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Figure 1: Our sampler distributes per-pixel sample sets such that their Monte Carlo errors is a blue noise in screen space. This
increases the visual quality of the renders in contrast to randomly distributing the sample sets.

ABSTRACT
We introduce a sampler that generates per-pixel samples achiev-
ing high visual quality thanks to two key properties related to the
Monte Carlo errors that it produces. First, the sequence of each
pixel is an Owen-scrambled Sobol sequence that has state-of-the-art
convergence properties. TheMonte Carlo errors have thus lowmag-
nitudes. Second, these errors are distributed as a blue noise in screen
space. This makes them visually even more acceptable. Our sam-
pler is lightweight and fast. We implement it with a small texture
and two xor operations. Our supplemental material provides
comparisons against previous work for different scenes and
sample counts.
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1 INTRODUCTION
Georgiev and Fajardo pioneered the concept of distributing the
error of Monte Carlo rendering as a blue noise in screen space with
dithered sampling [2016]. Inspired by halftoning algorithms, they
optimize a tile whose pixels contain Cranley-Patterson rotations
(toroidal shifts) applied on an arbitrary sequence so that it becomes
different in each pixel. Equivalently, each pixel of their tile can be
seen as the first sample of the sequence of this pixel and is optimized
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to maximize the sample-space difference between neighboring pix-
els. This method distributes the errors as a blue noise at one sample
per pixel but this advantagueous feature vanishes at higher sample
counts. Furthermore, toroidal shifts affect the equidistribution of
low-discrepancy sequences and hence their convergence rates.

In this paper, we focus onOwen-scambled Sobol sequences [1998]
that have state-of-the-art convergence properties. We distribute
their Monte Carlo errors as a blue noise in screen space without
compromising their convergence properties in the following way:

• In §2.1, we leverage the fact that the points of Sobol se-
quences can be modified via scrambling (their values) and
ranking (their order) without compromising the convergence
rate. We implement these operations with bitwise xors with
integer keys. We store per-pixel keys as a lightweight repre-
sentation of per-pixel sequences and use them as degrees of
freedom to optimize the error distribution.

• In §2.2, we introduce a new energy term to optimize the
blue-noise distribution of the error. In contrast to dithered
sampling, we do not optimize a sample-space distance. Our
new energy term acts directly on the Monte Carlo errors
produced by the sequences. The optimization can thus be rig-
orously formulated for arbitrary sample counts and arbitrary
dimensionalities of the sample space.

• Combining these ideas, we use the scrambling keys to opti-
mize the blue-noise distribution for a target sample count
N , typically a high value that the renderer does not exceed.
The blue-noise distribution of the error is thus optimal at N
samples per pixel. Then, we use the per-pixel ranking keys
to optimize for all the sample counts that are powers of two
between 1 and N /2.
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2 OUR SAMPLER
Our sampler provides for each pixel (i, j) a D-dimensional sample
set of N samples: P i j = {p

i j
n : n in 1..N } optimized such that the

Monte Carlo errors are distributed as a blue noise in screen space
for sample counts that are powers of two smaller or equal to N .

2.1 Per-pixel low-discrepancy sample sets
Sample points. We store a uniqueD-dimensional Owen-scrambled

Sobol [1998] sample set P = {pn : n in 1..N }.
Scrambling keys. In each pixel (i, j), we store a scrambling key

si j of D integers. We use it to xor the integer representation of the
Sobol samples. This preserves their convergence properties [2002].

Ranking keys. In each pixel (i, j), we store a ranking key r i j of
one integer. We use it to xor the indices of the points (the order in
which they are used). One property of Sobol sample sets is that any
power-of-two subset aligned with the same power of two has the
same low-discrepancy properties. Hence, xoring their indices does
not change the properties of the power-of-two subsets.

Evaluation. Table 1 shows the data and storage requirements of
our sampler. The evaluation of the n-th sample of a pixel (i, j) is
shown in Algorithm 1. We compute the indexm of the sample in
the point set P by xoring n with the ranking key r i j and we xor pm
with the scrambling key si j .

Table 1: Data and storage requirements of our sampler. Fol-
lowing Georgiev and Fajardo we use 1282 wrappable tiles.

description symbol storage
Sample points P = (p1, ...,pN ) N × D integers
Scrambling keys si j 1282 × D integers
Ranking keys r i j 1282 × 1 integers

Algorithm 1 Evaluation of the n-th sample at pixel (i, j)

m = xor
(
n, r i j

)
// xor the index of the sample

p
i j
n = xor

(
pm , s

i j ) // xor the value of the sample
return p

i j
n

2.2 Distributing the errors as a blue noise
Our objective is to optimize the keys si j and r i j such that the Monte
Carlo errors computed by the sample sets are as different as possible
between neighboring pixels.

A family of integrand functions. Our idea is to maximize for the
errors computed for a set of functions (f1, .., fT ) that are represen-
tative of typical rendering integrands. We use the space of oriented
Heaviside functions ft that are defined by a (D − 1)-dimensional
normalized direction vector and 1-dimensional phase. We randomly
choose a finite set of T = 65536 functions from this space. For each
pixel (i, j), we compute a vector Ei j =

(
e
i j
1 , .., e

i j
T

)
that contains the

errors produced by its sample set P i j on the integrands (f1, .., fT ):

e
i j
t =

1
N

N∑
n=1

ft (p
i j
n ) −

∫
[0,1]D

ft (p)dp. (1)

Optimizing at N samples per pixel using the scrambling keys.
The goal is to find the values of the scrambling keys si j such that
the distance between the error vectors of neighboring pixels is
maximized. We measure the screen-space proximity of two pixels
(i, j) and (k, l) with the Gaussian kernel recommended by Georgiev
and Fajardo with σ = 2.1 and obtain:

Es =
∑

(i, j),(k,l )

e
−

(i−k )2+(j−l )2

σ 2
Ei j − Ekl

2 . (2)

We initialize each pixel with a unique random scrambling key si j
and swap them to maximize Es using simulated annealing.

Optimizing below N samples per pixel using the ranking keys. We
optimize each power-of-two sample count from N down to 1 by
iteratively halving the sample set. Each time we halve, in each pixel
we can choose to use either the first or the second half of the sample
set. This choice is represented by one bit in the ranking key r i j . For
instance, the first bit of r i j swaps {pi j1 } and {p

i j
2 }, the second bit

swaps {pi j1 ,p
i j
2 } and {p

i j
3 ,p

i j
4 }, etc. For each power-of-two sample

count, the goal is to find how to set the associated bit in r i j such
that the error vectors Ei jfirst and E

i j
last obtained with the first and last

halves maximize:

Er =
∑

(i, j),(k,l )

e
−

(i−k )2+(j−l )2

σ 2

(Ei jfirst − Eklfirst

2 + Ei jlast − Ekllast

2) ,
(3)

Note that this energy term maximizes for the first and the last
subsets together. Maximizing for the first subset only tends to put
high-error subsets first and artificially increases the variance at
lower sample counts. Maximizing for the first and last subsets at
the same time keeps the errors of both halves to their statistical
average. We repeat this operation until the sample count gets down
from N to one sample per pixel. After this operation, we obtain
per-pixel samples that distribute the error as a blue-noise for any
sample count that is a power of two between 1 and N .

3 DISCUSSION
Although the method presented in this paper works reasonably well
for a large class of integrands, we observed that it works particularly
well with low-dimensional and smooth integrands, typically the
direct illumination of an area light. We noticed that optimizing for
high dimensions (largeD) decreases the quality in lower dimensions.
We found the best compromise in optimizing pairs of dimensions
separately, i.e. D = 2 multiple times. Using our approach has no
significant drawbacks. In terms of convergence, each pixel uses
an Owen-Scrambled Sobol sequence, which is state-of-the-art. In
terms of blue-noise distribution of the error, our method is as good
as dithered sampling at 1spp and achieves better results at higher
sample counts. Finally, our approach is extremely fast using only
three memory fetches and two integer xors per sample.
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