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Abstract 

Inland navigation transport takes part in the Trans-European network program (TEN-T
*
), which aims at 

promoting this mode of transport by creating favorable conditions for the further development of this sector. The 

NAIADES
†
 Action Program comprises numerous actions and measures to boost transport on inland waterways. 

Among these actions, the infrastructure issue is dealt with. It requires the inventory of the existing infrastructure 

and the study of the possible effects of the expected climate change. This was one of the objectives of the 

GEPET-Eau
‡
 project (2013-2016), which led to the proposal of multi-scale modeling approaches and adaptive 

and predictive control architectures. The resilience of inland waterways against the increase of navigation 

demand and the expected extreme drought and flood events was studied by considering deterministic models. 

The proposed architecture is suitable to consider two scales of space and time to optimize the water resource 

allocation among the inland networks and to guarantee the navigation conditions by proposing advanced control 

and fault detection tools. These approaches, which were designed by considering inland waterways in the north 

of France, are still being improved. Indeed, it is firstly necessary to consider all the uncertainties that are inherent 

to large-scale and environmental systems. Secondly, the advanced control and fault detection tools require 

further development to deal with the very complex dynamics that characterize inland waterways. The main 

objective of this work is to present the current state of the tools that have been developed in order to study and 

manage the inland waterways in a climate change context. The global framework that allows describing the link 

between these two management scales will be detailed. The water resource allocation approach can be based on 

three different techniques: the Constraint Satisfaction Problem (CSP), the quadratic optimization and the Markov 

Decision Process (MDP). The MDP-based approach will be emphasized due to its suitability to study complex 

systems with uncertainties, and its main advantages and drawbacks will be discussed and compared to the other 

techniques. Advanced control and fault detection tools require an in-depth knowledge of the inland waterway 

dynamics. Characteristics of navigation reaches, i.e. slope, resonance phenomenon, uncontrolled inputs and 

interconnections, need to be taken into account. A big effort has been made to improve the modeling step of the 

navigation reaches by considering the IDZ (Integrator Delay Zero) model. The designed tools are based on this 

accurate model, and they aim at improving the water level control of each reach of the inland waterways and at 

performing predictive maintenance strategies by detecting, isolating and forecasting faults on sensors and 

actuators (limnimeters, gates, locks, etc.). The designed management tools will be presented by considering a 

part of the real inland navigation network in the north of France. Perspectives and future developments will be 

described. 
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1. Introduction 

Inland waterways transport takes part in the multimodal transport (Wiegmans and Konings, 2015) promoted by 

the Trans-European network program (TEN-T). It offers not only several economic and environmental benefits 

(Mihic, 2011; Mallidis, 2012), but also constitutes a safer manner of transporting goods (Brand, 2012). This 

perspective is shared by the IPCC (Intergovernmental Panel on Climate Change) which indicated that it is 

possible to limit climate change and its risks by technical and behavioral mitigation measures that could reduce 

final energy demand significantly below baseline levels (IPCC, 2014). The shift of road transport to alternative 

transport solutions necessitates the delivery of new infrastructures. In the domain of inland waterway transport, 

some projects such as the Seine-Nord canal in France and numerous actions and measures proposed by the 

NAIADES Action Program should boost transport on inland waterways. However, these infrastructure projects 

require heavy financing as well as social and environmental agreements. The political decisions that must be 

made can cause time delays in the completion of these projects. Until then, it is necessary to optimize the 

management of inland waterways, particularly in a context of climate change and expected increase of 

navigation demand. The possible climate change impacts on inland waterways have been studied by the PIANC 

(Permanent International Association of Navigation Congresses) (EnviCom, 2008) and during the ECCONET 

Project
§
. Others studies (Bates et al., 2008; Wanders and Wada, 2015; IWAC, 2009; Arkell and Darch, 2006; 

Pant et al., 2015) have concluded that inland waterways will be impacted by climate hazard. According to 

(Beuthe et al., 2014), the impacts of climate change on the Rhine and Danube corridors should be more 

moderated. In addition, the navigation demand should increase in the not-too-distant future in several parts of the 

world such as Poland (Gołębiowski, 2016) and China (Jiang et al., 2017). Hence, it is necessary to anticipate 

these potential impacts.  

This was the main objective of the GEPET-Eau project (2013-2016) that led to the proposal of optimal 

management architecture (Duviella et al., 2013b) and of the following studies that are still in progress. The 

optimal management architecture is based on multiscale tools (Duviella et al., 2014). The first scale of space and 

time that corresponds to several interconnected navigation reaches and several days is dedicated to the optimal 

water resource allocation. It aims at guaranteeing that sufficient water volumes are available in each part of the 

studied network over the corresponding management period for normal, drought or flood conditions. A 

methodology of adaptive allocation planning of water resource is proposed in (Nouasse et al., 2016a). It can be 

based on CSP (Constraint Satisfaction Problems) (Nouasse et al., 2016b) or on QOP (Quadratic Optimization 

Problems) (Duviella et al., 2016). In addition, it makes possible to determine the resilience of the network 

against these conditions (Desquesnes et al., 2016). These proposed approaches for water allocation planning are 

deterministic. Some recent improvements allow taking into account uncertainties that are inherent to large-scale 

and environmental systems. These new techniques are based on distributed Markov Decision Process (MDP) 

(Desquesnes et al., 2017a). The second scale of space and time that corresponds to some interconnected 

navigation reaches and several minutes is dedicated to the optimal control of the water levels. It aims at 

guaranteeing the navigation conditions at each time step by proposing advanced control and fault detection tools. 

Control approaches based on Model Predictive Control (MPC) with an Integral Delay Zero (IDZ) and Integral 

Resonance (IR) models have been designed respectively in (Horváth et al., 2014c; Horváth et al., 2015) and in 

(Horváth et al., 2014d). The proposed control methods still require further development to deal with the very 

complex dynamics that characterize inland waterways and with the occurrence of sensor and actuator faults that 

can undermine the performance of the controllers. It requires an in-depth knowledge of the inland waterway 

dynamics, which are characterized by no slope, resonance phenomena, uncontrolled inputs and interconnections 

among navigation reaches. A big effort has been carried out to improve the modeling step of the navigation 

reaches by considering the IDZ (Integral Derivative Zero) model (Segovia et al., 2017b). Moreover, Fault-

Tolerant Control (FTC) has been proposed in (Segovia et al., 2016) to improve the water level control by 

detecting, isolating and forecasting faults on sensors and actuators (limnimeters, gates, locks, etc.) (Segovia et 

al., 2017a). 

The main objective of this paper is to present the current state of the tools that have been developed in order to 

study and manage the inland waterways in a climate change context. Its content is structured as follows: Section 

2 is dedicated to the description of the global framework that allows gathering the tools dedicated to the two 

management scales. A software tool that has been developed to study the impacts of climate change or the 

increase of navigation demand by defining the characteristics and the configuration of inland waterway to be 

considered is presented. A simulation architecture that has been developed to test the adaptive allocation 

                                                           
§
 http://www.tmleuven.be/project/ecconet/home.htm 
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planning of water resource is detailed. The optimal water resource allocation planning approaches (QOP, CSP 

and MDP) are introduced, and their main advantages and drawbacks are discussed. Section 3 is dedicated to the 

modeling and control techniques of navigation reaches that are characterized by no slope. Moreover, elements 

for the design of controller and Fault Tolerant Control are given. Finally, conclusions about the performed work 

are drawn in Section 4. 

2. Management architecture for inland water networks  

2.1. Description 

The adaptive control management architecture of inland waterways proposed in (Duviella et al., 2014) is 

depicted in Fig. 1. Its functionalities are kept but some improvements have been made. The sensors that are 

located along the navigation canals provide data such as water levels and discharges. A Human Machine 

Interface (HMI) allows the waterways managers to monitor the state of the system and to define setpoints that 

must be applied by means of actuators such as controlled gates and locks. Local control algorithms are 

implemented to keep the water level of the navigations reaches close to the defined setpoints. A module entitled 

Control Accommodation gathers the Fault Tolerant Control functionalities. They aim at detecting the occurrence 

of faults on sensors and actuators, at localizing these faults and at accommodating the control laws to guarantee 

the management objectives. Furthermore, the prognosis block can be designed to follow the drifts of the faults 

and forecast their occurrence time. All these functionalities correspond to the lower management scale, i.e. 

several minutes and limited to some navigation reaches. The Decision Support module is dedicated to the water 

volume management that aims at dispatching the water volumes among all the waterways. It is based on 

optimization techniques that must take into account information from watersheds (such as rainfall/runoff models) 

that lead to estimate the water volumes that are due to rainfall; from groundwater, to estimate the water 

exchanges; and from climate change scenarios that predict the possible climate events, when this information is 

available.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Adaptive control management of inland waterways.  

 

The decision support module has been improved recently. Its implementation requires the proposal of an 
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rivers, and a dynamic directed flow graph to generate the constraints on the operating conditions of the 

controlled hydraulic structures (Nouasse et al., 2015). The use of these tools requires a specific study for each 

inland waterway that can be considered. Hence, to facilitate their use, a software tool has been developed (Mayet 

et al., 2016). It is based on a web interface and users can describe very easily the configuration of inland 

navigation networks and define several scenarios.  

2.2. Optimal water resource allocation planning software 

2.2.1. User’s web-interface  

A user’s web-interface has been developed for the optimization of water management in inland waterways. It 

allows the implementation of any configuration of waterways by considering as elementary component the 

navigation reaches, i.e. the part of waterways between at least two locks, two gates or a combination of these 

hydraulic devices. The designed interface uses HTML 5, CSS and three frameworks Javascript: jointJS for the 

diagrams, JQuery for user’s events and Bootstrap for the graphical elements: buttons, edit text, etc. Figure 2 

illustrates the designed tool, and the considered inland waterway is composed of 8 navigation reaches (cyan 

rectangles). The interactions between them are represented with arrows and tributary and distributary elements 

for confluents and diffluents.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Schematic of the web interface. 

 

The characteristics of the navigation reaches (width, length and depth) can be specified. The navigation 

conditions (with the high and low water level limits for navigation) must be specified too. Then, the dimensions 

of the locks, i.e. the volume corresponding to one lock operation, the operating range of the controlled gates and 

hydraulic devices can be implemented. The rectangles in dark blue specify the operating ranges of the hydraulic 

structures of the watershed (input or outputs from the inland waterways). The rectangles in red specify the value 

of the discharges that come from uncontrolled hydraulic structures such as weirs or spillways. The number of 

expected lock operations is indicated in green circles. 

Once the configuration of the inland waterway is completed, it is possible to generate scenarios. The navigation 

period of a day can be modified (for instance, the navigation is restricted to 12 hours/day). Periods of drought or 

flood can be simulated by increasing or decreasing the available water resource. Based on the implemented 

scenario, the proposed tool makes possible the optimization of the water resource allocation planning. It is 

achieved by defining a Constraint Satisfaction Problem (CSP) that is solved with the CSP method based on the 

Open Source Java Choco (Jussien et al., 2008). Several case studies have been proposed in (Nouasse et al., 

2016a; Nouasse et al., 2016b). When a solution is obtained, results are shown in discharges or in volumes on 



Segovia et al. / TRA2018, Vienna, Austria, April 16-19, 2018 

 

5 

each arc in pink rectangles (see Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Fig. 3 Screenshot of the web interface with new setpoint. 

 

In addition, this tool allows studying the resilience of inland waterways with a simple and faster way. It consists 

in simulating several extreme scenarios for which at least one navigation reach cannot guaranty the navigation 

conditions.  

The proposed user’s web-interface is very useful to implement a configuration of a waterway and to specify the 

scenarios. However, the implemented CSP method allows only one simulation step. In order to consider large 

management horizons, a simulation architecture based on Matlab has been designed, which is associated with the 

user’s web-interface. 

2.2.2. Matlab/Simulink simulation architecture  

Matlab/Simulink is a powerful tool that can be used to simulate the dynamics of inland waterways by 

considering large simulation horizon. It offers the possibility to link it easily with the designed user’s web-

interface and several optimization tools such as CSP – Open Source Java Choco, QOP (Quadratic Optimization 

Problems) or decentralized MDP (Markov Decision Process). The proposed simulation architecture allows the 

user to select the optimal water resource allocation planning approach. Thus, from the user’s web-interface, a 

Simulink model is designed by taking into account the configuration of the network, the constraints and the 

proposed scenario (see 1 in Fig. 4). The Simulink model is run during the management horizon TM with a 

discrete time kM [h], where kM=k·TM. The optimal water resource allocation method is selected by the user (see 

2 in Fig. 4). At each step time k, the current states of the navigation reaches (their levels) and the forecasted 

navigation demand are sent to the optimization approach, and new setpoints are computed before being sent to 

the Simulink simulator for a new run of a simulation step. At the end of the simulation, the results can be seen 

according to user’s interface.  

 

 

 

 

 

 

 

 

 

 

Fig. 4 Simulation architecture. 
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The QOP approach has been used in (Nouasse et al., 2016c; Duviella et al., 2016) by considering an inland 

waterway equipped with pumps. An algorithm was proposed to guarantee the navigation condition by 

minimizing the electric cost due to the use of the pumps. The main advantage of this approach is that it is 

possible to consider continuous data and no discretization of the variables is required. The decentralized MDP 

offers the advantage to consider the uncertainties that are inherent to large-scale and environmental systems. 

This approach has been used in (Desquesnes et al., 2016; Desquesnes et al., 2017a) by considering realistic 

inland waterways and a real inland waterway that is located in the north of France. Its main drawback can be 

avoided by proposing a decentralized implementation that is based on multi-agents (Desquesnes et al., 2017b). 

Therefore, it requires a discretization of the variables as the CSP approach.  

3. Modeling and Control of inland navigation reach 

The Control Accommodation module of the architecture given in Fig. 1 is dedicated to the control of water levels 

with a sample time of several minutes. This objective is achieved by designing control laws that must be applied 

by the controlled devices such as gates. However, it is also necessary to anticipate the problems that might derive 

from the occurrence of faults on sensors and actuators. Hence, a Fault-Tolerant Control (FTC) approach has to 

be designed (Segovia et al., 2016). It aims at allowing the system to continue operating properly despite fault 

occurrences (Horváth et al., 2014a). This control approach is usually based on Fault Detection and Isolation 

techniques (FDI), which have been widely proposed for free-surface water systems in the last years. They can be 

based on models of the systems (Bedjaoui and Weyer, 2011; Nabais et al., 2012; Blesa et al., 2014; Segovia et 

al., 2017a), on measured data (Le Pocher et al., 2012; Akhenak et al., 2013; Duviella et al., 2013a) or on both 

(Horváth et al., 2014b). Several control approaches have also been proposed in the literature (Litrico and 

Fromion, 2009; Malaterre et al., 2014; Pham et al., 2014; Raievsky, 2014; Rajaoarisoa et al., 2014; Fele et al., 

2014), mainly based on an accurate model of the free-surface water systems. However, specific characteristics of 

flat navigation reaches, i.e. characterized by no slope, such as strong resonance phenomena have not been taken 

into account. The contributions of the last year are dedicated to the modeling and the control approaches of 

inland navigation reaches without slope (Segovia et al., 2017b).  

3.1. Modeling 

A natural way to model the dynamics of inland navigation networks is to decompose it in reaches, which in 

addition simplifies the modeling task. The dynamics of these reaches can be accurately described by the Saint-

Venant partial differential equations (Chow, 1959). However, it is difficult to design control and FDI approaches 

based on these equations. Moreover, there is no known analytical solution for this set of equations. Furthermore, 

small errors in the geometry and other parameters of the reaches can lead to important errors in the computation 

of the models. All these reasons have fostered the development of simplified models have been proposed in the 

literature. Among all the proposed approaches, the Integrator Delay Zero model proposed in (Litrico and 

Fromion, 2004) presents an easy parameter identification step based on the physical characteristics of the reach. 

In addition, this model allows reproducing low and high frequency dynamics. Its structure is as follows: 

  ( )  
    

  
     (1) 

with α the inverse of the transfer function zero, A the integrator gain and τ the propagation time delay.  

 

In low frequencies, the behaviour of the canal is similar to a tank. The integrator gain accounts for the change of 

the water volume according to the variation of the water level. The time delays represent the minimum time that 

a wave needs to travel from its origin to the measurement point. Two different time delays have to be computed: 

   (from upstream to downstream) and    (from downstream to upstream): 

    
 

     
 (2.1) 

    
 

     
 (2.2) 

with L [m] the total length of the canal,    the water celerity [m/s] and    the water velocity [m/s]. 

 

The high frequency dynamics are dominated by the zero of (1), which reproduces the first peak in the water 

level. In (Litrico and Fromion, 2004), these parameters are computed for the upstream uniform and the 
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downstream backwater flow parts of the canal, which are then merged into the so-called equivalent parameters 

that describe the whole canal. Nevertheless, for flat canals, there is no upstream uniform flow part, and therefore 

the parameters only have to be calculated for the backwater part. 

[
 (   )
 (   )

]   ( ) ( )  [
 ̂  ( )  ̂  ( )

 ̂  ( )  ̂  ( )
] [
 (   )

 (   )
] (3) 

where 0 and L are the abscissas for the upstream and downstream ends of the reach; y(0,s) and y(L,s), the 

upstream and downstream water levels;  ̂  ( ), the estimation of the IDZ expressions given in (1); and q(0,s) and 

q(L,s), the upstream and downstream water discharges, respectively. 

3.2. Controller design 

The control approach has been designed for a single reach (Horváth et al., 2014a) and for interconnected reaches 

(Segovia et al., 2017c). Some elements of the controller are given herein (further details can be obtained in the 

referenced papers). The following step consists in the discretization of the transfer function (3) at the sample 

time k. Then, the model is transformed to a minimal state-space model:  

{
 (   )    ( )    ( )

 ( )    ( )                         
     (4) 

with matrices A∈R
n×n

, B∈R
n×m

 and C∈R
r×n

, n the number of states, m the number of inputs and  the number of 

measured variables, x(k) the state variable, u(k) the change of the discharge and y(k) the water level error. Then, 

by extending the state variable as z(k)=[x
T
 (k),Q

d
 (k)]

T
, it is possible to formulate constraints on the input 

discharges Q
d
 (k). The obtained model is: 

{
 (   )   ̂ ( )   ̂ ( )

 ( )   ̂ ( )                         
     (5) 

where Im∈R
m×m 

is the identity matrix. Finally, the control approach is expressed as a quadratic programming 

problem that consists in minimizing the following objective function on the future control horizon λ: 

 (   )  ∑  (   | )  
     ( ( | )  (   | )     (     | ))∈     

                                   (   | )  

∑  (   | )     
    (   | )     (6) 

subject to the following constraints:         (   | )        , where P and R are weighing matrices and zmin 

and zmax are the boundaries of the variable z. 

3.3. Fault-Tolerant Control 

3.3.1. Definition 

The Fault-Tolerant Control proposed in (Segovia et al., 2016) has been designed for interconnected navigation 

reaches. The conventional FTC configuration is depicted in Fig. 5. It is composed of a controller that aims at 

determining a command u(s) in order to obtain as the output of the real system a measurement y(s) equal to the 

reference y
ref

. This controller can be accommodated according to the detected faults that come from the 

Estimator module. This means that the controller parameters can be adapted, or at least the measured data can be 

corrected, i.e. y
corr

. The strategy depends on the type of faults (sensor or actuator faults).  

 

 

 

 

 

 

 

 

Fig. 5 Fault Tolerant control framework. 

 

For interconnected systems such as inland navigation reaches, it is often necessary to take into account the 

measurements that come from the n sensors, and to control the m actuators that equipped the waterways. The 

conventional FTC configuration that is depicted in Fig. 5 has to be adapted to take into account this particularity 
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such as it is described in (Segovia et al., 2016).  

3.3.2. Fault Detection and isolation 

The proposed FTC framework is based on FDI techniques to detect and isolate the faults. The accommodation of 

the controller depends on this detection scheme. An FDI approach for flat navigation reaches is proposed in 

(Segovia et al., 2017a). It is based on the generation of residuals between the real system and the quantitative 

model of the reach: the more reliable the model, the better the fault detection performance. The big effort made 

regarding the modeling part (Segovia et al., 2017b; Segovia et al., 2017d) obeys this principle. The reader is 

referred to the papers cited above for more details about the developed FDI approaches.  

3.4. Simulation architecture 

The modeling, control, FDI and FTC approaches must be designed and tested according to real systems. 

However, it is usually difficult to test the designs in real systems because inland waterways are being used 

constantly, and it is practically impossible to stop navigation to conduct tests. The conventional design step 

consists in using simulators of the real systems. Hence, real systems are implemented on the software SIC
2**

, 

which solves numerically the Saint-Venant equations. It is possible to simulate their dynamics and compare them 

to the observed ones. The next step consists in building a simulation framework to test (by simulation) all these 

developments. The simulation architecture, depicted in Fig. 6, is based on the link between SIC
2
 and 

Matlab/Simulink, where the control, FDI or FTC algorithms are implemented. SIC
2 

starts the simulation and 

loads Matlab. SIC
2 

is run with a period k2; at the end of each period, SIC
2 

pauses. The states of the system, i.e. 

the water levels y(s), are sent to the workspace of Matlab. Simulink then starts running with period k1 (with k1≥ 

k2). At the end of the period k1, the new commands that are computed according to the implemented control/FTC 

laws are sent to SIC
2
, and a new cycle starts.  

 

 

 

 

 

 

 

 

 

 

Fig. 6 Simulation architecture. 

 

This architecture benefits from a software dedicated to the simulation of free-surface water systems and a 

software tool dedicated to the design of control/FTC algorithms. It has been used for the design of controllers, 

FDI and FTC of real navigation network located in the north of France.  

4. Conclusions 

The objective of this paper is to present an architecture dedicated to the optimal management of inland 

waterways. This architecture gathers tools for the optimal water resources allocation based on CSP, QOP and 

MDP. The new developments are dedicated to distributed MDP that allows dealing with uncertainties. The main 

advantages and drawbacks of this method compared to CSP and QOP are discussed. These optimal water 

resources allocation methods lead to the determination of setpoints by considering large inland waterways and 

large time horizons. Once these setpoints are determined, it is still necessary to design Fault-Tolerant Control 

strategies to guarantee these objectives. These strategies are based on control laws and FDI algorithms to 

guarantee the navigation conditions, i.e. water level objectives, even if sensor and/or actuator faults occur. The 

control and FTC approaches are based on modeling techniques that must be as accurate as possible. The main 

contributions for the optimal management of inland waterways in the context of climate change and expected 

increase of the navigation demand are presented. However, it is still necessary to develop them to be able to 

boost the navigation as a suitable transport mode.  

                                                           
**
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