
HAL Id: hal-02150316
https://hal.science/hal-02150316v5

Submitted on 19 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient position estimation of 3D fluorescent spherical
beads in confocal microscopy via Poisson denoising

Alessandro Benfenati, Francesco Bonacci, Tarik Bourouina, Hugues Talbot

To cite this version:
Alessandro Benfenati, Francesco Bonacci, Tarik Bourouina, Hugues Talbot. Efficient position estima-
tion of 3D fluorescent spherical beads in confocal microscopy via Poisson denoising. Journal of Math-
ematical Imaging and Vision, 2020, 63 (1), pp.56-72. �10.1007/s10851-020-00994-1�. �hal-02150316v5�

https://hal.science/hal-02150316v5
https://hal.archives-ouvertes.fr


Journal of Mathematical Imaging and Vision (2021) 63:56–72
https://doi.org/10.1007/s10851-020-00994-1

Efficient Position Estimation of 3D Fluorescent Spherical Beads
in Confocal Microscopy via Poisson Denoising

Alessandro Benfenati1 · Francesco Bonacci2 · Tarik Bourouina3 · Hugues Talbot4

Received: 2 October 2019 / Accepted: 28 September 2020 / Published online: 19 November 2020
© The Author(s) 2020

Abstract
Particle estimation is a classical problem arising in many science fields, such as biophysics, fluid mechanics and biomedical
imaging. Many interesting applications in these areas involve 3D imaging data: This work presents a technique to estimate the
3D coordinates of the center of spherical particles. This procedure has its core in the processing of the images of the scanned
volume: It firstly applies denoising techniques to each frame of the scanned volume and then provides an estimation of both
the center and the profile of the 2D intersections of the particles with the frames, by coupling the usage of Total Variation
functional and of a regularized weighted Least Squares fit. Then, the 2D information is used to retrieve the 3D coordinates
using geometrical properties. The experiments provide evidence that image denoising has a large impact on the performance
of the particle tracking procedures, since they strongly depend on the quality of the initial acquisition. This work shows that
the choice of tailored image denoising technique for Poisson noise leads to a better estimation of the particle positions.

Keywords Particle estimation · Particle tracking · 3D data · Brownian motion

1 Introduction

Particle tracking techniques are widely employed in sev-
eral science fields for identifying particular structures or
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processes of interest. Some important examples include bio-
physics, where these techniques are involved in the observa-
tion of molecular level motion of kinesin inmicrotubules and
ofmotion ofmyosin on actin [52], in the study of the infection
path of a virus [49] or in the investigation of cytoskele-
tal filaments [1]; another topic involving particles tracking
problem regards the observation of protein motion in cell
membranes [37] or intracellular transport [32]. Other inter-
esting areas of application include statisticalmechanics [5,6],
fluid dynamics and mechanics, in particular rheology [34],
where the thermal motion of Brownian particles has been
tracked to study local rheological properties [20], complex
fluids [2,47] and microrheology in medicine [23]. Colloidal
works have benefited from developments in particle track-
ing procedures in measuring biofluids such as mucus [48]
and vitreous humor [50]. All these practical instances of par-
ticle tracking rely on imaging data, acquired via confocal
microscopy, electric microscopy and/or similar techniques.

It has been pointed out [21] that particles have different
meanings depending on the applications: a singlemolecule, a
virus, a spherical object. In this work, a particle is a spherical
object around 1micrometer in diameter, observed in confocal
microscopy.

Particle tracking consists of two main steps: particle posi-
tion estimation and trajectory reconstruction. The former
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is based on the acquired images, while the latter employs
the retrieved information together with probabilistic results.
In the past, several procedures have been proposed to esti-
mate the particle position: cross-correlation of a sequence
of images [35], centroid techniques [33] and Gaussian fit-
ting [38]. Some of them claim subpixel resolution, and
in [19], a wide comparison of these techniques showed that
significant numerical experimentation is needed before val-
idating such results. Other methods include combinatorial
optimization [45], nearest neighbor [31], Kalman filtering
coupled with probabilistic data association [26], use of the
Viterbi algorithm [39], sparse deconvolution techniques [30]
and several others. An experimental comparison of a plethora
of methods can be found in [21]. In [44] (and references
therein), a particular focus on microrheology-related prob-
lems is considered, and the balance between high spatial
resolution and timescale of data acquisition is considered
in depth: The former leads to approximate multiple tracking
techniques, while the latter allows a greater flexibility and
provides high statistical accuracy. In [19], the spatial res-
olution influence was investigated. In the presented paper,
the first step of particle tracking problem is solved: The pro-
posed algorithmprovides estimations of the particles position
with subpixel resolution, both in two- and three-dimensional
cases. The analysis focuses also on the role of image denois-
ing techniques, which heavily influences the final result and
performance of position estimation algorithms.Theproposed
procedure aims mainly to treat the static error [44], which
arises fromnoise affecting this typeof experiments; this static
error is equivalent to the notion of precision in [19].

Following [44] and the consideration in [19] about pre-
liminary synthetic experiments, in this work a numerical
simulation of the standard setup is adopted: The simulated
system consists of a CCD camera connected to a microscope
which records images (frames) ofmolecules or spherical par-
ticles. Our proposed procedure is first tested on synthetic but
realistic data. The algorithm proved itself to be providing
good performance on such data; hence, it is applied on real
3D data with satisfactory results.

The presented procedure provides position estimations of
3D spherical particles: This approximation is inspired by the
problem of estimating the motion of spherical nanoparticles
suspended in a fluid. A novel approach based on Total Vari-
ation functional and on Least Squares fitting is proposed to
locate the center of the spherical particles in 2D frames. The
3D centers of the particles are hence estimated using geomet-
ric properties and employing the 2D information retrieved in
the previous steps. The algorithm achieves subpixel resolu-
tion both in the 2D case, i.e., in estimating the position of the
particles within frames, and in the 3D case. In real-life appli-
cation, 3D confocal data are corrupted by noise, usually of
Poisson type; hence, denoising techniques are necessary to
ensure the goodquality of the reconstruction. In thiswork, the

comparison between classical Gaussian filtering and more
tailored algorithm for noise removal is done.

This paper is organized as follows: In Sect. 2, the sim-
ulation procedure is described, in order to get realistic 3D
data to validate the proposed algorithm. In Sect. 3, details of
the proposed procedure are given: the preprocessing of the
frames and the estimation of the 2D centers and then the 3D
estimation. Section 4 is devoted to the numerical experimen-
tation on both synthetic and realistic data; finally, in Sect. 5,
conclusions are drawn.

NotationBold letters, bold capital letters andLatin (orGreek)
letters denote vectors, matrices and scalars, respectively. The
i th element of the vector x is denoted by xi . The notation
N (

μ, σ 2
)
indicates a Gaussian distribution of mean μ and

variance σ 2. I denotes the identity matrix and 0 the vector
with all zeros entries.

2 Data Creation: Simulation Procedure

The synthetic datasets used to validate the proposed algo-
rithm are simulated following these steps, which are inspired
by the characteristics of real settings:

– N spherical particles of radius a are randomly placed in
a 3D volume of dimension Dx × Dy × Dz . The particles
are assumed to have all the same, known radius a;

– the 3D volume is discretized into an array of Nx × Ny ×
Nz voxels; each voxel has dimension dx × dy × dz,
being dx = Dx/Nx , dy = Dy/Ny, dz = Dz/Nz . Nz

represents the number of 2D frames. Each particle is dis-
cretized in this volume;

– aiming to simulate realistic data, a blurring operator is
applied to each frame, and then, Gaussian and/or Poisson
noise is, respectively, added to or composed with each
image.

In the following, the creation of the dataset is described pre-
cisely.

Position simulation The continuous positions {xi }i=1,...,N of
the N particles are randomly chosen in Dx × Dy × Dz , via
an uniform distribution. The 3D position of the i th particle
is denoted via xi = (xi , yi , zi )�.
DiscretizationGiven the continuous coordinates xi of the i th
particle and the radius a, the voxels at distance less or equal
to a are filled with a value of H , while the others are set
to h, aiming to have a nonzero constant background. In our
simulations, we set h = 10 and H = 220. These values were
chosen in order to simulate realistic tiff images, which
usually have values in [0, 255]. In Fig. 1a, a 2D explanation
of this procedure is depicted: The 3D case follows the same
procedure (Fig. 1b).
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(a) Discretization, 2D. (b) Discretization, 3D. (c) Frame.

Fig. 1 a Discretization of a disk. The true center is represented by the
orange dot together with the true profile in the same color. The pixels at
a distance less than a are set to H (highlighted in light blue), while the
others are set to h. It is clear that it is not always possible to discretize

the disk in a symmetric fashion. The procedure follows the same ratio
for the 3D case (b), where usually the discretization on the z axis is less
fine than on the xy plane (code available at [40]), c blurred and noisy
frame (Color figure online)

Blurring and noise A blurring operator of Gaussian type
(dimension: 5× 5 pixels, of zero mean and unitary variance,
created via the MATLAB function imfilter) is applied to
each frame, simulating the perturbation given by the acquisi-
tion system.Gaussian noise of level σ is added to each frame:
Let η ∼ N (0, σ I) be a realization of a Gaussianmultivalued
random variable of zero mean and covariance matrix σ I. The
noise η is added according to the following formula (which
is a slight modification of the one in [29]):

Fz ← Fz + σ
η

‖η‖F ‖Fz‖F

with Fz being the zth frame and ‖ · ‖F the Frobenius
norm. A different noise realization η is created for each
frame. Moreover, in order to have the most realistic data,
Poisson noise is composed with the images, via the MAT-
LAB function imnoise, belonging to the Image Process-
ing Toolbox. This function is employed by the rescaling
1e12*imnoise(1e-12*F,’Poisson’),withFbeing
the current frame (see the MATLAB help for the imnoise
function for more details about this procedure.). Finally, the
intensity values of each frame are rescaled into the interval
[0, 255]. See Fig. 1c for a visual inspection of the result.

3 Algorithm

The steps for the particles recognition problem in the three-
dimensional case are presented in Algorithm 1:

Section 3.1 is devoted to illustrating the idea and the pro-
cedures beyond lines 2–7 of Algorithm 1. In Sect. 4 the
denoising step (line 2) is pursued via classical or variational

Algorithm 1 Let Nz be the frames’ number, a the radius of
the particles.
1: for z = 1, . . . , Nz do
2: Denoising of zth frame.
3: Search for the K connected components {Lk}k=1,...,K , in the z-th

frame.
4: for k = 1 . . . , K do
5: Compute the center of mass mk of the k-th component.
6: Open a window in the denoised frame, centred in mk .
7: Compute the k-th center via a regularized weighted Least Squares

fit.
8: Create the two candidates for computing the center of the particle

in 3D.
9: end for
10: end for
11: Compute the estimated centers of the particles via aweightedmean.

approaches:We present a brief introduction to the latter. Sec-
tion 3.2 explains how the 2D information obtained from the
frames can be used to estimate the particle center coordinates
in three dimensions (lines 8–11).

3.1 Frames Processing

The procedures in lines 2–7 are expanded below.

Denoising The presence of noise, together with the blurring
operator, could lead to some artifacts in the particle position
and diameter estimation; hence, a denoising and deblurring
procedure is necessary. A simple approach is using a Gaus-
sian filtering: This procedure is very quick and inexpensive,
performed via the FFT MATLAB’s native algorithms, see
Fig. 2b for the results. The pros of this approach are that
it reduces the presence of the noise and in its speed, while
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the drawbacks lie in the fact that the image is oversmoothed:
The perturbing effect of the PSF is augmented, resulting in
blurred edges.

We propose a denoising strategy based on an optimization
method. The linear model of image acquisition reads as

g = Hf + b + η (3.1)

where H is the linear operator representing the Point Spread
Function (PSF), e.g. the blurring operator, b is a constant
background term, f is the image to be registered and g is the
actual recorded image corrupted by the statistical noise η.
Since the direct solution of this linear model presents several
issues due to the ill-conditioning of H and to the presence of
noise, one resorts to compute a restored image f̃ by solving

f̃ = argmin
f∈C

f0(Hf + b; g) + μ f1(f) (3.2)

where C is a convex, non-empty closed set of constraints
(e.g., the nonnegative orthant),μ > 0 is a real parameter and
f0 and f1 are the fit-to-data and regularization functions,
respectively. The role of f0 is to measure the discrepancy
between the recovered image and the given data g, while f1
helps in reducing the influence of the noise and preserves
some characteristics of the solution (e.g., sharp edges). The
choice of f0 mainly depends on the noise perturbing the data.
In case of additiveGaussian noise, themost widely employed
functional is the classical Least Squares:

f0(Hf + b; g) = 1

2
‖Hf + b − g‖22.

In case of Poisson noise, which is signal dependent, f0 is
chosen as the generalized Kullback–Leibler functional:

f0(Hf + b; g) =
n∑

i=1

gi log

(
gi

(Hf + b)i

)
− (Hf + b − g)i

The regularization functional f1 is chosen according to the
characteristics one desires to preserve on the solution: The
sparseness is preservedvia the component-wise �1 norm [27],
diffuse components (e.g. in astronomical imaging [10]) are
recognized via Tikhonov regularization, the recovering of
few diffuse components is pursued by employing a convex
combination of the �1 and �2 norms, namely the Elastic-
Net, [4,17,53], and sharp edges in images could be detected
via the Total Variation functional [18,24,46] (or its differ-
entiable version called hyper-surface potential [54]). In this
work, f0 is chosen as theKullback–Leibler functional and the
regularization f1 is the Total Variation: The first is selected
due to the presence of Poisson noise, and the latter has the
role to promote the sharp edges of the spherical particles. For

a complete review of the methods for image reconstruction
from Poisson data, the interested reader could refer to [11].

The numerical experiments will compare two denois-
ing techniques: simple Gaussian filtering and the variational
approach (3.2).An approximated solution to the latter is com-
puted via an inexact Bregman technique [7,9], which consists
of an iterative procedure where f1 is substitutedwith its inex-
act Bregman distance computed in the previous iterate. The
inexact Bregman distance of a convex function is defined
as follows and refers to some classical concepts of convex
analysis [43].

Definition 1 Let f be a proper, convex function. The inexact
Bregman distance of f of x from y is

Δ
p,ε

f (x, y) = f (x) − f (y) − 〈p, x − y〉 + ε (3.3)

where p ∈ ∂ε f (y) is a ε-subgradient of f in y.

Algorithm 2 Set x0 such that p0 = 0 ∈ ∂ f1(x0); set μ ∈ R,
choose sequences {ηk} and {νk} s.t. ∑ ηi < ∞ and

∑
iνi <

∞; set ε0 = 0.
1: for k = 0, 1, . . . do
2: Compute an approximate solution xk+1 of

argmin
x

f0(Hx + b; g) + μΔ
pk ,ε

f (x, xk) (3.4)

such that

‖γ k+1‖ ≤ ηk+1, εk+1 ≤ νk+1

where

γ k+1 = 1

μ
qk+1 + pk+1 − pk

with qk+1 ∈ ∂ f0(x0), pk+1 ∈ ∂εk+1 f1(x
k+1).

3: Terminate if a stopping criterion is satisfied.

This substitution triggers an iterative procedure depicted
in Algorithm 2.

The following result (originally stated and proved in [7])
provides a convergence result.

Theorem 1 Let f0 and f1 be nonnegative, proper, lower
semicontinuous and convex functions, with dom( f0) ⊂
dom( f1) and the relative interiors of f0 and f1 have at
least a point in common. We assume that, for any k, there
exists a minimizer of the subproblem (3.4) and that x̂ is
minimizer of f0 such that f1(x̂) < ∞. If for any k ≥ 0
the inner solver determines xk+1, qk+1 ∈ ∂ f0(xk+1) and
pk+1 ∈ ∂εk+1 f1(x

k+1) so that the following condition on
γ k+1 = 1

β
qk+1 + pk+1 − pk and εk+1 holds

‖γ k+1‖ ≤ ηk+1, εk+1 ≤ νk+1
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(a) Original. (b) Denoised.

(c) Thresholded. (d) Labeled.

Fig. 2 Particular of the frame in Fig. 1c. a A region of interest with
two separated particles. b Result of the Gaussian filtering. The noise is
reduced, but the edges are blurred. c Thresholding via the Otsu method.
d Labeling procedure, where different colors mean different labels. The
order of labeling does not influence the final result (Color figure online)

with
∞∑

i=1

ηi < ∞ and
∞∑

i=1

iνi < ∞, then we have that

f0(x
k) ≤ f0(x̂) + μ

k

(

f1(x̂) − f1(x
0) +

k∑

i=1

〈
γ i , x

i − x̂
〉

+
k∑

i=1

(i + 1)εi

)

Moreover, if the level subsets of f0 are bounded, a limit point
of the sequence {xk} is a minimizer of f0; if x̂ is the unique
minimizer of f0, then xk → x̂ as k → ∞.

This technique has been employed in this work because
it has been proved that the usage of the Bregman distance
induces a contrast enhancement [3,7,16] in the recovered
images: This is a key point since having sharp edges eases
the recognizing of the particles’ profile. Furthermore, real-
world data present some issues due to the physical process
of acquiring 3D images: The top frames suffer from fluores-
cence that worsen the contrast, possiblymerging the particles
with the background (cfr. Fig. 13a, bottom left corner).

Search for the connected components In order to get an esti-
mation of the profile and of the center of the particles in
the current frame, they must be localized first. The strategy
is quite simple: The first step consists of thresholding the
denoised frame, by employing the Otsu method [41] (see
Fig. 2c). Then, the K connected components {Lk}k=1,...,K in
the thresholded frame are recognized and labeled (Fig. 2d).
The MATLAB function bwlabel is set to assume the
8-connected neighbors.At this stage, the area of each kth con-
nected component is stored in ak : This area will be used for
the estimation in three dimensions of the center [see (3.7)].
The center of mass mk of Lk is computed, together with a
first raw estimation rk of the radius: rk is the distance of mk

from the furthest pixel in Lk (Fig. 3a).

Least Squares fit Once the connected components are recog-
nized, a Least Squares fit is performed on each one in order
to estimate the profile and the center of the particle. First of
all, a Total Variation functional [54] is applied to the current
denoised frame, namely D, aiming to find the edges of the
particles (Fig. 3c). The discrete version of the Total Variation
functional for an image d reads as

TV(d) =
m∑

i=1

‖Aid‖, Ai ∈ R
2×m (3.5)

where d is the (column-wise) vectorized image, Ai ∈ R
2×m

is the discrete version of the gradient of d at the pixel i [3,13].
For sake of clarity, we focus on the kth component, assum-

ing that it is well separated from all the others.

1. A squared window of interest (WOI) centered in mk of
width 2 × (1.5rk) is opened (Fig. 3b) in TV (D). If a
particle is near to one edge of the frame, the window is
reduced until it falls entirely into the frame. This reduction
is not performed evenly on the two dimension: It could
lead to a rectangular WOI.

2. The WOI is thresholded via a value obtained again with
the Otsumethod: This thresholding yields the positions of
the largest changes in intensity, which are ideally located
on the profile edge, and at the same time discards the
fluctuations given by the residual noise (Fig. 3c).

3. The position of theq pixels above the threshold is stored in
an array {xi , yi , wi }i=1,...,q together with the correspond-
ing intensity values wi .

4. A constrained regularized Least Squares fit is performed
(Fig. 3d):

α̃ ∼ argmin
α2
1+α2

2−α3−a2≤0

1

2
‖WRα − Wy‖22 + μ

2
‖α‖22 (3.6)
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(a) mk and rk. (b) WOI. (c) Thresholded TV. (d) Estimation.

Fig. 3 Procedure for the Least Squares fit, focusing on a single con-
nected component. First panel: connected component, with its center
of mass and raw radius estimation. Second panel: window of interest
around the localized particle. Third panel: chosen pixels for the Least

Squares fit, with the relative intensity values. Fourth panel: estimated
center together with the profile, based on the thresholded values (Color
figure online)

where

W =

⎛

⎜⎜⎜
⎝

√
w1 0 . . . 0
0

√
w2 . . . 0

0 0
. . . 0

0 0 . . .
√

wq

⎞

⎟⎟⎟
⎠

, R =

⎛

⎜⎜⎜⎜
⎜
⎝

−2x1 −2y2 1
−2x2 −2y2 1
−2x3 −2y3 1

...
...

...

−2xq −2yq 1

⎞

⎟⎟⎟⎟
⎟
⎠

y = −

⎛

⎜⎜⎜
⎝

x21 + y21
x22 + y22

...

x2q + y2q

⎞

⎟⎟⎟
⎠

, α =
⎛

⎝
α1

α2

α3

⎞

⎠

and a is the true radius of the particles. The coordinates of
the estimated center

(
xek , y

e
k

)
are simply (α̃1, α̃2), where

α̃ is the solution to the minimization problem, while the

estimated radius rek is computed as rek =
√

α̃2
1 + α̃2

2 − α̃3:
This is the main reason for the constraint in (3.6).
The regularization term is included due to the fact that the
matrixWR could be ill-conditioned [28]; hence, the algo-
rithm could fail to converge to a feasible solution (e.g., if
the estimated radius is greater than a): In order to avoid
that, the parameterμ is set as 1/K, withK being the condi-
tion number of WR. Numerical experiments have shown
thatK is usually large, and hence,μ is small, resulting in a
small influence on the regularization, but still sufficient to
avoid infeasible solutions. Sometimes, K is so large that
even the regularization does not allow to achieve a feasi-
ble estimation. In this case, the regularization parameter
is repeatedly increased by a factor 1.1 until the constraint
is satisfied.

Remark 1 In the numerical experiment of this work, the solu-
tion to (3.6) is found by employing the MATLAB function
fmincon.

Remark 2 One may wonder if a procedure more simple
could be used in place of this Total Variation approach. We
compared the results (on synthetic tests) obtained via our
proposed approach with the ones achieved with a more direct
strategy. This simple procedure estimates the center of each
particle profile via the weighted mean of the elements of the
connected component, while the radius is computed employ-
ing the variances of these elements. In this way, the achieved
total error T is around 0.15, the vertical error V is close to
0.10–0.11 and the plane error P ranges between 0.08 and
0.09. Comparing these results with the one obtained via the
Total Variation approach convincingly shows that the latter
strategy is more effective.

We now focus on a pathological case, where two particles
are very close (Fig. 4a): The situation is problematic, but
still tractable. When the WOI is opened around one particle,
it may happen that some pixels belonging to the edge of the
other fall inside the window (Fig. 4a, b), affecting the Least
Squares procedure as it is evident in Fig. 4c. Thus, a further
control is needed in this case. Another search for connected
components is performed inside the WOI: If the number of
the found components is greater than 1 (Fig. 4b), then only
the largest one is kept (Fig. 4c). Adopting this procedure
leads to a better fit, as shown in Fig. 4d.

Unfortunately, the case in Fig. 5a can occur: The above
procedure fails to recognize two distinct particles and com-
pute a center which is very close to the center of mass of the
particles. Two possible strategies are proposed, but they still
need to be investigated.
The first is to perform some morphological operations [42],
in order to be allowed to recognize the different particles.
The second consists of performing a LS fit using an ellipse
model, instead of a circumference (Fig. 5c): If the ratio of the
semi-axes of the ellipse is either highly greater or lower than
1, it means that inside the ellipse there are more than one
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(a) WOI: 2 items. (b) Thresholding. (c) Perturbed fit.

(d) 2 components. (e) Largest item. (f) Improved fit.

Fig. 4 Upper panels: when two (or more) particles are very close but
still separated, selecting a large WOI may lead to include some unde-
sired pixels in the LS fit, resulting in a perturbed result. Bottom panels:
searching inside theWOI for all connected components avoids the prob-
lem depicted in upper panels. If the particles are close but disconnected,
one can easily isolate the largest component which is related to the par-
ticle, and hence, a reliable LS fit can be reached (Color figure online)

particle, due to the assumption of the spherical properties of
the particles. Another check is given by the eccentricity of the
ellipse. Thus, using the information (length and orientation)
of the axes of the ellipse, the WOI can be divided into two
smaller WOIs (Fig. 5d): Another LS ellipse fit is pursued
in each portion. For each one, the ratio of the semi-axis is
checked again: If it is around 1, then a particle is found; on
the other case, the same procedure is iterated.

Remark 3 The situation depicted in Fig. 5 can be worse:
Three or more particles can cluster, leading to an ellipsoid
fit which strongly resembles a circumference. In this unde-
sired case, the control on the ratio of the semi-axis could be
misleading, while the eccentricity can give a more reliable
output. Another strategy could be to rely on more advanced
image segmentation than simple thresholding, for example,
via a Mumford–Shah functional [25,51,55].

3.2 Three-Dimensional Estimation

The procedure lying beyond lines 8–11 of Algorithm 1 for
the estimation of the center of the particles is now explicit. It
consists of two main steps: First, given the 2D estimation of
the center of a particle in a frame, two possible 3D candidates
are computed via the Pythagorean theorem. In a second step,
we cluster all candidates belonging to the same particle.

Creation of the candidates This procedure relies on the
assumption that the radius a of the particles is known. Focus-
ing on a single particle, assume we have estimated its center
(xe, ye) and the radius re of its circular profile in the zth

(a) Two particles. (b) One component.

(c) Ellipse with axes. (d) 2 WOIs (yellow).

Fig. 5 From left to right, up to bottom: true image, labelled component,
estimated ellipse,WOI divided into twomoreWOIs. In the fourth panel,
the window of interest is divided along the longest axis. The example
shown refers to a vertical ellipse, but the procedure can take into account
arbitrarily oriented ellipses (Color figure online)

frame. The distance d between the true center and the con-
sidered frame is easily computed by d = √

a2 − (re)2 (cfr.
Fig. 6a). Hence, the two candidates for the third coordinate
are zdz−d and zdz+d (with dz being the vertical discretiza-
tion, equal to the separation between acquisition planes). At
this point, no prior information is known about where the
true center is located. A single particle can be spanned by
Z frames, namely: Hence in the ideal case, Z estimation for
the 2D centers is available, one for each frame intersecting
the particle, leading thus to have 2Z candidates for the true
center (Fig. 6b). Due to the geometric properties, Z candi-
dates will cluster in a region around the true center (blue
enlighten region in Fig. 6b): The next step consists in finding
this cluster.

Finding the clusters and computing the center For each cen-
ter in each frame, two candidates are created: Once all the
frames are processed, the situation in Fig. 7 occurs. For the
sake of clarity, we call R the set of centers found in the
frames and call C the set of possible candidates computed
as described in the previous paragraph (namely, the points
in Fig. 6a). It is expected that there should be a clustering
around the true centers of the particles. One strategy could
consist of searching for the Z nearest neighbors [36] lying
in a ball of radius ρrawa, 0 < ρraw < 1 (recall that Z is the
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z–th frame

a
d

re

Estimate 2D center
candidate
candidate
true center
z–th frame

(a) Computation of the center candi-
dates .

Frames
Estimated 2D centers
Relative candidates

(b) A cluster (in the blue region).

Fig. 6 a A vertical section of a particle. The horizontal line represents
the zth frame, on which an estimated center (xe, ye) (blue point) and
estimated radius (re) are computed. The information on the true radius
a allows to compute the distance d of the true center (black+) from the
zth frame, leading to two different candidates (red and yellow points). b
The procedure is repeated for each estimated center: In this case, there
are seven frames intersecting the particle; hence, 14 candidates are cre-
ated. The correct ones cluster around the true center, in the highlighted
circular region (Color figure online)

maximum number of frames spanned by a particle), but a
different approach is adopted here:

1. A first raw estimation of the center of the particles is com-
puted, using the set R;

2. The Z nearest neighbors to these approximated centers
are found within the candidates in C.

The first step groups the points inR that belong to the same
particle. Once these clusters are detected and labelled, the
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(a) Clusters.
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(b) Isolated clusters around the centers.

Fig. 7 Up: after processing of all the frames of the volume, the cluster-
ing of the candidates around the true centers becomes evident. Bottom:
the Z candidates which have to be used for the estimation of the center.
On both figures, the colors are displayed only for the sake of clarity
(Color figure online)

corresponding profiles are considered and used in aLS sphere
fit, in order to get a first raw estimation of the center of the
particles (seeFig. 9a for a visual inspectionof this procedure).
Let {Ri }i=1,...,q be the set of these raw estimations; focus on
one of these, namely the kth one. The Z nearest neighbors
to Rk are searched within a range ρesta, 0 < ρest < 1:

Let
{(

xek,i , z
e
k,i , z

e
k,i

)}

i=1,...,Z
be these neighbors (ideally,

these are the points lying in the small highlighted circle of
Fig. 6a). The estimation of the kth center xek = (

xek , y
e
k , z

e
k

)

is computed as

xek = 1

A

⎛

⎜⎜⎜⎜
⎝

〈
a, x(k)

〉

〈
a, y(k)

〉

〈
a, z(k)

〉

⎞

⎟⎟⎟⎟
⎠

(3.7)
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Fig. 8 Profile pixels of particles lying in a volume of 76.8 × 76.8 × 7
µm, with a discretization of 512 × 512 × 10. Using a simple nearest
neighbors searchwithin amultiple of the given radiusmay lead towrong
labelling (see, for example, the orange points) (Color figure online)

where a = (a1, a2, . . . , aZ )�, ai is the area of the con-
nected component related to the center

(
xeki , y

e
ki

)
, and A =

∑Z

i=1
ai , x(k) =

(
xek,1, x

e
k,2, . . . , x

e
k,Z

)�
. A weighted mean

is employed in order to lower the influence on the final esti-
mation of unreliable 2D estimations, for example the ones
coming from frames which intersect a particle near its top or
its bottom, leading to high uncertainty.

Remark 4 It could happen that the nearest neighbors to Rk are
less than Z : This can be due to low-quality images, because
the procedure fails to recover the 2D center in some frames
or because the particle has moved during acquisition.

Remark 5 The perceptive reader may wonder why the profile
pixels (Fig. 3c) found in the whole volume are not employed
to directly estimate the center and the radius via a 3D fit. This
approach has been investigated: The profile pixels are identi-
fied (crf. Fig. 8), and the main problem is to gather the points
belonging to the same particle. Employing a simple near-
est neighbors search within a distance 1.2a–1.3a (because
the TV functional spreads the profile) would fail, since it
may assign pixels to a particle while they actually belong to
another one. We then resort to use our procedure to obtain
a first estimation of the centers, then search for the nearest
neighbors within a distance of 1.2a–1.3a and then apply a
3D LS sphere fit. We explored two approaches for a vol-
ume of dimension 76.8× 76.8× 7 µm, with a discretization
of 512 × 512 × 10 voxels and 100 particles (see Sect. 4
for details). Twenty different simulations were considered to
validate the approaches.

1. Employing a 3D unweighted LS fit leads to a total error
T of ∼20% of a voxel, which is not sufficiently precise
in any real-life application.

2. Including also the pixels values as weights in the estima-
tion, following (3.6), leads to a total error of 0.0944, while

our procedure provides T = 0.0813 (cfr. Table 1) and to
a in-plane error is 0.0922 versus 0.0883 (cfr. Table 1).
Only the error in the z axis is 0.0139, while we reach an
estimated V = 0.0259 (cfr. Table 1).

Although the weighted Least Squares fit is very appealing in
the 3D case thanks to its easiness of extension, it does not
provide better results than the proposed procedure, specially
in total error which is of main interest. See Sect. 4 for the
details about error measurements, performance and results.

4 Numerical Tests

Two different experiments are carried out to validate the per-
formance of the proposed algorithm. The first is devoted to
evaluating the performance on synthetic datasets. Dataset
construction is described in Sect. 2, with two different noise
realization (Gaussian plus Poisson noise and pure Poisson).
The evaluation is done by using three different error mea-
surements, described in the subsequent paragraph. A large
number of simulation is carried out, aiming to produce a
sufficient amount of data to draw reliable conclusions. More-
over, the performance of the algorithm is also evaluated on the
vertical resolution, since this is an important issue in real-life
application. The second experiment concerns real 3D data:
It consists of considering a scanned volume of particles with
a diameter of 3µm suspended in a glycerol/water mixture.
Both experiments are carried on a MacBookPro, equipped
with 16-GB RAM and an Intel� Core™ i7 CPU (2.2GHz),
on MATLAB 2015a. The MATLAB code is available at
http://www-syscom.univ-mlv.fr/~benfenat/Software.html.

Error measurements In order to evaluate the performance
of our algorithm, inspired by [19,44], three different error
measurements are adopted. Denote with c = (

cx , cy, cz
)�

the true coordinates of a center and with e = (
ex , ey, ez

)�

the coordinate of the relative estimation. The total error T is

T =
√

(c − e)� D−2 (c − e), D =
⎛

⎝
dx 0 0
0 dy 0
0 0 dz

⎞

⎠ (4.1)

which aims to measure the error w.r.t. voxel precisions.

The in-plane error P and the out-of-plane error V are defined
as

P =
√(

cx − ex
dx

)2

+
(
cy − ey
dy

)2

, V = |cz − ez |
dz

.

(4.2)
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(a) Profiles for LS fit.
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Fig. 9 Up left: overlay of the estimated center and of the circle profile
of a particle over the spanned frame. The highlighted profiles are used
in a LS fit to get a raw estimation of the center of the particle, indicated
with the red plus in Fig. 9b. Up right: the red plus is the raw estimation
of the center, the dots are the possible candidates in C, and the orange

one is the Z nearest neighbors to the raw estimation within a range of
0.1: These points are employed in (3.7). The reader should pay atten-
tion to the different scale of the axis. Bottom: xy, xz and yz view of
the estimated center, of the candidates and of the selected candidates
(Color figure online)
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(a) out–of–plane error.
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(b) In–plane error.
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(c) Total error.

Fig. 10 From left to right: V ,P and T errors. Each performance stays below the state-of-the-art baseline, which is 10% of a pixel/voxel. The
medians of the errors are 0.0289, 0.0483 and 0.0712 for V ,P and T , respectively (Color figure online)

The former aims to measure the error on the estimation of the
particles’ position in the single frames w.r.t. pixel precision,
while the latter focuses on the vertical displacement.

First synthetic test: Gaussian and Poisson noise Following
the notation of Sect. 2, the synthetic dataset is generated using

the following settings: Dx = Dy = 76.8µm, Dz = 7µm,
the number N of particles is 100 of radius a = 1µm; the
volume is discretized into a 3D array of dimension Nx =
Ny = 512, Nz = 22, leading to voxels’ dimension dx =
dy = 0.15 µm, dz = 0.3182 µm. Two types of noise are
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affecting the frames: Gaussian (σn = 0.2) and Poisson (see
Sect. 2 for the details on how the Poisson noise is added).

Algorithm 1 is applied: The chosen denoising technique
(Line 2) consists simply of filtering via a Gaussian filter of
dimension 5 pixels and variance 1. The window of interest
is chosen as described in Sect. 3.1. Due to the discretization
of the 3D volume, the maximum number Z of frames that
can be spanned by a particle is 7; hence, the estimation of the
centers (Sect. 3.2) is achieved by

1. clustering the points inR within a distance equal to 0.2a
followed by estimating the raw center {Rk}k=1,...,q and
then

2. search the Z nearest neighbors to each Rk within a dis-
tance 0.2a and apply (3.7).

In Fig. 10, the three types of errors are depicted; the proposed
procedure recognizes 99 particles (out of 100). The plots in
Fig. 10 show that the mean of each error (yellow dashed line)
type stays below the 1/10 of a pixel/voxel (red line), which is
the baseline of the state-of-the-art methods [19,21]. In fact,
the in-plane error is 0.0596, and the out-of-plane error is
0.0371. The total error, given by (4.1), is 0.0777, below the
state-of-the-art baseline.

In order to study the behavior of the procedure on large
numbers of particles, the above simulation is repeated 20
times (for a total of 2000 particles), storing the errors V ,P,T
for each run. The histograms of the total error T are shown
in Fig. 11a, together with its distribution estimation. The
histogram is fit with a Γ distribution with parameters (k, θ),
where k is the shape parameter and θ is the scale parameter.
The mean of T is 0.0811. The behavior of the total error is
presented alone: The histogram of the in-plane error has the
same appearance, with mean 0.0643, while the histogram of
the out-of-plane error has also a Γ behavior but much more
concentrates toward zero, with a mean of 0.0387. All the
three errors stay below the expected baseline of 10% [19].

Our proposed procedure is based on the assumption that
the true radius is known: This is a valid assumption in many
applications, but with a certain degree of uncertainty (e.g.,
the radius can be known within an error of the 10%). In order
to check whether the estimation re of the radii of the particles
is reliable, in Fig. 11b the histogram of the signed difference
a − re is shown, aiming to evaluate the performance of the
algorithm (re is computed by simple geometric properties).
The chosen distribution for the fit is the t-location scale fit,
due to the heavy tail on the left: This distribution is able to
capture also the highest error (in absolute value). In this case,
there are actually some outliers on the left of the histogram,
as it is evident from Fig. 11b. The mean given by this distri-
bution is −0.0142: This means that overall the radii of the
particles are overestimated by 1.5%. A first justification of
this behavior can be given by the blur effect given by the

Fig. 11 a Histogram of the total error T : Its mean is 0.0811, and its
median is 0.0781. The out-of-plane and the in-plane error has very
similar behavior and can be fitted to the same distribution. b Histogram
of the signed difference a−re togetherwith its t-location scale fit. There
are more outliers on the left than on the right, and in addition to the fact
that the mean is circa − 0.014 this tells that the proposed procedure
tends to slightly overestimate the radius of the particles (Color figure
online)

PSF (see Sect. 2 for the detail) combined with the denois-
ing technique adopted, but the next experiment will neglect
the influence of the PSF and it will show how the denoising
technique influences the radius estimation.

The last part is devoted to study the performance w.r.t. the
vertical resolution, i.e., the number Nz of frames in which
the volume is discretized (Nx and Ny are unchanged, since
most modern microscopes have a high resolution in both x
and y axes). In Table 1, the behavior of the three kinds of
error is depicted for increasing vertical resolution. For each
dimension, 20 different simulations were performed; hence,
20 different runs of the procedure have been done: The num-
bers appearing in Table 1 are the means of the results of these
simulations. One would expect that the estimation would
improve with the number of frames: Actually, the procedure
reveals itself to be very robust w.r.t. the vertical resolution,
even with only a few (10 or 12) frames. The difference a−re

is depicted in the fourth row: For each resolution, this differ-
ence is around -0.013,meaning that, regardless of the number
of vertical frames, the radius of the particles is overestimated
by 1.3%. The last line of Table 1 refers to the (mean) number
of estimated particles: The results are very satisfying for all
the resolution but the first one (Nz = 10); this is due to the
fact that in this case a particle can span only three frames
maximum (more likely just two frames), leading to have a
low number of candidates in C. Hence, it is a problem linked
to the relation between the dimension of the particles and
the vertical resolution: For small particles, it is sufficient to
slightly increase Nz (Nz = 12 in order to get very good
results), while for larger particles (a = 1.1µm) ten frames
prove to be sufficient, as it is evident in Table 2.
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Table 1 Performance w.r.t.
different vertical discretization.
There is a faint decreasing
behavior in the vertical error,
which leads in a decrease in the
total error

Nz : number of frames
10 12 15 20 22 25 30

P 0.0813 0.0774 0.0719 0.0713 0.0643 0.0630 0.0620

V 0.0259 0.0301 0.0318 0.0336 0.0387 0.0471 0.0436

T 0.0883 0.0870 0.0836 0.0844 0.0811 0.0855 0.0824

a − re − 0.0117 − 0.0129 − 0.0141 − 0.0138 − 0.0142 − 0.0133 − 0.0137

Nrec 69.4 92.8 96.4 98.2 99.2 99.7 99.8

Notice that even for a low number of frames a low V is achieved. In the last row of the table, the error on the
true radius is shown for each resolution. Despite the low resolution, even for Nz = 10 or Nz = 12 a good
estimation is achieved. The means of the differences a − re are obtained via a t-location scale distribution fit

Table 2 Results of 20 runs of the procedure with a = 1.1µm, Nz = 10
and N = 50

P V T a − re Nrec(%)

0.0624 0.0262 0.0712 −0.0099 47.3 (95.5%)

It is evident that the poor performance of the procedure when Nz = 10
in Table 1 is due to the relation between the diameter of the particles
and the resolution. Such a low resolution is however enough for slightly
larger particles to get reliable results

Second synthetic test: Poisson noise These tests aim at
checking whether the Gaussian filtering is the right choice
for denoising. Let consider the same setting of the previous
experiments: Dx = Dy = 76.8µm, Dz = 7µm, 100 par-
ticles of radius a = 1µm, Nx = Ny = 512, Nz = 22.
The difference lies in the noise corrupting the frames: No
Gaussian noise is present (σn = 0), while Poisson noise
affects the data. Algorithm 1 is applied to this dataset: Satis-
factory results, in line with the ones in Table 1, are obtained
(P = 0.0621,V = 0.0331, and T = 0.0755, 98 particles
recognized). Since simple Gaussian filter is not always suffi-
cient to deal with high-level Poisson noise, as anticipated in
Sect. 3.1 the variational approach (3.2) is adopted and solved

by the aforementioned inexact Bregman procedure [7,8]. As
explained in Sect. 3.1, this strategy has been chosen instead
of possibly simpler procedures (e.g., [12,13,15,22]) for its
ability to increase contrast in the restored images. A visual
inspection on the difference between the Gaussian filtering
and the employed Bregman technique is depicted in Fig. 12,
where a zoom of the fourth frame is shown. Algorithm 2
requires an iterative solver for subproblem (3.4) when an
explicit solution is not available, as in the present case. In
this work, the AEM algorithm [14] is used, with a maximum
of 1000 iterations maximum and stopped via the criterion
described in [7] within a tolerance of 10−4, the fixed num-
ber of external iterations is 3, the regularization parameter
μ is set to 0.1. Due to the presence of Poisson noise, f0
is set as the generalized Kullback–Leibler functional, while
the regularization function f1 is the Total Variation. Using
this approach in line 2 of Algorithm 1 yields the following
results: P = 0.0627,V = 0.0316 and T = 0.0752, with
99 particles recognized. The most important difference lies
in the estimated radius: With Gaussian filtering, the mean
error (obtained by a t-location scale fit) is −0.0134, while
the Bregman technique leads to an error of −0.0018; hence,

(a) Blurred & noisy. (b) Clear image. (c) Gaussian filtering. (d) Bregman.

Fig. 12 From left to right: Blurred and noisy frame, original image
(without blurring and noise), Gaussian filtering and Bregman restora-
tion. These images are examples from the fourth frame, they are
displayed in the range [0, 255]. The Bregman technique is able to sepa-
rate in amore reliableway the particles and at the same time is providing

with more sharp edges, due to the choice of regularization function. In
this case, the regularization is given by the Total Variation functional. It
could happen that Gaussian filtering makes merge two or more particle
in one big component, increasing the difficulties in recognized different
objects (Color figure online)
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Table 3 Results obtained by ten
runs of the algorithm. The
Bregman technique provides
better results overall, both for
Nz = 10 and Nz = 22

Nz Technique P V T a − re Nrec(%)

10 Gaussian filter 0.0622 0.0271 0.0712 −0.0096 46.7 (93.4%)

Bregman 0.0628 0.0177 0.0677 −0.0013 47.6 (95.2%)

22 Gaussian filter 0.0626 0.0380 0.0793 −0.0138 98.8 (98.8%)

Bregman 0.0637 0.0291 0.0746 −0.0019 99.4 (99.4%)

The error on the estimated radius is given by the mean obtained by the t-location scale distribution fit, as was
done in Fig. 11b; for the case Nz = 10, looking at the simple arithmetic mean, the Bregman procedure shows
to be much more precise in the radius’ estimation; in fact, it gives an error of −0.0028, while the Gaussian
filtering results in an error of −0.0119. For the case Nz = 22, the overall behavior of the Bregman approach
in terms of error measurements is slightly better, but the number of found particles is closer to the maximum
and the estimation of the radius improved, reaching an error of 0.1%

using the Gaussian filtering leads to an overestimation of the
radius of the particles. Since just one single experiment is not
sufficient to support this claim, further tests are carried on and
presented in Table 3: One is with a lower vertical resolution
(Nz = 10), where the dimension and the discretization of the
volume are the same, while the number of particles is 50 and
the radius is set to 1.1µm. The second test is performed on a
dataset with the same characteristic of the first one presented
in this paragraph: Dx = Dy = 76.8μm, Dz = 7μm, 100
particles of radius a = 1μm, Nx = Ny = 512, Nz = 22.

Table 3 shows that using the correct denoising procedure
produces better results in terms of error estimation and of
number of recognized particles; moreover, choosing the cor-
rect denoising technique allows to estimate more precisely
the radius: In fact, for Nz = 10 using Gaussian filtering
leads to an error of almost 1%, while the Bregman technique
reduces the error to 0.1%.For Nz = 22, the difference ismore
pronounced: Classical filtering gives an error of ∼ 1.4%,
while again the proposed approach results in an error of only
0.1%. The hypothesis that the overestimation of the radius
actually depends on the denoising and deblurring technique
is true: At a first sight, it seems from Table 1 that this is a
determinate error [19] of the algorithm, but this last exper-
iment tells the opposite. The procedure used to improve the
quality of the images influences the performance of the par-
ticle estimation algorithm.

On the one hand, the two denoising procedures are similar,
because both require parameters setting (e.g., the Bregman
technique requires the tuning of the regularization parameter,
of the tolerance for the stopping criterion; the filtering tech-
niques require to choose the type of filter and its parameters);
on the other hand, the optimization technique has drawbacks
as its computational cost and the time need to restore each
frame, while simple filtering is more or less free in these
terms. There is a trade-off (as it usually occurs in cases such
these) between performance and time/computational cost.

Real 3D data This paragraph is devoted to applying the
proposed algorithm to real 3D data. The scanned volume
has Dx = Dy = 64µm, Dz = 4.1µm and discretized

(a) Original. (b) Original, particular.

(c) Bregman. (d) Bregman, particular.

(e) Gauss filter. (f) Gauss filter, particular.

Fig. 13 From left to right, fromup tobottom.The images have to be read
in pairs: For the zth slice, the left image refers to the noisy and blurred
frame, while the right image refers to the restored one. It is clear that
the contrast of the image is significantly improved, reducing the diffuse
areas, mainly in the highest frames. All the images are displayed in the
range [0, 255] (Color figure online)
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Fig. 14 a 3D recovering of the position of the particles at time t = 1. Panel from b–k contains the original images with the superposition of the
recognized profiles (in red) (Color figure online)

into an array of dimension 512 × 512 × 10, leading to
dx = dy = 0.125µm, dz = 0.41µm; 50 scans of the
volume were recorded, with a dt = 0.5s. The diameter of the
particles is 3µm (a = 1.5µm), and they are suspended in a
∼ 70%–30% glycerol/water mixture (viscosity of ∼ 0.017
Pa s). The instrument used to acquire this data is a confocal
microscope (Zeiss LSM 700) with a 100×NA 1.4 oil immer-
sion objective (Zeiss Plan-APOCHROMAT). The frames are
restored using the Bregman procedure previously described
with the following settings: AEM as inner solver with a Total
Variation functional as regularization, maximum number of
allowed iterations set to 1000 within a tolerance of 10−4

for the stopping criterion described in [7] with α = 2, 3
external iteration allowed. Since the images are given with-

out any information about their recording, a Gaussian PSF1

with σ = 1 and zero mean is assumed as blurring operator, a
background term equal to the minimum value of the image,
and Poisson noise affecting the frames. All these assump-
tions are consistent with the type of the images produced by
the aforementioned instrument.

Figure 13 shows in its first row the sixth acquired frame
at time t = 1, the restored version via Bregman technique
and the filtered image via a Gaussian filter. In the second
column, a particular of these image is presented: The visual
inspection makes clear that the usage of a suitable denoising
technique allows to reduce the glowing halo all among the

1 fspecial(’gaussian’,512,1).
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frame and moreover provides with more sharp edges, and
all this contributes in making easier the recognition of the
profiles.

Algorithm 1 is set with an initial WOI of width 2× 0.1rk
(see Sect. 3.1 for the details), with a threshold which is 1.5
times the value given by Otsu’s method, ρraw = 0.3, ρest =
0.3. The frames at time t = 1 are shown in Fig. 14b–k.

Figure 14a provides a visual inspection of the recon-
structed position of the particles at time t = 1: This
reconstruction faithfully respects the true position, as it is
clear by comparing the 3Dplotwith the frames depicted from
Fig. 14b–k, where the recovered profiles of the particles are
superimposed on the original images. In these images, the
top left corner corresponds to the point (0, 0, kdz) in the
3D space, with k being the number of the frame. A closer
inspection of Fig. 14 demonstrates that the proposed proce-
dure finds particles close to the boundaries of the frames, as
well as the ones near the top or the bottom of the volume.

5 Conclusion

In this work, a particle segmentation and position estimation
methodology is presented. Assuming fixed spherical parti-
cles with a known radius, this procedure on the first hand
applies a noise removal algorithm on each frame of the 3D
volume; then, it uses the 2D gradient information on the pro-
files of the particles and employs a weighted regularized
Least Squares fit to find the 2D center and the radius of
the profile intersecting each frame. Using geometric prop-
erties, the coordinates of the 3D center are retrieved with an
accuracy better than 10% of a voxel, which is the state-of-
the-art performance of this type of algorithms. Furthermore,
the intermediate steps implemented for the 3D reconstruction
allow also to recover the particles’ position within each 2D
frame, with a subpixel precision. Reliable results for the 3D
positioning are achieved even for a low vertical resolution:
The total error is indeed under the 10% of a voxel. Moreover,
the very low error on the radius estimation suggests that this
procedure improves a priori information about the radius
of particles of uncertain dimension. This work demonstrates
that the preprocessing of the frames requires particularly tai-
lored techniques, depending on noise type: Since Poisson
noise is the most common noise affecting the images, sim-
ple Gaussian filtering is not sufficient. One of the available
image restoration techniques is then applied in this context:
Although they aremore demanding in termsof computational
cost and time, the application of this strategies leads to a gen-
eral improvement of the position estimation. Moreover, this
tailored approach significantly increases the precision on the
radius estimation, and it provides deeper insights on the role
of Gaussian filtering in this task, proving that it induces an
overestimation. Futureworkwill involve better segmentation

techniques for pathological cases, employing more tailored
approaches such as regularized approaches inspired by the
Mumford–Shah functional. The case of spherical particles
with unknown radiuswill be also handled.The reliable results
in positioning directly suggest that the proposed technique
can be embedded in a more general procedure devoted to
tracking procedure, where the particles are no longer fixed
but may subjected to significant Brownian motion between
slice acquisition.
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