = 1)− P (g(X,S) = 1 |S = 0, Y = 1)| .

A principal goal of this paper is to construct a classification algorithm ĝ which satisfies

E[∆(ĝ,P)]→ 0︸ ︷︷ ︸
asymptotically fair

, and E[R(ĝ)]→ R(g∗)︸ ︷︷ ︸
asymptotically optimal

,

where the expectations are taken with respect to the distribution of data samples. As we shall see our
estimator is built from independent sets of labeled and unlabeled samples. Hence the convergence
above is meant to hold as both samples grow to infinity.
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3 Proposed procedure
In this section, we present the proposed plug-in algorithm and begin to study its theoretical properties.

We assume that we have at our disposal two datasets, labeled Dn and unlabeled DN defined as

Dn = {(Xi, Si, Yi)}ni=1
i.i.d.∼ P, and DN = {(Xi, Si)}n+N

i=n+1
i.i.d.∼ P(X,S) ,

where P(X,S) is the marginal distribution of the vector (X,S). We additionally assume that the
estimator η̂ of the regression function is constructed based on Dn, independently of DN . Let us
denote by ÊX|S=1, ÊX|S=0 expectations taken w.r.t. the empirical distributions induced by DN , that
is,

P̂X|S=s = 1
|{(X,S) ∈ DN : S = s}|

∑
{(X,S)∈DN :S=s}

δX ,

for all s ∈ {0, 1}, and by ÊS expectation taken w.r.t. the empirical measure of S, that is, P̂S =
1
N

∑
(X,S)∈DN δS .

Remark 3.1. In theory, the empirical distributions might be not well defined, since they are only
valid if the unlabeled dataset DN is composed of features from both groups. We show how to bypass
this problem theoretically in supplementary material. Nevertheless, this remark has little to no impact
in practice and in most situations these quantities are well defined.

Based on the estimator η̂ and the unlabeled sample DN , let us introduce the following estimators
for each s ∈ {0, 1}

P̂(Y = 1, S = s) := ÊX|S=s[η̂(X, s)]P̂S(S = s) .

Using the above estimators a straightforward procedure to mimic the optimal classifier g∗ provided
by Proposition 2.3 is to employ a plug-in rule ĝ, obtained by replacing all the unknown quantities by
either their empirical versions or their estimates. Specifically, we let ĝ at (x, s) ∈ Rd × {0, 1} as

ĝ(x, 1) = 1{
1≤η̂(x,1)

(
2− θ̂

P̂(Y=1,S=1)

)}, ĝ(x, 0) = 1{
1≤η̂(x,0)

(
2+ θ̂

P̂(Y=1,S=0)

)} . (4)

It remains to define the value of θ̂, clearly it is desirable to mimic the condition that is satisfied by
θ∗ in Proposition 2.3. To this end, we make use of the unlabeled data DN and of the estimator
η̂ previously built from the labeled dataset Dn. Consequently, we define a data-driven version of
unfairness ∆(g,P), which allows to construct an approximation θ̂ of the true value θ∗.

Definition 3.2 (Empirical unfairness). For any classifier g, an estimator η̂ based on Dn, and
unlabeled sample DN the empirical unfairness is defined as

∆̂(g,P) =
∣∣∣∣ ÊX|S=1η̂(X,1)g(X,1)

ÊX|S=1η̂(X,1) − ÊX|S=0η̂(X,0)g(X,0)
ÊX|S=0η̂(X,0)

∣∣∣∣ .
Notice that the empirical unfairness ∆̂(g,P) is data-driven, that is, it does not involve unknown

quantities. One might wonder why it is an empirical version of the quantity ∆(g,P) in Definition 2.4
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and what is the reason to introduce it. The definition reveals itself when we rewrite the population
of unfairness ∆(g,P) using1 the identity

P (g(X,S) = 1 |S = s, Y = 1) = P(g(X,S)=1,Y=1 |S=s)
P(Y=1 |S=s) = EX|S=s[η(X,s)g(X,s)]

EX|S=s[η(X,s)] .

Using the above expression we can rewrite

∆(g,P) =
∣∣∣EX|S=1[η(X,1)g(X,1)]

EX|S=1[η(X,1)] − EX|S=0[η(X,0)g(X,0)]
EX|S=0[η(X,0)]

∣∣∣ .
Hence, the passage from the population unfairness to its empirical version in Definition 3.2 formally
reduces to substituting “hats” to all the unknown quantities.

Using Definition 3.2, a logical estimator θ̂ of θ∗ can be obtained as

θ̂ ∈ arg min
θ∈[−2,2]

∆̂(ĝθ,P) ,

where, for all θ ∈ [−2, 2], ĝθ is defined at (x, s) ∈ Rd × {0, 1} as

ĝθ(x, 1) = 1{
1≤η̂(x,1)

(
2− θ

P̂(Y=1,S=1)

)}, ĝθ(x, 0) = 1{
1≤η̂(x,0)

(
2+ θ

P̂(Y=1,S=0)

)} . (5)

In this case, the algorithm ĝ that we propose is such that ĝ ≡ ĝθ̂. It is crucial to mention that since
the quantity ∆̂(ĝθ,P) is empirical, then there might be no θ which delivers zero for the empirical
unfairness. This is exactly the reason we perform a minimization of this quantity.

Remark 3.3. Even though we believe that the introduction of the unlabeled sample is one of the
strong points of our approach, this sample may not be available on some benchmark datasets. In
this case, we can simply randomly split the data into two parts disregarding labels in one of them,
or alternatively we can use the same sample twice. The second path is not directly justified by our
theoretical results, yet, let us suggest the following intuitive explanation for this approach. On the
first and the second steps, our procedure approximates two independent parts of the distribution P of
the random tuple (X,S, Y ). Indeed, following the factorization P = PY |X,S ⊗ P(X,S), the first step of
our procedure approximates PY |X,S, whereas the second step is aimed at P(X,S) which is independent
from PY |X,S. In our experiments, reported in Section 5, we exploited the same set of data for both
Dn and DN , since no unlabelled sample were available and splitting the dataset would have reduced
the quality of the trained model because the datasets have a small sample size.

4 Consistency
In this section we establish that the proposed procedure is consistent. To present our theoretical
results we impose two assumptions on the estimator η̂ and demonstrate how to satisfy them in
practice.

Assumption 4.1. The estimator η̂ which is constructed on Dn satisfies for all s ∈ {0, 1}

(i) EDnEX|S=s |η(X,S)− η̂(X,S)| → 0 as n→∞;
1Note additionally that for all s ∈ {0, 1} we can write 1{Y=1,g(X,s)=1} ≡ Y g(X, s), since both Y and g are binary.
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(ii) There exists a sequence cn,N > 0 satisfying 1
cn,N

√
N

= on,N (1) and cn,N = on,N (1) such that
EX|S=s[η̂(X,S)] ≥ cn,N almost surely.

Remark 4.2. There are two parts in Assumption 4.1, the first one requires a consistent estimator
in `1 norm. This first assumption is rather weak, since there are many different available con-
sistent estimators for the regression function in the literature, including the Maximum likelihood
estimator [45] for Gaussian Generative Model, local polynomial estimator [4] for β-Hölder smooth
regression function η(·, s), regularized logistic regression [42] for Generalized Linear Model, k-Nearest
Neighbors estimator [16] for Lipschitz regression function η(·, s), and random forest type estimators
in various settings [3, 7, 21, 41].
The second part of Assumption 4.1 means that EX|S=s[η̂(X, s)] is lower bounded by a positive term
vanishing as N,n grow to infinity. This condition can be introduced artificially to any predefined
estimator. Indeed, assume that we have a consistent estimator η̃ and let η̂(x, s) = max{η̃(x, s), cn,N},
then the second item of the assumption is satisfied in even a stronger form. Moreover, this estimator
η̂ remains consistent, since using the triangle inequality and the fact that |η̂(x, s)− η̃(x, s)| ≤ cn,N
for all x ∈ Rd, we have

EDnEX|S=s |η(X, s)− η̂(X, s)| ≤ EDnEX|S=s |η(X, s)− η̃(X, s)|+ cn,N → 0 .

Additionally, we impose one more condition on the estimator η̂ that was already successfully
used in the context of confidence set classification [11, 15].

Assumption 4.3. The estimator η̂ is such that for all s ∈ {0, 1} the mapping

t 7→ P (η̂(X, s) ≤ t |S = s) ,

is continuous on (0, 1) almost surely.

In our settings this assumption allows us to show that the value of ∆̂(ĝ,P) cannot be large, that
is, the empirical unfairness of the proposed procedure is small or zero. As we shall see, a control on
the empirical unfairness ∆̂(ĝ,P) in Definition 3.2 is crucial in proving that the proposed procedure ĝ
achieves both asymptotic fairness and risk consistency.

Remark 4.4. Assumption 4.3 is equivalent to say that there are no atoms in the estimated regression
function. It can be fulfilled by a simple modification of any preliminary estimator, by adding a small
deterministic “noise”, the amplitude of which must be decreasing with n,N in order to preserve
statistical consistency.

Our remarks suggest that both Assumptions 4.1 and 4.3 can be easily satisfied in a variety of
practical settings and the most demanding part of these assumptions is the consistency of η̂.

The next result establishes the statistical consistency of the proposed algorithm.

Theorem 4.5 (Asymptotic properties). Under Assumptions 2.2, 4.1, and 4.3 the proposed algorithm
satisfies

limn,N→∞ E(Dn,DN )[∆(ĝ,P)] = 0 and limn,N→∞ E(Dn,DN )[R(ĝ)] ≤ R(g∗) .

Proof sketch. In order to establish statistical consistency of the proposed procedure, we follow the
strategy of [11, 15], that is, we first introduce an intermediate pseudo-estimator g̃ as follows

g̃(x, 1)=1{
1≤η̂(x,1)

(
2− θ̃

EX|S=1[η̂(X,1)]P(S=1)

)}, g̃(x, 0)=1{
1≤η̂(x,0)

(
2+ θ̃

EX|S=0[η̂(X,0)]P(S=0)

)}, (6)
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where θ̃ is chosen such that

EX|S=1 [η̂(X, 1)g̃(X, 1)]
EX|S=1[η̂(X, 1)] =

EX|S=0 [η̂(X, 0)g̃(X, 0)]
EX|S=0[η̂(X, 0)] . (7)

Note that by Assumption 4.3 such a value θ̃ always exists. Intuitively, the classifier g̃ “knows” the
marginal distribution of (X,S), that is, it knows both PX|S and PS . It is seen as an idealized version
of ĝ, where the uncertainty is only induced by the lack of knowledge of the regression function η.

We express the excess risk as a sum of two terms, EDn [R(g̃)]−R(g∗) + E(Dn,DN )[R(ĝ)−R(g̃)].
We show that the first can be bounded by the `1 distance between η̂ and η, and thanks to the
consistency of η̂ it does converge to zero. The handling of the second term is move involved, but we
are able to show that it reduces to a study of suprema of empirical processes conditionally on the
labeled sample Dn.

To demonstrate that the proposed algorithm is asymptotically fair, we first show that

E(Dn,DN )[∆(ĝ,P)] ≤ E(Dn,DN )[∆̂(ĝ,P)] + on,N (1) .

At last, the continuity Assumption 4.3 alongside with means of theory of empirical processes allow
to demonstrate that the term E(Dn,DN )[∆̂(ĝ,P)] converges to zero when N growth.

Remark 4.6. Let us mention that it is possible to present our result in a finite sample regime, since
our proof of consistency is based on non-asymptotic theory of empirical processes. However, the
actual rate of convergence depends on the rate of `1-norm estimation of the regression function η,
which can vary significantly from one setup to another. That is why we decided to present our result
in the asymptotic sense.

5 Experimental results
In this section, we present numerical experiments with the proposed method. The source code we used
to perform the experiments can be found at https://github.com/lucaoneto/NIPS2019_Fairness.

We follow the protocol outlined in [17]. We consider the following datasets: Arrhythmia,
COMPAS, Adult, German, and Drug2 and compare the following algorithms: Linear Support Vector
Machines (Lin.SVM), Support Vector Machines with the Gaussian kernel (SVM), Linear Logistic
Regression (Lin.LR), Logistic Regression with the Gaussian kernel (LR), Hardt method [22] to all
approaches (Hardt), Zafar method [48] implemented with the code provided by the authors for the
linear case3, the Linear (Lin.Donini) and the Non Linear methods (Donini) proposed in [17] and
freely available4, and also Random Forests (RF). Then, since Lin.SVM, SVM, Lin.LR, LR, and RF
have also the possibility to output a probability together with the classification, we applied our
method in all these cases.

In all experiments, we collect statistics concerning the classification accuracy (ACC), namely
probability to correctly classify a sample, and the Difference of Equal Opportunity (DEO) in
Definition 2.1. For Arrhythmia, COMPAS, German and Drug datasets we split the data in two
parts (70% train and 30% test), this procedure is repeated 30 times, and we reported the average
performance on the test set alongside its standard deviation. For the Adult dataset, we used the

2For more information about these datasets please refer to [17].
3Python code for [48]: https://github.com/mbilalzafar/fair-classification
4Python code for [17]: https://github.com/jmikko/fair_ERM
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Arrhythmia COMPAS Adult German Drug
Method ACC DEO ACC DEO ACC DEO ACC DEO ACC DEO
Lin.SVM 0.78±0.07 0.13±0.04 0.75±0.01 0.15±0.02 0.80 0.13 0.69±0.04 0.11±0.10 0.81±0.02 0.41±0.06
Lin.LR 0.79±0.06 0.13±0.05 0.76±0.02 0.16±0.02 0.81 0.12 0.67±0.05 0.12±0.11 0.80±0.01 0.42±0.05
Lin.SVM+Hardt 0.74±0.06 0.07±0.04 0.67±0.03 0.21±0.09 0.80 0.10 0.61±0.15 0.15±0.13 0.77±0.02 0.22±0.09
Lin.LR+Hardt 0.75±0.04 0.08±0.05 0.67±0.02 0.18±0.07 0.81 0.09 0.62±0.05 0.13±0.09 0.76±0.01 0.18±0.04
Zafar 0.71±0.03 0.03±0.02 0.69±0.02 0.10±0.06 0.78 0.05 0.62±0.09 0.13±0.11 0.69±0.03 0.02±0.07
Lin.Donini 0.79±0.07 0.04±0.03 0.76±0.01 0.04±0.03 0.77 0.01 0.69±0.04 0.05±0.03 0.79±0.02 0.05±0.03
Lin.SVM+Ours 0.75±0.08 0.04±0.04 0.73±0.01 0.05±0.02 0.79 0.03 0.68±0.04 0.04±0.03 0.78±0.02 0.01±0.02
Lin.LR+Ours 0.75±0.06 0.04±0.05 0.74±0.02 0.06±0.02 0.80 0.03 0.67±0.05 0.04±0.03 0.77±0.03 0.02±0.02
SVM 0.78±0.06 0.13±0.04 0.73±0.01 0.14±0.02 0.82 0.14 0.74±0.03 0.10±0.06 0.81±0.04 0.38±0.03
LR 0.79±0.05 0.12±0.04 0.74±0.01 0.14±0.02 0.81 0.15 0.75±0.03 0.11±0.06 0.82±0.01 0.37±0.03
RF 0.83±0.03 0.09±0.02 0.77±0.02 0.11±0.02 0.86 0.12 0.78±0.02 0.09±0.04 0.86±0.01 0.29±0.02
SVM+Hardt 0.74±0.06 0.07±0.04 0.71±0.02 0.08±0.02 0.82 0.11 0.71±0.03 0.11±0.18 0.75±0.11 0.14±0.08
LR+Hardt 0.73±0.05 0.10±0.04 0.70±0.02 0.09±0.02 0.80 0.12 0.72±0.04 0.09±0.06 0.77±0.03 0.11±0.04
RF+Hardt 0.79±0.03 0.07±0.01 0.76±0.01 0.07±0.02 0.83 0.05 0.76±0.02 0.06±0.04 0.82±0.01 0.09±0.02
Donini 0.79±0.09 0.03±0.02 0.73±0.01 0.05±0.03 0.81 0.01 0.73±0.04 0.05±0.03 0.80±0.03 0.07±0.05
SVM+Ours 0.77±0.07 0.04±0.02 0.72±0.02 0.06±0.02 0.80 0.02 0.73±0.03 0.04±0.06 0.79±0.02 0.05±0.01
LR+Ours 0.77±0.06 0.04±0.02 0.73±0.01 0.06±0.02 0.80 0.02 0.73±0.02 0.04±0.06 0.80±0.01 0.05±0.02
RF+Ours 0.81±0.04 0.03±0.01 0.76±0.02 0.04±0.02 0.85 0.03 0.77±0.02 0.02±0.02 0.83±0.01 0.04±0.02

Table 1: Results (average ± standard deviation, when a fixed test set is not provided) for all the
datasets, concerning ACC and DEO.

Figure 1: Results of Table 1 of linear (left) and nonlinear (right) methods when the error and the
DEO are normalized in [0, 1] column-wise. Different colors and symbols refer to different datasets
and method respectively. The closer a point is to the origin, the better the result is.

COMPAS Adult
RF+Ours ACC DEO ACC DEO
Dn=1/10 0.68± 0.03 0.07± 0.02 0.79± 0.02 0.06± 0.02
Dn=1/10, DN=1/10 0.68± 0.03 0.07± 0.02 0.79± 0.02 0.06± 0.02
Dn=1/10, DN=2/10 0.68± 0.03 0.07± 0.02 0.79± 0.02 0.06± 0.02
Dn=1/10, DN=4/10 0.70± 0.02 0.06± 0.02 0.79± 0.02 0.05± 0.01
Dn=1/10, DN=8/10 0.71± 0.02 0.05± 0.01 0.80± 0.02 0.04± 0.01

Table 2: Impact of the size of the unlabeled dataset on ACC and DEO. The size of the labeled
sample Dn is fixed to 1/10 of the original dataset. The unlabeled DN is initially empty (as in
previous experiments of Table 1), and then increases from 1/10 to 8/10 of the original dataset.

9



provided split of train and test sets. Unless otherwise stated, we employ two steps in the 10-fold CV
procedure proposed in [17] to select the best hyperparameters with the training set5. In the first
step, the value of the hyperparameters with the highest accuracy is identified. In the second step,
we shortlist all the hyperparameters with accuracy close to the best one (in our case, above 90% of
the best accuracy). Finally, from this list, we select the hyperparameters with the lowest DEO.

We also present in Figure 1 the results of Table 1 for linear (left) and nonlinear (right) methods,
when the error (one minus ACC) and the DEO are normalized in [0, 1] column-wise. In the figure,
different colors and symbols refer to different datasets and methods, respectively. The closer a point
is to the origin, the better the result is.

From Table 1 and Figure 1 it is possible to observe that the proposed method outperforms all
methods except the one of [17] for which we obtain comparable performance. Nevertheless, note that
our method is more general than the one of [17], since it can be applied to any algorithms which
return a probability estimator (better if consistent since this will allow us to have a full consistent
approach also from the fairness point of view). In fact, on these datasets, RF, which cannot be made
trivially fair with the approach proposed in [17], outperforms all the available methods.

Note that the results reported in Table 1 differ from the one reported in [17] since the proposed
method requires the knowledge of the sensitive variable at classification time, so Table 1 reports
just this case. That is, the functional form of the model explicitly depends on the sensitive variable
s ∈ {0, 1}. Many authors, point out that this may not be permitted in several practical scenarios
(see e.g. [19, 39] and reference therein). Yet, removing the sensitive variable from the functional
form of the model does not ensure that the sensitive variable is not considered by the model itself.
We refer to [36] for the in-depth discussion on this issue. Further, the method in [22] explicitly
requires the knowledge of the sensitive variable for their thresholding procedure. In Appendix E we
show how to modify our method in order to derive a fair optimal classifier without the sensitive
variable s in the functional form of the model. Moreover, we propose a modification of our approach
which does not use s at decision time and perform additional numerical comparison in this context.
We arrive to similar conclusions about the performance of our method as in this section. Yet, the
consistency results are not available for this methods and are left for future investigation.

In Table 2 we demonstrate the impact of the unlabeled data size on the performance of the
proposed algorithm. Since the above benchmark datasets are not provide with additional unlabeled
data, we deploy the following data generation procedure: we randomly select 1/10 observations in
each dataset and assign it to the labeled sample Dn; consequently, the size of the unlabeled sample
DN increases from 0 to 8/10 samples that were not assigned to the labeled sample Dn. This data
generation procedure is applied to COMPAS and Adult datasets. Finally, we apply our method using
the random forest algorithm using the cross-validation scheme employed in the previous experiments.
The above above pipeline is repeated 30 times and the variance of the results is reported in Table 2.
We can see that both DEO and ACC are improving with N , highlighting the importance of the
unlabeled data. We believe that the improvement could have been more significant if the unlabeled
data were provided initially.

5The regularization parameter (for all method) and the RBF kernel with 30 values, equally spaced in logarithmic
scale between 10−4 and 104. For RF the number of trees has been set to 1000 and the size of the subset of features
optimized at each node has been search in {d, dd15/16e, dd7/8e, dd3/4e, dd1/2e, dd1/4e, dd1/8e, dd1/16e, 1} where d is the number
of features in the dataset.
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6 Conclusion
Using the notion of equal opportunity we have derived a form of the fair optimal classifier based
on group-dependent threshold. Relying on this result we have proposed a semi-supervised plug-in
method which enjoys strong theoretical guarantees under mild assumptions. Importantly, our
algorithm can be implemented on top of any base classifier which has conditional probabilities as
outputs. We have conducted an extensive numerical evaluation comparing our procedure against the
state-of-the-art approaches and have demonstrated that our procedure performs well in practice.
In future works we would like to extend our analysis to other fairness measures as well as provide
consistency results for the algorithm which does not use the sensitive feature at the decision time.
Finally, we note that our consistency result is constructive and could be used to derive non-asymptotic
rates of convergence for the proposed method, relying upon available rates for the regression function
estimator.
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Supplementary material for “Leveraging Labeled and Unlabeled
Data for Consistent Fair Binary Classification”

A Optimal classifier
Proof of Proposition 2.3. Let us study the following minimization problem

(∗) := min
g∈G
{R(g) : P (g(X,S)=1 |Y=1, S=1) = P (g(X,S)=1 |Y=1, S=0)} .

Using the weak duality we can write

(∗) = min
g∈G

max
λ∈R
{R(g) + λ (P (g(X,S)=1 |Y=1, S=1)− P (g(X,S)=1 |Y=1, S=0))}

≥ max
λ∈R

min
g∈G
{R(g) + λ (P (g(X,S)=1 |Y=1, S=1)− P (g(X,S)=1 |Y=1, S=0))} =: (∗∗) .

We first study the objective function of the max min problem (∗∗), which is equal to

P(g(X,S) 6= Y ) + λ (P (g(X,S)=1 |Y=1, S=1)− P (g(X,S)=1 |Y=1, S=0)) .

The first step of the proof is to simplify the expression above to linear functional of the classifier g.
Notice that we can write for the first term

P(g(X,S) 6= Y ) = P(g(X,S)=0, Y=1) + P(g(X,S)=1, Y=0)
= P(g(X,S)=1) + P(Y=1)− P(g(X,S)=1, Y=1)− P(g(X,S)=1, Y=1)
= P(g(X,S)=1) + P(Y=1)− 2P(g(X,S)=1, Y=1)

= P(Y=1) + E[g(X,S)]− 2E
[
1{g(X,S)=1,Y=1} |S=1

]
P(S=1)

− 2E
[
1{g(X,S)=1,Y=1} |S=0

]
P(S=0)

= P(Y=1) + E[g(X,S)]− 2EX|S=1[g(X, 1)η(X, 1)]P(S=1)
− 2EX|S=0[g(X, 0)η(X, 0)]P(S=0)

= P(Y=1)− EX|S=1[g(X, 1)(2η(X, 1)− 1)]P(S=1)
− EX|S=0[g(X, 0)(2η(X, 0)− 1)]P(S=0) ,

moreover, we can write for the rest

P (g(X,S) = 1 |Y = 1, S = 1) = P (g(X,S) = 1, Y = 1 |S = 1)
P (Y = 1 |S = 1) =

EX|S=1[g(X, 1)η(X, 1)]
P (Y = 1 |S = 1) ,

P (g(X,S) = 1 |Y = 1, S = 0) = P (g(X,S) = 1, Y = 1 |S = 0)
P (Y = 1 |S = 0) =

EX|S=0[g(X, 0)η(X, 0)]
P (Y = 1 |S = 0) .

Using these, the objective of (∗∗) can be simplified as

P(Y = 1) + EX|S=1

[
g(X, 1)

(
η(X, 1)

(
λ

P (Y = 1 |S = 1) − 2P(S = 1)
)

+ P(S = 1)
)]

+ EX|S=0

[
g(X, 0)

(
η(X, 0)

(
− λ

P (Y = 1 |S = 0) − 2P(S = 0)
)

+ P(S = 0)
)]

.
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Clearly, for every λ ∈ R a minimizer g∗λ of the problem (∗∗) can be written for all x ∈ Rd as

g∗λ(x, 1) = 1{
η(X,1)

(
λ

P(Y=1 |S=1)−2P(S=1)
)

+P(S=1)≤0
} = 1{1−η(X,1)

(
2− λ

P(Y=1,S=1)

)
≤0
}

g∗λ(x, 0) = 1{
η(X,0)

(
− λ

P(Y=1 |S=0)−2P(S=0)
)

+P(S=0)≤0
} = 1{1−η(X,0)

(
2+ λ

P(Y=1,S=0)

)
≤0
} .

At this moment it is interesting to reflect on this result. Indeed, for λ = 0 we recover the classical
optimal predictor in the context of binary classification. Substituting this classifier into the objective
of (∗∗) we arrive at

(∗∗) = P(Y = 1)−min
λ∈R

{
EX|S=1

(
η(X, 1)

(
2P(S = 1)− λ

P (Y = 1 |S = 1)

)
− P(S = 1)

)
+

+ EX|S=0

(
η(X, 0)

(
2P(S = 0) + λ

P (Y = 1 |S = 0)

)
− P(S = 0)

)
+

}
.

It is important to observe that the mappings

λ 7→ EX|S=1

(
η(X, 1)

(
2P(S = 1)− λ

P (Y = 1 |S = 1)

)
− P(S = 1)

)
+

λ 7→ EX|S=0

(
η(X, 0)

(
2P(S = 0) + λ

P (Y = 1 |S = 0)

)
− P(S = 0)

)
+

,

are convex, therefore we can write the first order optimality conditions as

0 ∈∂λEX|S=1

(
η(X, 1)

(
2P(S = 1)− λ

P (Y = 1 |S = 1)

)
− P(S = 1)

)
+

+ ∂λEX|S=0

(
η(X, 0)

(
2P(S = 0) + λ

P (Y = 1 |S = 0)

)
− P(S = 0)

)
+

.

Clearly, under Assumption 2.2 this subgradient is reduced to the gradient almost surely, thus we
have the following condition on the optimal value of λ∗

EX|S=1 [η(X, 1)g∗λ∗(X, 1)]
P (Y = 1 |S = 1) =

EX|S=0 [η(X, 0)g∗λ∗(X, 0)]
P (Y = 1 |S = 0) ,

and the pair (λ∗, g∗λ∗) is a solution of the dual problem (∗∗). Notice that the previous condition can
be written as

P (g∗λ∗(X,S) = 1 |Y = 1, S = 1) = P (g∗λ∗(X,S) = 1 |Y = 1, S = 0) .

This implies that the classifier g∗λ∗ is fair, that is, it satisfies Definition 2.1. Finally, it remains to
show that g∗λ∗ is actually an optimal classifier, indeed, since g∗λ∗ is fair we can write on the one hand

R(g∗λ∗)≥min
g∈G
{R(g) : P (g(X,S) = 1 |Y = 1, S = 1) =P (g(X,S) = 1 |Y = 1, S = 0)}=(∗).

On the other hand the pair (λ∗, g∗λ∗) is a solution of the dual problem (∗∗), thus we have

(∗) ≥R(g∗λ∗) + λ∗ (P (g∗λ∗(X,S) = 1 |Y = 1, S = 1)− P (g∗λ∗(X,S) = 1 |Y = 1, S = 0))
= R(g∗λ∗) .

16



It implies that the classifier g∗λ∗ is optimal, hence g∗ ≡ g∗λ∗ .
Finally, assume that (2− θ∗/P(Y = 1, S = 1)) ≤ 0, then, clearly (2 + θ∗/P(Y = 1, S = 0)) > 0,

therefore, the condition on θ∗ reads as

0 = EX|S=0

[
η(X, 0)1{1≤η(X,0)

(
2+ θ∗

P(Y=1,S=0)

)}] ≥ P
(
η(X, 0) ≥ 1(

2+ θ∗
P(Y=1,S=0)

) |S = 0
)

(
2 + θ∗

P(Y=1,S=0)

)
≥ P (η(X, 0) ≥ 1/2 |S = 0)(

2 + θ∗

P(Y=1,S=0)

) > 0 ,

where the last inequality is due to Assumption 2.2. We arrive to contradiction, therefore (2−θ∗/P(Y =
1, S = 1)) > 0. Similarly, we show that (2 + θ∗/P(Y = 1, S = 0)) > 0. Combination of both
inequalities and the fact that for all s ∈ {0, 1} we have P(Y = 1, S = s) ≤ 1 implies that |θ∗| ≤ 2.

B Auxiliary results
Before proceeding to the proof of our main result in Theorem 4.5, let us first introduce several
auxiliary results. We suggest the reader to first understand these results omitting its proofs before
proceeding further. We will use C > 0 as a generic constant which actually could be different from
line to line, yet, this constant is always independent from n,N .

Remark B.1. In our work it is assumed that the unlabeled dataset is sampled i.i.d. from P(X,S),
it implies that in theory this dataset could be composed of only features belonging to either of the
group. Clearly, since P(S = 1) > 0 and P(S = 0) > 0 then this situation has an extremely small
probability of appearing, in terms of N . There are various ways to alleviate this issue. The first
one is conditioning on the event that we have at least one sample from each group, however, we
have found that this approach unnecessarily over complicates our derivations and does not bring any
insights. That is why, we follows another path, which is much simpler, though, might look a little
strange at first sight. We actually augment DN by four points (X1, 1), (X2, 1), (X3, 0), (X4, 0) which
are sampled as X1, X2

i.i.d.∼ PX|S=1 and X3, X4
i.i.d.∼ PX|S=0. Once it is done we can safely assume

that DN consists of at least two features from each group. The above is simply a technicality which
allows to present our result in a correct way.

The next lemma can be found in [13].

Lemma B.2. Let Z be a binomial random variable with parameters N, p, then for every α ∈ R

E[(1 + Z)α] = O ((Np)α) .

Lemma B.3. For any classifier g we have

R(g) = E(X,S)[η(X,S)]− E(X,S)[(2η(X,S)− 1)g(X,S)] .

Proof. We can write

R(g) := P(Y 6= g(X,S)) = E[Y (1− g(X,S))] + E[(1− Y )g(X,S)]
= E(X,S)η(X,S)(1− g(X,S)) + E(X,S)(1− η(X,S))g(X,S)
= E(X,S)[η(X,S)]− E(X,S)[(2η(X,S)− 1)g(X,S)] .
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In what follows we shall often use the relations:

P(Y = 1, S = s) = P (Y = 1 |S = s)P(S = s) ,

P (Y = 1 |S = s) = EX|S=s[η(X, s)] .

which holds for all s ∈ {0, 1}.

C Proof of Theorem 4.5
Below we gather extra tools which are directly related to the proof of our main result, proof are
provided in Appendix D. First lemma gives an upper on the quantity of unfairness ∆(g,P) in terms
of its empirical version in Definition 3.2.

Lemma C.1. Let g be any classifier (data depended or not) and η̂ be an estimator of the regression
function η constructed on Dn. Then, almost surely we have

∆(g,P) ≤ ∆̂(g,P) + 2
EX|S=1 |η(X, 1)− η̂(X, 1)|

P (Y = 1 |S = 1)︸ ︷︷ ︸
how good is η̂

+ 2
EX|S=0 |η(X, 0)− η̂(X, 0)|

P (Y = 1 |S = 0)︸ ︷︷ ︸
how good is η̂

+

∣∣∣(EX|S=1 − ÊX|S=1)η̂(X, 1)g(X, 1)
∣∣∣

EX|S=1η̂(X, 1)︸ ︷︷ ︸
empirical process

+

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)g(X, 0)
∣∣∣

EX|S=0η̂(X, 0)︸ ︷︷ ︸
empirical process

+

∣∣∣(ÊX|S=1 − EX|S=1)η̂(X, 1)
∣∣∣

EX|S=1η̂(X, 1) +

∣∣∣(ÊX|S=0 − EX|S=0)η̂(X, 0)
∣∣∣

EX|S=0η̂(X, 0) .

Let us elaborate on the above result. The second and the third terms are responsible for the
estimation of η and can be controlled in various parametric on nonparametric models. The third and
the fourth terms can be handled with the theory of empirical processes in the considered classifier g
is data dependent. The last two terms can be handled conditionally on the first labeled samples by
the use of the multiplicative Chernoff’s bound or (if we do not mind losing a constant factor of 2)
can be handled by the empirical process used to bound the third and the fourth terms.

The next lemma gives an upper bound on the empirical processes of Lemma C.1.

Lemma C.2. There exists a constant C > 0 that depends only on P(S = 0) and P(S = 1) such that
almost surely for all s ∈ {0, 1} we have

EDN sup
t∈[0,1]

∣∣∣(EX|S=s − ÊX|S=s)η̂(X, s)1{t≤η̂(X,s)}

∣∣∣ ≤ C√ 1
N

.

The next result is obvious, yet, is used several times in our proof, that is why we present it
separately.

18



Lemma C.3. For any functions h1, h0 : Rd → [0, 1], any θ ∈ R, any a1, a0, b1, b0 ∈ (0, 1) we have

EX|S=1

θh1(X)
a1

1{
b1(2h1(X)−1)− θh1(X)

a1
≥0
}

= EX|S=1

(2h1(X)− 1)1{
b1(2h1(X)−1)− θh1(X)

a1
≥0
} b1

− EX|S=1

(
b1(2h1(X)− 1)− θh1(X)

a1

)
+
,

EX|S=0

θh0(X)
a0

1{
b0(2h0(X)−1)+ θh0(X)

a0
≥0
}

= −EX|S=0

(2h0(X)− 1)1{
b0(2h0(X)−1)+ θh0(X)

a0
≥0
} b0

+ EX|S=0

(
b0(2h0(X)− 1) + θh0(X)

a0

)
+
,

moreover, the expectation EX|S=s can be replaced by ÊX|S=s for all s ∈ {0, 1}.

C.1 Proof of asymptotic fairness (Part I of Theorem 4.5)

Proof. The first step is to show that under Assumption 4.3 the term ∆̂(ĝ,P) cannot be too big.
Indeed, notice that for every θ ∈ [−2, 2], thanks to the triangle inequality we can write almost surely

∆̂(ĝθ,P) ≤
∣∣∣∣∣EX|S=1η̂(X, 1)ĝθ(X, 1)

EX|S=1η̂(X, 1) −
EX|S=0η̂(X, 0)ĝθ(X, 0)

EX|S=0η̂(X, 0)

∣∣∣∣∣
+
∣∣∣∣∣EX|S=1η̂(X, 1)ĝθ(X, 1)

EX|S=1η̂(X, 1) −
ÊX|S=1η̂(X, 1)ĝθ(X, 1)

ÊX|S=1η̂(X, 1)

∣∣∣∣∣ (8)

+
∣∣∣∣∣EX|S=0η̂(X, 0)ĝθ(X, 0)

EX|S=0η̂(X, 0) −
ÊX|S=0η̂(X, 0)ĝθ(X, 0)

ÊX|S=0η̂(X, 0)

∣∣∣∣∣ .
Our goal is to take care of each of the three terms appearing on the right hand side of the inequality.
The technique used for the second and the third term is identical, whereas the first term is a bit
more involved. Let us start with the second term on the right hand side of Eq. (8). For this term we
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can write almost surely∣∣∣∣∣EX|S=1η̂(X, 1)ĝθ(X, 1)
EX|S=1η̂(X, 1) −

ÊX|S=1η̂(X, 1)ĝθ(X, 1)
ÊX|S=1η̂(X, 1)

∣∣∣∣∣
≤
∣∣∣∣∣EX|S=1η̂(X, 1)ĝθ(X, 1)

EX|S=1η̂(X, 1) −
ÊX|S=1η̂(X, 1)ĝθ(X, 1)

EX|S=1η̂(X, 1)

∣∣∣∣∣
+
∣∣∣∣∣ ÊX|S=1η̂(X, 1)ĝθ(X, 1)

ÊX|S=1η̂(X, 1)
−

ÊX|S=1η̂(X, 1)ĝθ(X, 1)
EX|S=1η̂(X, 1)

∣∣∣∣∣
=

∣∣∣(EX|S=1 − ÊX|S=1)η̂(X, 1)ĝθ(X, 1)
∣∣∣

EX|S=1η̂(X, 1)

+
ÊX|S=1η̂(X, 1)ĝθ(X, 1)

ÊX|S=1η̂(X, 1)︸ ︷︷ ︸
≤1

∣∣∣(EX|S=1 − ÊX|S=1)η̂(X, 1)1{0≤η̂(X,1)}

∣∣∣
EX|S=1η̂(X, 1)

≤ 2
supt∈[0,1]

∣∣∣(EX|S=1 − ÊX|S=1)η̂(X, 1)1{t≤η̂(X,1)}

∣∣∣
EX|S=1η̂(X, 1) ,

where the last inequality follows from the fact that ĝθ is a thresholding rule. Similarly, we show that
the third term in Eq. (8) admits the following bound almost surely∣∣∣∣∣EX|S=0η̂(X, 0)ĝθ(X, 0)

EX|S=0η̂(X, 0) −
ÊX|S=0η̂(X, 0)ĝθ(X, 0)

ÊX|S=0η̂(X, 0)

∣∣∣∣∣
≤ 2

supt∈[0,1]

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)1{t≤η̂(X,0)}

∣∣∣
EX|S=0η̂(X, 0) .

Therefore, we arrive at the following bound on ∆̂(ĝθ,P) which holds almost surely

∆̂(ĝθ,P) ≤
∣∣∣∣∣EX|S=1η̂(X, 1)ĝθ(X, 1)

EX|S=1η̂(X, 1) −
EX|S=0η̂(X, 0)ĝθ(X, 0)

EX|S=0η̂(X, 0)

∣∣∣∣∣ (9)

+ 2
supt∈[0,1]

∣∣∣(EX|S=1 − ÊX|S=1)η̂(X, 1)1{t≤η̂(X,1)}

∣∣∣
EX|S=1η̂(X, 1)

+ 2
supt∈[0,1]

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)1{t≤η̂(X,0)}

∣∣∣
EX|S=0η̂(X, 0) .

This is one of the moments when we make use of Assumption 4.3. Thanks to the continuity we can
be sure that for every possible unlabeled sample DN , there exists θ′(DN ) such that

EX|S=1η̂(X, 1)ĝθ′(DN )(X, 1)
EX|S=1η̂(X, 1) =

EX|S=0η̂(X, 0)ĝθ′(DN )(X, 0)
EX|S=0η̂(X, 0) .

Indeed, for every possible unlabeled sample DN on the left hand side we have a continuous decreasing
of θ function and on the right hand side we have a continuous increasing function of θ. Therefore,
such a value θ′(DN ) exists.
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Taking infimum over θ ∈ [−2, 2] on both sides of Equation (9) we obtain

∆̂(ĝ,P) = ∆̂(ĝθ̂,P) ≤ 2
supt∈[0,1]

∣∣∣(EX|S=1 − ÊX|S=1)η̂(X, 1)1{t≤η̂(X,1)}

∣∣∣
EX|S=1η̂(X, 1) (10)

+ 2
supt∈[0,1]

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)1{t≤η̂(X,0)}

∣∣∣
EX|S=0η̂(X, 0) .

Using Lemma C.1 and applying it to ĝ we immediately obtain almost surely

∆(ĝ,P) ≤4
supt∈[0,1]

∣∣∣(EX|S=1 − ÊX|S=1)η̂(X, 1)1{t≤η̂(X,1)}

∣∣∣
EX|S=1η̂(X, 1)

+ 4
supt∈[0,1]

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)1{t≤η̂(X,0)}

∣∣∣
EX|S=0η̂(X, 0)

+ 2
EX|S=1 |η(X, 1)− η̂(X, 1)|

P (Y = 1 |S = 1) + 2
EX|S=0 |η(X, 0)− η̂(X, 0)|

P (Y = 1 |S = 0) .

Clearly, if η̂ is a consistent estimator of η then the last two terms on the right hand side are
converging to zero in expectation as n→∞. Therefore, it remain to provide an upper bound for
the two empirical processes. Recall, that our goal is to obtain consistency in expectation, thus we
take expectation w.r.t. Dn,DN from both sides of the inequality. Thanks to Lemma C.2 we have for
each s ∈ {0, 1}

EDN sup
t∈[0,1]

∣∣∣(EX|S=s − ÊX|S=s)η̂(X, s)1{t≤η̂(X,s)}

∣∣∣ ≤ C√ 1
N

.

The arguments above imply that there exists an absolute constant C > 0 such that

E(Dn,DN )[∆(ĝ,P)] ≤ 2
EDnEX|S=1 |η(X, 1)− η̂(X, 1)|

P (Y = 1 |S = 1) + 2
EDnEX|S=0 |η(X, 0)− η̂(X, 0)|

P (Y = 1 |S = 0)

+ C

√
1
N

EDn
1

min{EX|S=1η̂(X, 1),EX|S=0η̂(X, 0)} .

Using the second item of Assumption 4.1, which states that min{EX|S=1η̂(X, 1),EX|S=0η̂(X, 0)} ≥
cn,N almost surely we conclude.

C.2 Proof of asymptotic optimality (Part II of Theorem 4.5)

In order to show that the risk of the proposed algorithm converges to the risk of the optimal classifier,
we follow the strategy of [11], that is, we first introduce an intermediate pseudo-estimator g̃ as
follows

g̃(x, 1) = 1{
P(S=1)≤η̂(x,1)

(
2P(S=1)− θ̃

EX|S=1[η̂(X,1)]

)} , (11)

g̃(x, 0) = 1{
P(S=0)≤η̂(x,0)

(
2P(S=0)+ θ̃

EX|S=0[η̂(X,0)]

)} , (12)
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where θ̃ is a solution of
EX|S=1 [η̂(X, 1)g̃θ(X, 1)]

EX|S=1[η̂(X, 1)] =
EX|S=0 [η̂(X, 0)g̃θ(X, 0)]

EX|S=0[η̂(X, 0)] , (13)

with g̃θ being defined as for all x ∈ Rd as

g̃θ(x, 1) = 1{
1≤η̂(X,1)

(
2− θ

EX|S=1[η̂(X,1)]P(S=1)

)} ,

g̃θ(x, 0) = 1{
1≤η̂(X,0)

(
2+ θ

EX|S=0[η̂(X,0)]P(S=0)

)} .

Note that thanks to Assumption 4.3 such a value θ̃ always exists.
Intuitively, the classifier g̃ knows the marginal distribution of (X,S), that is, it knows both PX|s

and PS . It is seen as an idealized version of ĝ, where the uncertainty is only induced by the lack of
knowledge of the regression function η. We upper bound the excess risk in two steps. In the first
step we upper bound R(g̃)−R(g∗) and on the second we upper bound the difference R(ĝ)−R(g̃).

Theorem C.4 (Bound on the pseudo oracle). Let g̃ be the pseudo oracle classifier defined in Eq. 11
with η̂ satisfying Assumptions 4.1 and 4.3, then

lim
n→∞

EDn [R(g̃)]−R(g∗) ≤ 0 .

Proof of Theorem C.4. First of all, let us rewrite the equation for θ∗ in the following form

EX|S=1

 θ∗η(X, 1)
EX|S=1[η(X, 1)]1

{
P(S=1)(2η(X,1)−1)− θ∗η(X,1)

EX|S=1[η(X,1)]≥0
}

= EX|S=0

 θ∗η(X, 0)
EX|S=0[η(X, 0)]1

{
P(S=0)(2η(X,0)−1)+ θ∗η(X,0)

EX|S=0[η(X,0)]≥0
} .

Using Lemma C.3 with hs(·) ≡ η(·, s), as = EX|S=1[hs(·)], bs = P(S = s) for s ∈ {0, 1} we get

P(S = 1)EX|S=1[(2η(X, 1)− 1)g∗(X, 1)]

− EX|S=1

(
P(S = 1)(2η(X, 1)− 1)− θ∗η(X, 1)

EX|S=1[η(X, 1)]

)
+

= −P(S = 0)EX|S=0[(2η(X, 0)− 1)g∗(X, 0)]

+ EX|S=0

(
P(S = 0)(2η(X, 0)− 1) + θ∗η(X, 0)

EX|S=0[η(X, 0)]

)
+

.

Rearranging the terms we can arrive at

P(S = 1)EX|S=1[(2η(X, 1)− 1)g∗(X, 1)] + P(S = 0)EX|S=0[(2η(X, 0)− 1)g∗(X, 0)]

= EX|S=1

(
P(S = 1)(2η(X, 1)− 1)− θ∗η(X, 1)

EX|S=1[η(X, 1)]

)
+

+ EX|S=0

(
P(S = 0)(2η(X, 0)− 1) + θ∗η(X, 0)

EX|S=0[η(X, 0)]

)
+

.
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Notice that the left hand side of the above equality can be written as

E(X,S)[(2η(X,S)− 1)g∗(X,S)]

= EX|S=1

(
P(S = 1)(2η(X, 1)− 1)− θ∗η(X, 1)

EX|S=1[η(X, 1)]

)
+

(14)

+ EX|S=0

(
P(S = 0)(2η(X, 0)− 1) + θ∗η(X, 0)

EX|S=0[η(X, 0)]

)
+

.

Thus, combining the previous equality with the expression of the risk from Lemma B.3 we get

R(g∗) = E(X,S)[η(X,S)]− EX|S=1

(
P(S = 1)(2η(X, 1)− 1)− θ∗η(X, 1)

EX|S=1[η(X, 1)]

)
+

(15)

− EX|S=0

(
P(S = 0)(2η(X, 0)− 1) + θ∗η(X, 0)

EX|S=0[η(X, 0)]

)
+

.

Step-wise similar argument yields that for the pseudo-oracle g̃ we can write

E(X,S)[(2η̂(X,S)− 1)g̃(X,S)]

= EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̃η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

(16)

+ EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θ̃η̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+

.

Moreover, its risk satisfies

R(g̃) = E(X,S)[η(X,S)]− E(X,S)[(2η(X,S)− 1)g̃(X,S)] (17)
≤ E(X,S)[η(X,S)]− E(X,S)[(2η̂(X,S)− 1)g̃(X,S)] + 2E(X,S) |η̂(X,S)− η(X,S)| .

Therefore, combining Eq. (15) with Eq. (17), we can write for the excess risk

R(g̃)−R(g∗) ≤2E(X,S) |η̂(X,S)− η(X,S)|

+ EX|S=1

(
P(S = 1)(2η(X, 1)− 1)− θ∗η(X, 1)

EX|S=1[η(X, 1)]

)
+

− EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̃η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

+ EX|S=0

(
P(S = 0)(2η(X, 0)− 1) + θ∗η(X, 0)

EX|S=0[η(X, 0)]

)
+

− EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θ̃η̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+

.

Recall that θ∗ is a minimizer of

EX|S=1

(
P(S = 1)(2η(X, 1)− 1)− θη(X, 1)

EX|S=1[η(X, 1)]

)
+

+ EX|S=0

(
P(S = 0)(2η(X, 0)− 1) + θη(X, 0)

EX|S=0[η(X, 0)]

)
+

,

23



thus we can replace θ∗ by θ̃ and obtain the following upper bound

R(g̃)−R(g∗) ≤2E(X,S) |η̂(X,S)− η(X,S)|

+ EX|S=1

(
P(S = 1)(2η(X, 1)− 1)− θ̃η(X, 1)

EX|S=1[η(X, 1)]

)
+

− EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̃η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

+ EX|S=0

(
P(S = 0)(2η(X, 0)− 1) + θ̃η(X, 0)

EX|S=0[η(X, 0)]

)
+

− EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θ̃η̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+

.

Since, for all x, y ∈ R we have (x)+ − (y)+ ≤ (x− y)+ ≤ |x− y| we get

R(g̃)−R(g∗) ≤4E(X,S) |η̂(X,S)− η(X,S)|

+ EX|S=1|θ̃|
∣∣∣∣∣ η̂(X, 1)
EX|S=1[η̂(X, 1)] −

η(X, 1)
EX|S=1[η(X, 1)]

∣∣∣∣∣
+ EX|S=0|θ̃|

∣∣∣∣∣ η̂(X, 0)
EX|S=0[η̂(X, 0)] −

η(X, 0)
EX|S=0[η(X, 0)]

∣∣∣∣∣ .
For the same reason why |θ∗| ≤ 2 we have |θ̃| ≤ 2, thus for all s ∈ {0, 1} we have

EX|S=s|θ̃|
∣∣∣∣∣ η̂(X, s)
EX|S=s[η̂(X, s)] −

η(X, s)
EX|S=s[η(X, s)]

∣∣∣∣∣
≤ 2EX|S=s

∣∣∣∣∣ η̂(X, s)
EX|S=s[η̂(X, s)] −

η(X, s)
EX|S=s[η(X, s)]

∣∣∣∣∣
≤ 2EX|S=s

∣∣∣∣∣ η̂(X, s)
EX|S=s[η(X, s)] −

η(X, s)
EX|S=s[η(X, s)]

∣∣∣∣∣
+ 2EX|S=s

∣∣∣∣∣ η̂(X, s)
EX|S=s[η̂(X, s)] −

η̂(X, s)
EX|S=s[η(X, s)]

∣∣∣∣∣
≤ 4

EX|S=s |η(X, s)− η̂(X, s)|
EX|S=s[η(X, s)] .

Thanks to Assumption 4.1, these terms converge to zero in expectation.

Theorem C.5. Let ĝ be the proposed classifier with η̂ satisfying Assumptions 4.1 and 4.3, then

lim
n→∞

E(Dn,DN )[R(ĝ)−R(g̃)] ≤ 0 .

Proof. Our goal is to upper bound the quantity E(Dn,DN )R(ĝ)−R(g̃). We start by providing a
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bound on R(ĝ)−R(g̃) which holds almost surely. Recall the equality of Equation (16)

E(X,S)[(2η̂(X,S)− 1)g̃(X,S)]

= EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̃η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

+ EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θ̃η̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+

.

Using this and the expression of the risk given in Lemma B.3 we can obtain the following lower
bound on the risk of g̃

R(g̃) = E(X,S)[η(X,S)]− E(X,S)[(2η(X,S)− 1)g̃(X,S)]
≥ E(X,S)[η(X,S)]− E(X,S)[(2η̂(X,S)− 1)g̃(X,S)]− 2E(X,S) |η̂(X,S)− η(X,S)|
= E(X,S)[η(X,S)]− 2E(X,S) |η̂(X,S)− η(X,S)| (18)

− EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̃η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

− EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θ̃η̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+

.

We have thanks to Lemma C.3 used with hs(·) = η̂(·, s), as = ÊX|S=s[hs(X)], bs = P̂(S = s) for all
s ∈ {0, 1}

ÊX|S=1θ̂η̂(X, 1)ĝ(X, 1)
ÊX|S=1η̂(X, 1)

= ÊX|S=1[(2η̂(X, 1)− 1)ĝ(X, 1)]P̂(S = 1) (19)

− ÊX|S=1

(
P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)

ÊX|S=1[η̂(X, 1)]

)
+

,

and

ÊX|S=0θ̂η̂(X, 0)ĝ(X, 0)
ÊX|S=0η̂(X, 0)

= −ÊX|S=0[(2η̂(X, 0)− 1)ĝ(X, 0)]P̂(S = 0) (20)

+ ÊX|S=0

(
P̂(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)

ÊX|S=0[η̂(X, 0)]

)
+

.

Recall, that thanks to Definition 3.2 of the empirical unfairness we have

|θ̂|∆̂(ĝ,P) =
∣∣∣∣∣ ÊX|S=0θ̂η̂(X, 0)ĝ(X, 0)

ÊX|S=0η̂(X, 0)
−

ÊX|S=1θ̂η̂(X, 1)ĝ(X, 1)
ÊX|S=1η̂(X, 1)

∣∣∣∣∣ .
Since, |θ̂| ≤ 2, subtracting Eq. (20) from Eq. (19) and taking absolute value combined with the
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triangle inequality we get

Ê(X,S)(2η̂(X,S)− 1)ĝ(X,S)
= ÊX|S=0[(2η̂(X, 0)− 1)ĝ(X, 0)]P̂(S = 0) + ÊX|S=1[(2η̂(x, 1)− 1)ĝ(X, 1)]P̂(S = 1) (21)

≥ −2∆̂(ĝ,P) + ÊX|S=0

(
P̂(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)

ÊX|S=0[η̂(X, 0)]

)
+

+ ÊX|S=1

(
P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)

ÊX|S=1[η̂(X, 1)]

)
+

.

Note that using the bound above we can get the following upper bound on the risk of the proposed
classifier

R(ĝ) = E(X,S)[η(X,S)]− E(X,S)[(2η(X,S)− 1)ĝ(X,S)]
≤ E(X,S)[η(X,S)]− E(X,S)[(2η̂(X,S)− 1)ĝ(X,S)]

+ 2E(X,S) |η(X,S)− η̂(X,S)| (replaced η by η̂)
≤ E(X,S)[η(X,S)]− Ê(X,S)[(2η̂(X,S)− 1)ĝ(X,S)] + 2E(X,S) |η(X,S)− η̂(X,S)|

+
∣∣∣(E(X,S) − Ê(X,S))[(2η̂(X,S)− 1)ĝ(X,S)]

∣∣∣ (replaced E(X,S) by Ê(X,S))

≤ E(X,S)[η(X,S)]− Ê(X,S)[(2η̂(X,S)− 1)ĝ(X,S)] + 2E(X,S) |η(X,S)− η̂(X,S)|

+ sup
t∈[0,1]

∣∣∣(E(X,S) − Ê(X,S))[(2η̂(X,S)− 1)1{t≤η̂(X,S)}]
∣∣∣ (since ĝ is thresholding)

≤ E(X,S)[η(X,S)] + 2E(X,S) |η(X,S)− η̂(X,S)|

+ 2∆̂(ĝ,P) + sup
t∈[0,1]

∣∣∣(E(X,S) − Ê(X,S))[(2η̂(X,S)− 1)1{t≤η̂(X,S)}]
∣∣∣

− ÊX|S=0

(
P̂(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)

ÊX|S=0[η̂(X, 0)]

)
+

− ÊX|S=1

(
P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)

ÊX|S=1[η̂(X, 1)]

)
+

(after Eq. (21)) .

Thus, combining this upper bound on R(ĝ) with the lower bound on R(g̃) given in Eq. (18) we
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arrive at

R(ĝ)−R(g̃) ≤ 4E(X,S) |η(X,S)− η̂(X,S)|+ 2∆̂(ĝ,P)

+ sup
t∈[0,1]

∣∣∣(E(X,S) − Ê(X,S))[(2η̂(X,S)− 1)1{t≤η̂(X,S)}]
∣∣∣

+ EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̃η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

− ÊX|S=1

(
P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)

ÊX|S=1[η̂(X, 1)]

)
+

+ EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θ̃η̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+

− ÊX|S=0

(
P̂(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)

ÊX|S=0[η̂(X, 0)]

)
+

.

Thanks to Lemma C.2 the term supt∈[0,1]

∣∣∣(E(X,S) − Ê(X,S))[(2η̂(X,S)− 1)1{t≤η̂(X,S)}]
∣∣∣ converges

to zero in expectation6. Equation (10) with Lemma C.2 gives the convergence to zero of ∆̂(ĝ,P)
in expectation. Assumption 4.1 tells us that the term E(X,S) |η(X,S)− η̂(X,S)| goes to zero in
expectation. Thus it only remains to bound the term

(∗) =EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̃η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

− ÊX|S=1

(
P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)

ÊX|S=1[η̂(X, 1)]

)
+

+ EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θ̃η̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+

− ÊX|S=0

(
P̂(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)

ÊX|S=0[η̂(X, 0)]

)
+

.

Notice that (similarly to the case of θ∗) the condition in Eq. (13) on θ̃ is the first order optimality
condition for the minimum of the following function

EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θη̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

+ EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θη̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+

,

thus, the objective evaluated at minimum, that is, at θ̃ is less or equal than the one evaluated at θ̂.
Which implies that in order to upper bound (∗) it is sufficient to provide an upper bound on

6Actually Lemma C.2 is stated with η̂(X,S), whereas here it is (2η̂(X,S)− 1). A straightforward modification of
the argument used in Lemma C.2 yields the desired result.
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(∗∗) =EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

− ÊX|S=1

(
P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)

ÊX|S=1[η̂(X, 1)]

)
+

+ EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+

− ÊX|S=0

(
P̂(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)

ÊX|S=0[η̂(X, 0)]

)
+

,

where we replaced θ̃ by θ̂ thanks to the optimality of θ̃. Let us define

(4) =EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

− ÊX|S=1

(
P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)

ÊX|S=1[η̂(X, 1)]

)
+

,

(44) =EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+

− ÊX|S=0

(
P̂(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)

ÊX|S=0[η̂(X, 0)]

)
+

.

Both bounds are following similar arguments, we demonstrate it for (4), clearly we have

(4) ≤ÊX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

− ÊX|S=1

(
P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)

ÊX|S=1[η̂(X, 1)]

)
+

+
∣∣∣∣∣(EX|S=1 − ÊX|S=1)

(
P(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

∣∣∣∣∣ .
For the first difference on the right hand side of this inequality we can write using the fact that
(x)+ − (y)+ ≤ |x− y| for all x, y ∈ R and |2η̂(X, 1)− 1| ≤ 1 almost surely

ÊX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

− ÊX|S=1

(
P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)

ÊX|S=1[η̂(X, 1)]

)
+

≤
∣∣∣P(S = 1)− P̂(S = 1)

∣∣∣+ |θ̂| ∣∣∣∣∣ ÊX|S=1[η̂(X, 1)]
EX|S=1[η̂(X, 1)] − 1

∣∣∣∣∣
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Clearly
∣∣∣P(S = 1)− P̂(S = 1)

∣∣∣ goes to zero in expectation thanks to the law of large numbers or its

finite sample variants. Besides, the term
∣∣∣∣ ÊX|S=0[η̂(X,0)]
EX|S=0[η(X,0)] − 1

∣∣∣∣ can be seen in the following manner: let
Z ∈ [0, 1] be a random variable with law PZ and Z1, . . . , ZM be its i.i.d. realization, then sequentially
our question is about ∣∣∣∣∣1− Z̄

E[Z]

∣∣∣∣∣ ,
with Z̄ = 1

M

∑M
i=1 Zi. This term converges to zero in expectation thanks to the multiplicative

Chernoff inequality, which is an exponential concentration inequality that allows to obtain even a
rate. Actually, even without the multiplicative Chernoff bound this term goes to zero thanks to the
law of large numbers. Therefore, for convergence it remains to study the term

(?) =
∣∣∣∣∣(EX|S=1 − ÊX|S=1)

(
P(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

∣∣∣∣∣ .
Notice that thanks to the second part of Assumption 4.1 and the fact that θ̂ ∈ [−2, 2] we have∣∣∣∣∣ θ̂η̂(X, 1)

EX|S=1[η̂(X, 1)]

∣∣∣∣∣ ≤ 2
cn,N

.

Therefore, we can upper bound (?) as

(?) ≤ sup
t∈[−2/cn,N ,2/cn,N ]

∣∣∣(EX|S=1 − ÊX|S=1) (P(S = 1)(2η̂(X, 1)− 1) + t)+

∣∣∣ ,
where the random quantity has been “supped-out”. Introduce,

DN1 = {Xi ∈ DN : Si = 1}
DN0 = {Xi ∈ DN : Si = 0} ,

of size N1 and N0 respectively, such that N1 +N0 = N . Clearly we have DNs
i.i.d.∼ PX|S=s for each

s ∈ {0, 1}. Also recall that Remark B.1 implies that neither N0 nor N1 are equal to zero, however,
both are still random. Besides, denote by DSN = {Si : (Xi, Si) ∈ DN} the dataset which is obtained
from DN by removing features. Thus,

E(DN )(?) ≤ EDSNEDN1
sup

t∈[−2/cn,N ,2/cn,N ]

∣∣∣(EX|S=1 − ÊX|S=1) ((2η̂(X, 1)− 1)P(S = 1) + t)+

∣∣∣ .
Conditionally on DSN we can view N0 and N1 as fixed strictly positive integers, moreover, conditionally
on Dn the estimator η̂ is not random as it is built only on Dn. Thus, we would like to control the
following process

EDN1
sup

t∈[−2/cn,N ,2/cn,N ]

∣∣∣(EX|S=1 − ÊX|S=1) ((2η̂(X, 1)− 1)P(S = 1) + t)+

∣∣∣ ,
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conditionally on DSN ,Dn. First of all we rewrite this process as

1
cn,N

EDN1
sup
|t|≤1

∣∣∣(EX|S=1 − ÊX|S=1) ((2η̂(X, 1)− 1)P(S = 1)cn,N + 2t)+

∣∣∣ .
Thanks to the symmetrization argument we can write

EDN1
sup
|t|≤1

∣∣∣(EX|S=1 − ÊX|S=1) ((2η̂(X, 1)− 1)P(S = 1)cn,N + 2t)+

∣∣∣
≤ 2EDN1

sup
|t|≤1

∣∣∣∣∣∣ 1
N1

N1∑
i=1

εift(Xi)

∣∣∣∣∣∣ ,
where ft(·) = ((2η̂(·, 1)− 1)P(S = 1)cn,N + 2t)+. Notice that for each t, t′ we have for all x ∈ Rd

|ft(x)− ft′(x)| ≤ 2
∣∣t− t′∣∣ ,

that is, the parametrization is 2-Lipschitz. Therefore, standard results in empirical processes
(combine [44, Lemma 6.2] with [29, Theorem 3.2.]) tells us that there exists C > 0 such that

EDN1
sup
|t|≤1

∣∣∣∣∣∣ 1
N1

N1∑
i=1

εift(Xi)

∣∣∣∣∣∣ ≤ C
√

1
N1

.

Thus, taking expectation w.r.t. DsN we get

E(DN )(?) ≤
C

cn,N
EDsN

√
1
N1

,

applying Lemma B.2 we get for some C > 0 that depends on P(S = 1) that

E(DN )(?) ≤
C

cn,N

√
1
N

.

Thanks to Assumption 4.1 we have
1

cn,N
√
N

= o (1) ,

thus, the term E(DN )(?) converges to zero. Repeating the same argument for (44) we conclude.

D Proofs of auxiliary results
Proof of Lemma C.1. We start from the level of unfairness of g, that is, we would like to find an
upper bound on

|P (g(X,S) = 1 |S = 1, Y = 1)− P (g(X,S) = 1 |S = 0, Y = 1)| ,

rewriting the expression above, our goal can be written as∣∣∣∣∣EX|S=1η(X, 1)g(X, 1)
EX|S=1η(X, 1) −

EX|S=0η(X, 0)g(X, 0)
EX|S=0η(X, 0)

∣∣∣∣∣ .
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Now, we start working with the expression above∣∣∣∣∣EX|S=1η(X, 1)g(X, 1)
EX|S=1η(X, 1) −

EX|S=0η(X, 0)g(X, 0)
EX|S=0η(X, 0)

∣∣∣∣∣
≤
∣∣∣∣∣EX|S=1η(X, 1)g(X, 1)

EX|S=1η(X, 1) −
EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1)

∣∣∣∣∣
+
∣∣∣∣∣EX|S=0η̂(X, 0)g(X, 0)

EX|S=0η̂(X, 0) −
EX|S=0η(X, 0)g(X, 0)

EX|S=0η(X, 0)

∣∣∣∣∣
+
∣∣∣∣∣EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1) −
EX|S=0η̂(X, 0)g(X, 0)

EX|S=0η̂(X, 0)

∣∣∣∣∣ .
The first two terms on the right hand side of the inequality can be upper-bounded in a similar
way. That is why we only show the bound for the first term, that is, for S = 1. We have for
(∗) =

∣∣∣EX|S=1η(X,1)g(X,1)
EX|S=1η(X,1) − EX|S=1η̂(X,1)g(X,1)

EX|S=1η̂(X,1)

∣∣∣
(∗) ≤

EX|S=1 |η(X, 1)− η̂(X, 1)|
P (Y = 1 |S = 1) +

∣∣∣∣∣EX|S=1η̂(X, 1)g(X, 1)
EX|S=1η(X, 1) −

EX|S=1η̂(X, 1)g(X, 1)
EX|S=1η̂(X, 1)

∣∣∣∣∣
≤

EX|S=1 |η(X, 1)− η̂(X, 1)|
P (Y = 1 |S = 1)

+EX|S=1η̂(X, 1)g(X, 1)
∣∣∣∣∣ EX|S=1η̂(X, 1)
EX|S=1η(X, 1)EX|S=1η̂(X, 1)−

EX|S=1η(X, 1)
EX|S=1η̂(X, 1)EX|S=1η(X, 1)

∣∣∣∣∣
≤

EX|S=1 |η(X, 1)− η̂(X, 1)|
P (Y = 1 |S = 1) + EX|S=1η̂(X, 1)g(X, 1)

EX|S=1 |η̂(X, 1)− η̂(X, 1)|
EX|S=1η(X, 1)EX|S=1η̂(X, 1)

≤ 2
EX|S=1 |η(X, 1)− η̂(X, 1)|

P (Y = 1 |S = 1) ,

thus, we have

|P (g(X,S) = 1 |S = 1, Y = 1)− P (g(X,S) = 1 |S = 0, Y = 1)|

≤ 2
EX|S=1 |η(X, 1)− η̂(X, 1)|

P (Y = 1 |S = 1)

+ 2
EX|S=0 |η(X, 0)− η̂(X, 0)|

P (Y = 1 |S = 0)

+
∣∣∣∣∣EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1) −
EX|S=0η̂(X, 0)g(X, 0)

EX|S=0η̂(X, 0)

∣∣∣∣∣ .
Finally, it remains to upper bound

(∗∗) =
∣∣∣∣∣EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1) −
EX|S=0η̂(X, 0)g(X, 0)

EX|S=0η̂(X, 0)

∣∣∣∣∣ .
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Recall that ÊX|S=1 and ÊX|S=0 stands for the expectations taken w.r.t. empirical measure induced
by DN , and that DN is independent from Dn. Therefore, we can write

(∗∗) ≤
∣∣∣∣∣EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1) −
ÊX|S=1η̂(X, 1)g(X, 1)

ÊX|S=1η̂(X, 1)

∣∣∣∣∣
+
∣∣∣∣∣EX|S=0η̂(X, 0)g(X, 0)

EX|S=0η̂(X, 0) −
ÊX|S=0η̂(X, 0)g(X, 0)

ÊX|S=0η̂(X, 0)

∣∣∣∣∣
+
∣∣∣∣∣ ÊX|S=1η̂(X, 1)g(X, 1)

ÊX|S=1η̂(X, 1)
−

ÊX|S=0η̂(X, 0)g(X, 0)
ÊX|S=0η̂(X, 0)

∣∣∣∣∣ .
Clearly, the last term on the right hand side of the previous inequality corresponds to our empirical
criteria since everything can be easily evaluated using data. The first two terms on the right hand
side of the inequality can be upper-bounded in a similar fashion, again, we only demonstrate the
bound for S = 1. We can write∣∣∣∣∣EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1) −
ÊX|S=1η̂(X, 1)g(X, 1)

ÊX|S=1η̂(X, 1)

∣∣∣∣∣
≤
∣∣∣∣∣EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1) −
ÊX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1)

∣∣∣∣∣
+
∣∣∣∣∣ ÊX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1) −
ÊX|S=1η̂(X, 1)g(X, 1)

ÊX|S=1η̂(X, 1)

∣∣∣∣∣ .
Notice that for the first term on the right hand side of the inequality we have∣∣∣∣∣EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1) −
ÊX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1)

∣∣∣∣∣ ≤
∣∣∣EX|S=1η̂(X, 1)g(X, 1)− ÊX|S=1η̂(X, 1)g(X, 1)

∣∣∣
EX|S=1η̂(X, 1) ,

whereas for the second term we can write∣∣∣∣∣ ÊX|S=1η̂(X, 1)g(X, 1)
EX|S=1η̂(X, 1) −

ÊX|S=1η̂(X, 1)g(X, 1)
ÊX|S=1η̂(X, 1)

∣∣∣∣∣ ≤
∣∣∣ÊX|S=1η̂(X, 1)− EX|S=1η̂(X, 1)

∣∣∣
EX|S=1η̂(X, 1) .

Proof of Lemma C.2. Let us first introduce two slices of DN as

DN1 = {Xi ∈ DN : Si = 1} , DN0 = {Xi ∈ DN : Si = 0}

of size N1 and N0 respectively, such that N1 + N0 = N . Clearly we have DNs
i.i.d.∼ PX|S=s for

each s ∈ {0, 1}. Besides, denote by DSN = {Si : (Xi, Si) ∈ DN} the which is obtained from DN by
removing features. Recalling Remark B.1, we have

N1 − 2 ∼ Bin(N,P(S = 1)), N0 − 2 ∼ Bin(N,P(S = 0)) .
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Clearly, since the proposed algorithm is a thresholding of η̂ we have

E(Dn,DN )

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)ĝ(X, 0)
∣∣∣

≤ E(Dn,DN ) sup
t∈[0,1]

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)1{t≤η̂(X,0)}

∣∣∣ .
Further we work conditionally on Dn. Using the classical symmetrization technique [29, Theorem
2.1.] we get

EDN sup
t∈[0,1]

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)1{t≤η̂(X,0)}

∣∣∣
= EDSNEDN0

sup
t∈[0,1]

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)1{t≤η̂(X,0)}

∣∣∣
≤ 2EDSNEDN0

Eε sup
t∈[0,1]

∣∣∣∣∣∣ 1
N0

∑
Xi∈DN0

εiη̂(Xi, 0)1{t≤η̂(Xi,0)}

∣∣∣∣∣∣ ,
where εi

i.i.d.∼ Rademacher variables. Note that the function class x 7→ 1{t≤η̂(x,0)} has VC-dimension [43]
equal to one. At this moment we will work with

Eε sup
t∈[0,1]

∣∣∣∣∣∣ 1
N0

∑
Xi∈DN0

εiη̂(Xi, 0)1{t≤η̂(Xi,0)}

∣∣∣∣∣∣ ,
conditionally on all the data. First of all let us introduce F =

{
f : ∃t ∈ [0, 1], f(x) = 1{t≤η̂(x,0)}

}
Thus, our process can be written as

Eε sup
f∈F

∣∣∣∣∣∣ 1
N0

∑
Xi∈DN0

εiϕi(f(Xi))

∣∣∣∣∣∣ ,
where ϕi(·) = η(Xi, 0)× ·. Clearly, we have ϕi(0) = 0 and for every u, v

|ϕi(u)− ϕi(v)| ≤ |u− v| .

That is, ϕi are contractions, and the contraction lemma [29, Theorem 2.2.] gives

Eε sup
f∈F

∣∣∣∣∣∣ 1
N0

∑
Xi∈DN0

εiϕi(f(Xi))

∣∣∣∣∣∣ ≤ Eε sup
f∈F

∣∣∣∣∣∣ 1
N0

∑
Xi∈DN0

εif(Xi)

∣∣∣∣∣∣ .
Recall, that the class F is a VC-class with VC-dimension equal to one. Therefore, it is a known
fact [18, 34] that there exists C > 0 such that

Eε sup
f∈F

∣∣∣∣∣∣ 1
N0

∑
Xi∈DN0

εif(Xi)

∣∣∣∣∣∣ ≤ C
√

1
N0

,

almost surely. The above implies that

EDN sup
t∈[0,1]

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)1{t≤η̂(X,0)}

∣∣∣ ≤ CEDSN
√

1
N0

.
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It remains to provide an upper bound on EDSN
√

1
N0

, to this end we recall that this expectation can
be written as

E

√
1

2 + Z
,

where Z is the binomial random variable with parameters N and P(S = 0). Thus, thanks to
Lemma B.2 there exists a constant C > 0 that depends on P(S = 0) such that

E

√
1

2 + Z
≤ C

√
1
N

.

Similarly we get the bound for the case S = 1.

E Optimal classifier independent of sensitive feature
In this section we provide guidelines to construct a plug-in algorithm which can use the sensitive
feature only at training time but cannot use it for future decision making. It is clear that the first
step would be to derive fair optimal classifier g∗ : Rd → {0, 1} which is defined as

g∗ ∈ arg min {R(g) : P (g(X) = 1 |S = 1, Y = 1) = P (g(X) = 1 |S = 0, Y = 1)} ,

with R(g) := P(Y 6= g(X)). Next result establishes this expression.

Proposition E.1 (Optimal rule). Under Assumption 2.2 an optimal classifier g∗ can be obtained
for all x ∈ Rd as

g∗(x) = 1{
1≤2η(x)+θ∗

(
η(x,0)

EX [η(X,0)]−
η(x,1)

EX [η(X,1)]

)} ,

where θ∗ is such that the equality

EX [η(X, 1)g∗(X)]
EX [η(X, 1)] =EX [η(X, 0)g∗(X)]

EX [η(X, 0)] ,

is satisfied and η(·) := P (Y = 1 |X = ·).

Observe that to efficiently compute the optimal classifier in this case we need to have access to
η(x), η(x, s) and marginal distribution PX .

This observation motivates us to propose a plug-in algorithm based on two datasets Dn =
{(Xi, Si, Yi)}ni=1 and DN = {Xi}Ni=1. The labeled data Dn allow to estimate η(x), η(x, s) and the
unlabeled data DN allow to estimate the marginal distribution PX . Interestingly, we do not need to
observe sensitive features in the unlabeled dataset DN .

Formally, our procedure ĝ in this case can be defined for all x ∈ Rd as

ĝ(x) = 1{
1≤2η̂(x)+θ̂

(
η̂(x,0)

ÊX [η̂(X,0)]
− η̂(x,1)

ÊX [η(X,1)]

)} ,

where η̂(x), η̂(x, s) for all s ∈ {0, 1} are the estimates of regression functions constructed on Dn, and
ÊX is the empirical expectation based on DN .
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Finally, similarly to the previous case the threshold θ̂ is defined as

θ̂ ∈ arg min
θ

∣∣∣∣∣ ÊX [η̂(X, 1)ĝθ(X)]
ÊX [η̂(X, 1)]

− ÊX [η̂(X, 0)ĝθ(X)]
ÊX [η̂(X, 0)]

∣∣∣∣∣ ,
with ĝθ defined for all x ∈ Rd as

ĝθ(x) = 1{
1≤2η̂(x)+θ

(
η̂(x,0)

ÊX [η̂(X,0)]
− η̂(x,1)

ÊX [η(X,1)]

)} .

E.1 Proofs

Proof of Proposition E.1. Let us study the following minimization problem

(∗) := min
g∈G
{R(g) : P (g(X) = 1 |Y = 1, S = 1) = P (g(X) = 1 |Y = 1, S = 0)} .

Using the weak duality we can write

(∗) = min
g∈G

max
λ∈R
{R(g) + λ (P (g(X) = 1 |Y = 1, S = 1)− P (g(X) = 1 |Y = 1, S = 0))}

≥ max
λ∈R

min
g∈G
{R(g) + λ (P (g(X) = 1 |Y = 1, S = 1)− P (g(X) = 1 |Y = 1, S = 0))}

=: (∗∗) .

We first study the objective function of the max min problem (∗∗), which is equal to

P(g(X) 6= Y ) + λ (P (g(X) = 1 |Y = 1, S = 1)− P (g(X) = 1 |Y = 1, S = 0)) .

Using arguments of Lemma B.3 we can write

P(g(X) 6= Y ) = P(Y = 1)− EX [(2η(X)− 1)g(X)] ,

where η(·) := P(Y = 1|X = ·). Moreover, since

E[Y S] = ES [SE[Y |S]] = ES [SEX [E[Y |X,S]]] = ES [SEX [η(X,S)]] = P(S = 1)EX [η(X, 1)] ,

we can write for the rest

P (g(X) = 1 |Y = 1, S = 1) = P (g(X) = 1, Y = 1, S = 1)
P (Y = 1, S = 1) = E[g(X)Y S]

E[Y S]

= P(S = 1)EX [g(X)η(X, 1)]
P(S = 1)EX [η(X, 1)] = EX [g(X)η(X, 1)]

EX [η(X, 1)]

P (g(X) = 1 |Y = 1, S = 0) = P (g(X) = 1, Y = 1, S = 0)
P (Y = 1, S = 0) = E[g(X)Y (1− S)]

E[Y (1− S)]

= EX [g(X)η(X, 0)]
EX [η(X, 0)] .

Using these, the objective of (∗∗) can be simplified as

P(Y = 1)− EX
[
g(X)

(
2η(X)− 1 + λ

(
η(X, 0)

EX [η(X, 0)] −
η(X, 1)

EX [η(X, 1)]

))]
.
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Clearly, for every λ ∈ R a minimizer g∗λ of the problem (∗∗) can be written for all x ∈ Rd as

g∗λ(x) = 1{
2η(x)−1+λ

(
η(x,0)

EX [η(X,0)]−
η(x,1)

EX [η(X,1)]

)
≥0
} .

Similarly to Proposition 2.3, for λ = 0 we recover the classical optimal predictor in the context of
binary classification. Substituting this classifier into the objective of (∗∗) we arrive at

(∗∗) = P(Y = 1)−min
λ∈R

{
EX

(
2η(X)− 1 + λ

(
η(X, 0)

EX [η(X, 0)] −
η(X, 1)

EX [η(X, 1)]

))
+

}
.

The mapping

λ 7→ EX
(

2η(X)− 1 + λ

(
η(X, 0)

EX [η(X, 0)] −
η(X, 1)

EX [η(X, 1)]

))
+

,

is convex, therefore we can write the first order optimality conditions as

0 ∈∂λEX
(

2η(X)− 1 + λ

(
η(X, 0)

EX [η(X, 0)] −
η(X, 1)

EX [η(X, 1)]

))
+

.

Clearly, under continuity assumption this subgradient is reduced to the gradient almost surely, thus
we have the following condition on the optimal value of λ∗

EX [η(X, 1)g∗λ∗(X)]
EX [η(X, 1)] =EX [η(X, 0)g∗λ∗(X)]

EX [η(X, 0)] ,

and the pair (λ∗, g∗λ∗) is a solution of the dual problem (∗∗). Notice that the previous condition can
be written as

P (g∗λ∗(X) = 1 |Y = 1, S = 1) = P (g∗λ∗(X) = 1 |Y = 1, S = 0) .

This implies that the classifier g∗λ∗ is fair. Finally, it remains to show that g∗λ∗ is actually an optimal
classifier, indeed, since g∗λ∗ is fair we can write on the one hand

R(g∗λ∗)≥min
g∈G
{R(g) : P (g(X) = 1 |Y = 1, S = 1) =P (g(X) = 1 |Y = 1, S = 0)}=(∗).

On the other hand the pair (λ∗, g∗λ∗) is a solution of the dual problem (∗∗), thus we have

(∗) ≥R(g∗λ∗) + λ∗ (P (g∗λ∗(X) = 1 |Y = 1, S = 1)− P (g∗λ∗(X) = 1 |Y = 1, S = 0))
= R(g∗λ∗) .

It implies that the classifier g∗λ∗ is optimal, hence g∗ ≡ g∗λ∗ .

E.2 Experiments without the sensitive feature

In this section we report the equivalent results to those in Table 1 and Figure 1 into Table 3 and
Figure 2 when the sensitive feature is not in the functional form of the model. Note that the method
of Hardt [22] is not able to deal with this setting then there are no results for this case.

From Table 3 and Figure 2 we can observe analogous results to those in Section 5. Nevertheless,
note that, without the sensitive feature in the functional form of the models, the results are generally
less accurate and more fair w.r.t. to the case that the sensitive feature in the functional form of the
models. This results is similar to the one reported in [17].
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Arrhythmia COMPAS Adult German Drug
Method ACC DEO ACC DEO ACC DEO ACC DEO ACC DEO
Lin.SVM 0.71±0.05 0.10±0.03 0.72±0.01 0.12±0.02 0.78 0.09 0.69±0.04 0.11±0.10 0.79±0.02 0.25±0.04
Lin.LR 0.71±0.04 0.11±0.04 0.73±0.02 0.10±0.03 0.80 0.08 0.68±0.05 0.12±0.09 0.80±0.03 0.23±0.03
Lin.SVM+Hardt - - - - - - - - - -
Lin.LR+Hardt - - - - - - - - - -
Zafar 0.67±0.03 0.05±0.02 0.69±0.01 0.10±0.08 0.76 0.05 0.62±0.09 0.13±0.10 0.66±0.03 0.06±0.06
Lin.Donini 0.75±0.05 0.05±0.02 0.73±0.01 0.07±0.02 0.75 0.01 0.69±0.04 0.06±0.03 0.79±0.02 0.10±0.06
Lin.SVM+Ours 0.72±0.05 0.03±0.01 0.72±0.01 0.06±0.02 0.74 0.02 0.68±0.04 0.06±0.04 0.78±0.02 0.12±0.02
Lin.LR+Ours 0.71±0.04 0.04±0.02 0.71±0.02 0.06±0.02 0.76 0.02 0.67±0.05 0.05±0.03 0.79±0.03 0.10±0.01
SVM 0.71±0.05 0.10±0.03 0.73±0.01 0.11±0.02 0.79 0.08 0.74±0.03 0.10±0.06 0.81±0.02 0.22±0.03
LR 0.70±0.06 0.10±0.03 0.74±0.01 0.10±0.02 0.78 0.10 0.75±0.03 0.09±0.05 0.81±0.03 0.21±0.02
RF 0.81±0.02 0.08±0.02 0.76±0.03 0.10±0.02 0.84 0.11 0.77±0.03 0.07±0.04 0.85±0.02 0.19±0.02
SVM+Hardt - - - - - - - - - -
LR+Hardt - - - - - - - - - -
RF+Hardt - - - - - - - - - -
Donini 0.75±0.05 0.05±0.02 0.72±0.01 0.08±0.02 0.77 0.01 0.73±0.04 0.05±0.03 0.79±0.03 0.10±0.05
SVM+Ours 0.71±0.02 0.06±0.02 0.72±0.01 0.05±0.02 0.78 0.02 0.73±0.01 0.06±0.03 0.78±0.02 0.11±0.02
LR+Ours 0.70±0.04 0.06±0.03 0.72±0.01 0.06±0.02 0.77 0.02 0.73±0.02 0.06±0.02 0.77±0.02 0.11±0.02
RF+Ours 0.80±0.03 0.02±0.01 0.76±0.02 0.04±0.02 0.84 0.02 0.76±0.03 0.04±0.02 0.83±0.01 0.06±0.02

Table 3: Results (average ± standard deviation, when a fixed test set is not provided) for all the
datasets, concerning ACC and DEO. In this case the sensitive feature the sensitive feature is not in
the functional form of the model.

Figure 2: Results of Table 3 of linear (left) and nonlinear (right) methods when the error and the
DEO are normalized in [0, 1] column-wise. Different colors and symbols refer to different datasets
and method respectively. The closer a point is to the origin, the better the result is. In this case the
sensitive feature the sensitive feature is not in the functional form of the model.
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