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Abstract

Particle estimation is a classical problem arising in many science fields, such as biophysics, fluid mechanics,

bio-medical imaging. Many interesting applications in these areas involve 3D data: this work presents

a technique to estimate the 3D coordinates of the center of spherical particles. This procedure provides

an estimation of both the center and the profile of the 2D intersections of the particles with the frames,

by coupling the usage of Total Variation functional and of a regularized weighted Least Square fit. The

2D information is used to retrieve the 3D coordinates using geometrical properties. The performance of

this procedure strongly depends on the quality of the acquisition, hence a particularly tailored denoising

technique is applied for Poisson noise: this leads to a better estimation of the particle positions.

Keywords: Particle estimation, particle tracking, 3D data, Brownian Motion

1. Introduction

Particle tracking techniques are widely employed in several science fields for identifying particular struc-

tures or processes of interest. Some important examples include biophysics, where these techniques are

involved in the observation of molecular level motion of kinesin in microtubules and of motion of myosin on

actin [1], in the study of the infection path of a virus [2] or in the investigation of cytoskeletal filaments [3];5

another topic involving particles tracking problem regards the observation of protein motion in cell mem-

branes [4] or intracellular transport [5]. Other interesting areas of application include fluid dynamics and

mechanics, in particular Rheology [6], where the thermal motion of Brownian particles has been tracked to

study local rheological properties [7]; complex fluids [8, 9]; and Microrehology in Medicine [10]. Colloidal

works have benefited from developments in particle tracking procedures in measuring biofluids such as mucus10
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[11] and vitreous humor [12] . It has been pointed out [13] that particles have different meanings depending

on the applications: a single molecule, a virus, a spherical object. In this work, a particle is a spherical

object around 1 micrometer in diameter, observed in confocal microscopy.

Particle tracking consists of two main steps: particle position estimation and trajectory reconstruction.

Following [14], in this work a numerical simulation of the standard setup is adopted: the simulated system15

consists of a CCD camera connected to a microscope which records images (frames) of molecules or spherical

particles. In [14] (and references therein), a particular focus on microrheology-related problems is considered,

and the balance between high spatial resolution and timescale of data acquisition is considered in depth:

the former leads to approximate multiple–tracking techniques while the latter allows a greater flexibility

and provides an high statistical accuracy. In [15] the spatial resolution influence was investigated. In20

the presented paper, the first step of particle tracking problem is solved: the proposed algorithm provides

estimations of the particles position with subpixel resolution, both in two and three dimensional cases. The

proposed procedure aims mainly to treat the static error [14], which arise from noise affecting this type of

experiments; this static error is equivalent to the notion of precision in [15].

In the past, several procedure have been proposed to estimate the particle position: cross–correlation25

of a sequence of images [16], centroid techniques [17], Gaussian fitting [18]. Some of them claim subpixel

resolution, and in [15] a wide comparison of these techniques showed that significant numerical experimen-

tation is needed before validating such results. Other methods includes combinatorial optimization [19],

nearest neighbour [20], Kalman filtering coupled with probabilistic data association [21], use of the Viterbi

algorithm [22] and several others. An experimental comparison of a pletora of methods can be found in [13].30

In this work, our proposed procedure is first tested on synthetic but realistic data. The algorithm proved

itself to be providing good performance on such data, hence it is applied on real 3D data with satisfactory

results.

The procedure presented in this paper provides position estimations of 3D spherical particles: this

approximation is inspired by the problem of estimating the motion of spherical nanoparticles suspended in35

a fluid. A novel approach based on Total Variation functional and on Least Square fitting is proposed to

locate the center of the spherical particles in 2D frames. The 3D centers of the particles are hence estimated

using geometric properties and employing the 2D information retrieved in the previous steps. The algorithm

achieves subpixel resolution both in the 2D case, i.e. in estimating the position of the particles within frames,

and in the 3D case.40

This paper is organized as follows: in Section 2 the simulation procedure is described, in order to get

realistic 3D data to validate the proposed algorithm. In Section 3 details of the proposed procedure are

given: the pre–processing of the frames and the estimation of the 2D centers, and then the 3D estimation.

Section 4 is devoted to the numerical experimentation on both synthetic and realistic data; finally, in

Section 5, conclusions are drawn.45
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Notation. Bold letters, bold capital letters and Latin (or Greek) letters denote vectors, matrices and

scalars, respectively. The i–th element of the vector x is denoted by xi. The notation N
(
µ, σ2

)
indicates a

Gaussian distribution of mean µ and variance σ2. I denotes the identity matrix, 0 the vector with all zeros

entries.

2. Data Creation: Simulation Procedure50

The synthetic datasets used to validate the proposed algorithm are simulated following these steps, which

are inspired by the characteristics of real settings:

• N spherical particles of radius a are randomly placed in a 3D volume of dimension Dx × Dy × Dz.

The particles are assumed to have all the same, known radius;

• the 3D volume is discretized into an array of Nx×Ny×Nz voxels; each voxel has dimension dx×dy×dz,55

being dx = Dx/Nx,dy = Dy/Ny,dz = Dz/Nz. Nz represents the number of 2D frames. Each particle

is discretized in this volume;

• aiming to simulate realistic data, a blurring operator is applied to each frame, then Gaussian and/or

Poisson noise is respectively added to or composed with each image.

In the following the creation of the dataset is described precisely.60

Position simulation. The continuous positions {xi}i=1,...,N of the N particles are randomly chosen in Dx×

Dy ×Dz, via an uniform distribution. The 3D position of the i–th particle is denoted via xi = (xi, yi, zi)
>

.

Discretization. Given the continuous coordinates xi of the i–th particle and the radius a, the voxels at

distance less or equal to a are filled with a value of H, while the others are set to h, aiming to have a

non–zero constant background. In our simulations, we set h = 10 and H = 220. These values were chosen in65

order to simulate realistic tiff images, which usually have values in [0, 255]. In Figure 1 a 2D explanation

of this procedure is depicted: the 3D case follows the same procedure.

Blurring and Noise. A blurring operator of Gaussian type (dimension: 5×5 pixels, of zero mean and unitary

variance, created via the MatLab function imfilter) is applied to each frame, simulating the perturbation

given by the acquisition system. Gaussian noise of level σn is the added to each frame: let be η ∼ N (0, σnI)

a realization of a Gaussian multivalued random variable of zero mean and covariance matrix σnI. The noise

η is added according to the following formula (which is a slight modification of the one in [23])

Fz = Fz + σn
η

‖η‖F
(1 + ‖Fz‖F)
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(a) Discretization, 2D. (b) Discretization, 3D. (c) Frame.

Figure 1: Panel 1(a): discretization of a disk. The true center is represented by the orange dot together with the true profile

in the same color. The pixels at a dstance less than a are set to H (highlighted in light blue), while the others are set to h. It

is clear that is not always possible to discretize the disk in a symmetric fashion. The procedure follows the same ratio for the

3D case (1(b). Panel 1(c): blurred and noisy frame

being Fz the z–th frame and ‖ · ‖F the Froebenius norm. A different η is created for each frame. Moreover,

in order to have the most realistic data, Poisson noise is composed with the images, via the MatLab function

imnoise, employed by the rescaling 1e12*imnoise(1e-12*F,’Poisson’), being F the current frame (see70

the MatLab help for the imnoise function for more details about this procedure.). Finally, the intensity

values of each frame are rescaled into the interval [0, 255]. See Figure 1(c) for a visual inspection of the

result.

3. Algorithm

The steps for the particles recognition problem in the 3–dimensional case are presented in Algorithm 1:75

Algorithm 1 Let Nz be the frames’s mumber, a the radius of the particles.

1: for z = 1, . . . , Nz do

2: Denoising of z–th frame.

3: Search for the K connected components {Lk}k=1,...,K , in the z–th frame.

4: for k = 1 . . . ,K do

5: Compute the center of mass mk of the k–th component.

6: Open a window in the denoised frame, centered in mk.

7: Compute the k–th center via a regularized weighted Least Square fit.

8: Create the two candidates for computing the center of the particle in 3D.

9: Compute the estimated centers of the particles via a weighted mean.
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Subsection 3.1 is devoted to illustrating the idea and the procedures beyond lines 2–7 of Algorithm 1,

while Subsection 3.2 explains how the 2D information obtained from the frames can be used to estimate the

particle center coordinates in 3 dimensions.

3.1. Frames Processing

The procedures described in lines 2–7 are listed and expanded below.80

Denoising. The presence of noise, together with the blurring operator, could lead to some artefacts in the

particle position and diameter estimation, hence a denoising and deblurring procedure is necessary. A simple

approach is using a Gaussian filtering: this procedure is very quick and inexpensive, performed via the FFT

MatLab’s native algorithms, see Figure 2(b) for the results. The pros of this approach are that it reduces the

presence of the noise and in its speed; while the drawbacks lie in the fact that the image is oversmoothed:85

the perturbing effect of the PSF is augmented , resulting in blurred edges.

We propose a method based on an optimization method: given the noisy and blurred frame g, one is led

to compute the denoised frame f̃ as

f̃ = argmin
f∈C

f0(Hf + b;g) + µf1(f)

where C is a convex, non–empty closed set of constrains (e.g., the non–negative orthant), H is the blurring

operator representing the PSF, b is a constant background term, µ > 0 is a real parameter and f0 and f1

are the fit–to–data and regularization functions, respectively. This problem has been deeply investigated in

recent years, leading to the development of a great number of valid optimization algorithms [24, 25, 26].90

Moreover, this formulation of the problem allows us to choose the function f1 in order to preserve some

desired characteristic (e.g., sharp edges) on the recovered image.

Search for the connected components. In order to get an estimation of the profile and of the center of the

particles in the current frame, they must be localized first. The strategy is quite simple: the first step

consists of thresholding the denoised frame, by employing the Otsu method [27] (see Figure 2(c)). Then, the95

K connected components {Lk}k=1,...,K in the thresholded frame are recognized and labeled (Figure 2(d)).

The Matlab function bwlabel is set to assume the 8–connected neighbours. At this stage, the area of each

k–th connected component is stored in ak: this area will be used for the estimation in 3 dimensions of the

center (see (3)). The center of mass mk of Lk is computed, together with a first raw estimation rk of the

radius: rk is the distance of mk from the furthest pixel in Lk (Figure 3(a)).100

Least Square Fit. Once the connected components are recognized, a least square fit is performed on each one

in order to estimate the profile and the center of the particle. First of all, a Total Variation functional [25]

is applied to the current denoised frame, namely D, aiming to find the edges of the particles (Figure 3(c)).
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(a) Original. (b) Denoised. (c) Thresholded. (d) Labeled.

Figure 2: Particular of the frame of Figure 1(c). From left to right: a region of interest with two separeted particles. Second

panel: result of the Gaussian filtering. The noise is reduced, but the edges are blurred. Third panel: thresholding via the Otsu

method. Last panel: labeling procedure, where different colors mean different labels. The order of labeling does not influence

the final result.

Denoting (with an abuse of notation) the partial derivatives via ∂x and ∂y in the two directions, the Total

Variation function on D reads as

TV(D) =

√
(∂xD)

2
+ (∂yD)

2
. (1)

The data are discrete, hence a discrete version of TV is implemented: the derivatives are computed via

centered differences with 2nd order accuracy. Centered differences with 4th order accuracy were tested, but

no significant differences were observed in the final results.

For sake of clarity, we focus on the k–th component, assuming that is well separated from all the others.

(a) mk and rk. (b) WOI. (c) Thresholded TV. (d) Estimation.

Figure 3: Procedure for the least square fit, focusing on a single connected component. First panel: connected component,

with its center of mass and raw radius estimation. Second panel: window of interest around the localized particle. Third

panel: chosen pixels for the least square fit, with the relative intensity values. Fourth panel: estimated center together with

the profile, based on the thresholded values.

1. A squared window of interest (WOI) centered in mk of width 2 × (1.5rk) is opened (Figure 3(b)) in105
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TV (D). If a particle is near to one edge of the frame, the window is reduced until it falls entirely

in to the frame. This reduction is not performed evenly on the two dimension: it could lead to a

rectangular WOI.

2. The WOI is thresholded via a value obtained again with the Otsu method: this thresholding yields

the positions of the largest changes in intensity, which are ideally located on the profile edge, and at110

the same time discards the fluctuations given by the residual noise (Figure 3(c)).

3. The position of the q pixels above the threshold are stored in an array {xi, yi, wi}i=1,...,q together with

the corresponding intensity values wi.

4. A constrained regularized Least Square fit is performed (Figure 3(d)):
α̃1

α̃2

α̃3

 = α ∼ argmin
α2

1+α
2
2−α3−a2≤0

1

2
‖WRα−Wy‖22 +

µ

2
‖α‖22 (2)

where

W =



√
w1 0 . . . 0

0
√
w2 . . . 0

0 0
. . . 0

0 0 . . .
√
wq



R =



−2x1 −2y2 1

−2x2 −2y2 1

−2x3 −2y3 1
...

...
...

−2xq −2yq 1


, y = −


x21 + y21

x22 + y22
...

x2q + y2q


and a is the true radius of the particles. The coordinates of the estimated center (xek, y

e
k) are simply

(α̃1, α̃2), while the estimated radius rek is computed as rek =
√
α̃2
1 + α̃2

2 − α̃3: this is the main reason115

for the constrain in Equation (2).

The regularization term is included due to the fact that the matrix WR could be ill–conditioned [28],

hence the algorithm could fail to converge to a feasible solution (e.g., if the estimated radius is greater

than a): in order to avoid that, the parameter µ is set as 1/K, being K the condition number of

WR. Numerical experiments have shown that K is usually large, hence µ is small, resulting on a120

small influence on the regularization, but still sufficient to avoid infeasible solutions. Sometimes K is

so large that even the regularization does not allow to achieve a feasible estimation. In this case, the

regularization parameter is repeatadely increased by a factor 1.1 until the constraint is satisfied.

Remark 1. One may wonder if a simpler procedure could be used in place of this Total Variation approach.

We compared the results (on synthetic tests) obtained via our proposed approach with the ones achieved with125
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a more direct strategy. This simple procedure estimates the center of each particle profile via the weighted

mean of the elements of the connected component, while the radius is computed employing the variances of

these elements. In this way, the achieved total error T is around 0.15, the Vertical error V is close to 0.10–

0.11 and the Plane error P ranges between 0.08 and 0.09. Comparing these results with the one obtained

via the Total Variation approach convincingly shows that the latter strategy is more effective.130

We now focus on a pathological case, where two particles are very close (Figure 4(a)): the situation is

problematic, but still tractable. When the WOI is opened around one particle, it may happen that some

pixels belonging to the edge of the other fall inside the window (Figure 4(a) and Figure 4(b)), affecting the

least square procedure as it is evident in Figure 4(c). Thus, a further control is needed in this case. Another

search for connected components is performed inside the WOI: if the number of the found components is135

greater than 1 (Figure 4(d)), then only the largest one is kept (Figure 4(e)). Adopting this procedure leads

to a better fit, as shown in Figure 4(f).

Unfortunately, the case in Figure 5(a) can occur: the above procedure fails to recognize two distinct

particles and compute a center which is very close to the center of mass of the particles. Two possible

strategy are proposed, but they still need to be investigated.140

The first is to perform some morphological operations [29], in order to be allowed to recognize the different

particles.

The second consists of performing a LS fit using an ellipse model, instead of a circumference (Figure 5(c)):

if the ratio of the semi–axes of the ellipse is either highly greater or lower than 1, it means that inside the

ellipse there are more than one particle, due to the assumption of the spherical properties of the particles.145

Another check is given by the eccentricity of the ellipse. Thus, using the information (length and orientation)

of the axes of the ellipse, the WOI can be divided in two smaller WOIs (Figure 5(d)): another LS ellipse fit

is pursued in each portion. For each one, the ratio of the semi–axis is checked again: if it is around 1, then

a particle is found, on the other case the same procedure is iterated.

Remark 2. The situation depicted in Figure 4 can be worse: 3 or more particles can cluster, leading to150

an ellipsoid fit which strongly resembles a circumference. In this undesired case, the control on the ratio of

the semi–axis could be misleading while the eccentricity can give a more reliable output. Another strategy

could be to rely on more advanced image segmentation than simple thresholding, e.g. via a Mumford–Shah

functional [30, 31, 32].

3.2. 3–dimensional Estimation155

The procedure lying beyond lines 8–9 of Algorithm 1 for the estimation of the center of the particles is

now explicited. It consists of two main steps: first, given the 2D estimation of the center of a particle in a

frame, two possible 3D candidates are computed via the Pythagorean theorem. In a second step, we cluster

all candidates belonging to the same particle.
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(a) 2 particles in the WOI. (b) Thresholded WOI. (c) Perturbed LS fit.

(d) Two components. (e) Largest component. (f) Improved LS fit.

Figure 4: Upper panels: when two (or more) particles are very close but still separated, selecting a large WOI may lead to

include some undesired pixels in the LS fit, resulting into a perturbed result. Bottom panels: searching inside the WOI for all

connected components avoids the problem depicted in upper panels. If the particles are close but disconnected, one can easily

isolate the largest component which is related to the particle, and hence a reliable LS fit can be reached.

Creation of the candidates. This procedure relies on the assumption that the radius a of the particles is160

known. Focussing on a single particle, assuming we have estimated its center (xe, ye) and the radius re of its

circular profile in the z–th frame. The distance d between the true center and the considered frame is easily

computed by d =
√
a2 − (re)2 (cfr. Figure 6(a)). Hence, the two candidates for the third coordinate are

zdz−d and zdz+d (with dz the vertical discretization, equal to the separation between acquisition planes).

At this point, no prior information is known about where the true center is located. A single particle can be165

spanned by Z frames, namely: hence in the ideal case Z estimation for the 2D centers are available, one for

each frame intersecting the particle, leading thus to have 2Z candidates for the true center (Figure 6(b)).

Due to the geometric properties, Z candidates will cluster in a region around the true center (blue enlighten

region in Figure 6(b)): the next step consists in finding this cluster.
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(a) Two particles. (b) One component. (c) Ellipse with axes. (d) 2 WOIs (yellow).

Figure 5: From left to right: true image, labelled component, estimated ellipse, WOI divided in two more WOIs. In the fourth

panel, the window of interest is divided along the longest axis. The example shown refers to a vertical ellipse, but the procedure

can take into account arbitrarily oriented ellipses.

Finding the clusters and compute the center. For each center in each frame two candidates are created: once170

all the frames are processed, the situation in Figure 7 occurs. For the sake of clarity, we call R the set of

centers found in the frames and call C the set of possible candidates computed as described in the previous

paragraph (namely, the points in Figure 7(a)). It is expected that there should be a clustering around the

true centers of the particles. One strategy could consist of searching for the Z nearest neighbours [33] lying

in a ball of radius ρrawa, 0 < ρraw � 1 (recall that Z is the maximum number of frames spanned by a175

particle), but a different approach is adopted here:

1. a first raw estimation of the center of the particles is computed, using the set R;

2. the Z nearest neighbours to these approximated center are found within the candidates in C.

The first step groups the points in R that belong to the same particle. Once these clusters are detected

and labelled, the corresponding profiles are considered and used in a LS sphere fit, in order to get a first

raw estimation of the center of the particles (see Figure 8(a) for a visual inspection of this procedure).

Let {Ri}i=1,...,q be the set of these raw estimations; focus on one of these, namely the k–th one. The Z

nearest neighbours to Rk are searched within a range ρesta, 0 < ρest � 1: let {(xeki, zeki, zeki)}i=1,...,Z be these

neighbours (ideally, these are the points lying in the small highlighted circle of Figure 6(a)). The estimation

of the k–th center xek = (xek, y
e
k, z

e
k)is computed as

xek =
1

A

Z∑
i=1

aix
e
ki, yek =

1

A

Z∑
i=1

aiy
e
ki, zek =

1

A

Z∑
i=1

aiz
e
ki, (3)

where ai is the area of the connected component related to the center (xeki, y
e
ki) (see Subsection 3.1) and

A =

Z∑
i=1

ai. A weighted mean is employed in order to lower the influence on the final estimation of unreliable180

2D estimations: e.g. the ones coming from frames which intersects a particle near its top or its bottom,

leading to high uncertainty.
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z–th frame

a

d

r
e

Estimate 2D center

candidate

candidate

true center

z–th frame

(a) Computation of the center candidates .

Frames

Estimated 2D centers

Relative candidates

(b) A cluster (in the blue region).

Figure 6: Panel (a): a vertical section of a particle. The horizontal line represent the z–th frame, on which an estimated center

(xe, ye) (blue point) and estimated radius (re) are computed. The information on the true radius a allows to compute the

distance d of the true center (black +) from the z–th frame, leading to two different candidates (red and yellow points). Panel

(b): the procedure is repeated for each estimated center: in this case there are 7 frames intersecting the particle, hence 14

candidates are created. The correct ones cluster around the true center, in the highlighted circular region.

Remark 3. It could happen that the nearest neighbours to Rk are less than Z: this can be due to low quality

images, because the procedure fails to recover the 2D center in some frames or because the particle has moved

during acquisition.185

Remark 4. The perceptive reader may wonder why the 3D procedure does not accept the LS sphere fit as

final estimation of the center. Numerical experiments show that taking the LS center as final estimation

leads to a total error T of ∼20% of a voxel, which is not sufficiently precise in any real–life application,

while adopting our proposed procedure yields significantly better results. See Section 4 for the details about

error measurements, performance and results.190
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(b) Isolated clusters around the centers.

Figure 7: Left: after processing of all the frames of the volume, the clustering of the candidates around the true centers

becomes evident. Right: the Z candidates which have to be used for the estimation of the center. On both figures the colors

are displayed only for the sake of clarity.

(a) Profiles for LS fit.
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Figure 8: (up left) overlay of the estimated center and of the circle profile of a particle over the spanned frame. The highlighted

profiles are used in a LS fit to get a raw estimation of the center of the particle, indicated with the red plus in Figure 8(b).

Up right: the red plus is the raw estimation of the center, the dots are the possible candidates in C, the orange one are the Z

nearest neighbours to the raw estimation within a range of 0.1: these points are employed in Equation (3). The reader should

pay attention to the different scale of the axis. Bottom: xy, xz and yz view of the estimated center, of the candidates and of

the selected candidates.
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4. Numerical Tests

Two different experiments are carried on to validate the performance of the proposed algorithm. The

first is devoted to evaluating the performance on synthetic datasets. Dataset construction is described

in Section 2, with two different noise realization (Gaussian plus Poisson noise and pure Poisson). The

evaluation is done by using three different error measurements, described in the subsequent paragraph.195

A large number of simulation are carried out, aiming to produce a sufficient amount of data to draw

reliable conclusions. Moreover, the performance of the algorithm is also evaluated on the vertical resolution,

since this is an important issue in real–life application. The second experiment concerns real 3D data: it

consists of considering a scanned volume of particles with a diameter of 3µm suspended in a glycerol/water

mixture. Both experiments are carried on a MacBookPro, equipped with 16GB RAM and an Intelr Core™200

i7 CPU (2.2GHz), on MatLab 2015a. The MatLab code is available at http://www-syscom.univ-mlv.fr/

~benfenat/Software.html.

Error Measurements. In order to evaluate the performance of our algorithm, inspired by [15, 34], three

different error measurements are adopted. Denote with c = (cx, cy, cz)
>

the true coordinates of a center

and with e = (ex, ey, ez)
>

the coordinate of the relative estimation.

The total error T as

T =

√
(c− e)

>
D−2 (c− e), D =


dx 0 0

0 dy 0

0 0 dz

 (4)

which aims to measure the error w.r.t. voxel precisions.

The in–plane error P and the out–of–plane error V are defined as

P =

√(
cx − ex

dx

)2

+

(
cy − ey

dy

)2

, V =
|cz − ez|

dz
. (5)

The former aims to measure the error on the estimation of the particles’ position in the single frames w.r.t.

pixel precision, while the latter focuses on the vertical displacement.

First synthetic test: Gaussian and Poisson noise. Following the notation of Section 2, the synthetic dataset205

is generated using the following settings: Dx = Dy = 76.8µm, Dz = 7µm, the number N of particles is 100

of radius a = 1µm; the volume is discretized into a 3D array of dimension Nx = Ny = 512, Nz = 22, leading

to voxels’ dimension dx = dy = 0.15, dz = 0.3182. Two types of noise are affecting the frames: Gaussian

(σn = 0.2) and Poisson (see Section 2 for the details on how the Poisson noise is added).

Algorithm 1 is applied: the chosen denoising technique (Line 2) consists simply of filtering via a Gaussian210

filter of dimension 5 pixels and variance 1. The window of interest is chosen as described in Subsection 3.1.

Due to the discretization of the 3D volume, the maximum number Z of frames that can be spanned by a

particle is 7, hence the estimation of the centers (Subsection 3.2) is achieved by
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(b) In–plane error.
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Figure 9: From left to righ: V,P and T errors. Each performance stays below the state–of–art baseline, which is 10% of a

pixel/voxel. The medians of the errors are 0.0289, 0.0483, and 0.0712 for V,P and T, respectively.

1. clustering the points in R within a distance equal to 0.2a followed by estimating the raw center

{Rk}k=1,...,q and then215

2. search the Z nearest neighbours to each Rk within a distance 0.2a and apply (3).

In Figure 9 the three type of errors are depicted; the proposed procedure recognizes 99 particles (out of

100). The plots in Figure 9 show that the mean of each error (yellow dashed line) type stays below the

1/10 of a pixel/voxel (red line), which is the baseline of the state–of–the–art methods [15, 13]. In fact, the

in–plane error is 0.0596, the out–of–plane error is 0.0371. The total error, given by (4), is 0.0777, below the220

state–of–the–art baseline.

In order to study the behaviour of the procedure on large numbers of particles, the above simulation is

repeated 20 times (for a total of 2000 particles), storing the errors V,P,T for each run. The histograms of

the total error T is shown in Figure 10(a), together with its distribution estimation. The histogram is fit

with a Γ distribution with parameters (k, θ),where k is the shape parameter and θ is the scale parameter.225

The mean of T is 0.0811. The behaviour of the total error is presented alone: the histogram of the in–plane

error has the same appearance, with mean 0.0643, while the histogram of the out–of–plane error has also

a Γ behaviour but much more concentrate towards zero, with a mean of 0.0387. All the three errors stay

below the expected baseline of 10% [15]. Our proposed procedure is based on the assumption that the true

radius is known: this is a valid assumption in many applications, but with a certain degree of uncertainty230

(e.g., the radius can be known within an error of the 10%). In order to check if the estimation re of the radii

of the particles is reliable, in Figure 10(b) the histogram of the signed difference a − re is shown, aiming

to evaluate the performance of the algorithm (re is computed by simple geometric properties). The chosen

distribution for the fit is the t–location scale fit, due to the heavy tail on the left: this distribution is able to
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(a) Distribution of T. (b) Distribution of a− re.

Figure 10: (a): Histogram of the total error T: its mean is 0.0811, its median is 0.0781. The out–of–plane and the in–plane

error has very similar behaviour and can be fitted to the same distribution. (b): histogram of the signed difference a − re

together with its t–location scale fit. There are more outliers on the left than on the right, and in addition to the fact that the

mean is circa -0.014 this tells that the proposed procedure tends to slightly overestimate the radius of the particles.

capture also the highest error (in absolute value). In this case, there are actually some outliers on the left235

of the histogram, as it is evident from Figure 10(b). The mean given by this distribution is -0.0142: this

means that overall the radii of the particles are overestimated by 1.5%. A first justification of this behaviour

can be given by the blur effect given by the PSF (see Section 2 for the detail) combined with the denoising

technique adopted, but the next experiment will neglect the influence of the PSF and it will show how the

denoising technique influences the radius estimation.240

The last part is devoted to study the performance w.r.t. the vertical resolution, i.e. the number Nz

of frames in which the volume is discretized (Nx and Ny are unchanged, since most modern microscopes

have a high resolution in both x and y axis). In Table 1 the behaviour of the three kinds of error are

depicted for increasing vertical resolution. For each dimension, 20 different simulations were performed,

hence 20 different runs of the procedure has been done: the numbers appearing in Table 1 are the means245

of the results of these simulations. One would expect that the estimation would improve with the number

of frames: actually, the procedure reveals itself to be very robust w.r.t. the vertical resolution, even with

only a few (10 or 12) frames. The difference a − re is depicted in the 4–th row: for each resolution, this

difference is around -0.013, meaning that, regardless the number of vertical frames, the radius of the particles

is overestimated by 1.3%. The last line of Table 1 refers to the (mean) number of estimated particles: the250

results are very satisfying for all the resolution but the first one (Nz = 10): this is due to the fact that in this

case a particle can span only 3 frames maximum (more likely just 2 frames), leading to have a low number

of candidates in C. Hence, it is a problem linked to the relation between the dimension of the particles and
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Nz: number of frames

10 12 15 20 22 25 30

P 0.0813 0.0774 0.0719 0.0713 0.0643 0.0630 0.0620

V 0.0259 0.0301 0.0318 0.0336 0.0387 0.0471 0.0436

T 0.0883 0.0870 0.0836 0.0844 0.0811 0.0855 0.0824

a− re -0.0117 -0.0129 -0.0141 -0.0138 -0.0142 -0.0133 -0.0137

Nrec 69.4 92.8 96.4 98.2 99.2 99.7 99.8

Table 1: Performance w.r.t. different vertical discretization. There is a faint decreasing behaviour in the vertical error, which

leads in a decrease on the total error. Notice that even for a low number of frames a low V is achieved. In the last row of the

table the error on the true radius is shown for each resolution. Despite the low resolution, even for Nz = 10 or Nz = 12 a good

estimation is achieved. The means of the differences a− re are obtained via a t–location scale distributio fit.

the vertical resolution: for small particles it is sufficient to slightly increase Nz (Nz = 12 in order to get

very good results), while for larger particles (a = 1.1µm) 10 frames prove to be sufficient, as it is evident in255

Table 2)

P V T a− re Nrec(%)

0.0624 0.0262 0.0712 -0.0099 47.3 (95.5%)

Table 2: Results of 20 runs of the procedure with a = 1.1µm, Nz = 10 and N = 50. It is evident that the poor performance of

the procedure when Nz = 10 in Table 1 is due to the relation between the diameter of the particles and the resolution. Such a

low resolution is however enough for slightly larger particles to get reliable results.

Second synthetic test: Poisson noise. These tests aim at checking whether the Gaussian filtering is the

right choice for denoising. Let consider the same setting of the previous experiments: Dx = Dy = 76.8µm,

Dz = 7µm, 100 particles of radius a = 1µm, Nx = Ny = 512, Nz = 22. The difference lies in the

noise corrupting the frames: no Gaussian noise is present (σn = 0) while Poisson noise affects the data.260

Algorithm 1 is applied to this dataset: satisfactory results, in line with the ones in Table 1, are obtained

(P = 0.0621,V = 0.0331, and T = 0.0755, 98 particles recognized). Since simple Gaussian filter is not

always sufficient to deal with high level Poisson noise, as suggested in Subsection 3.1 an optimization

approach is adopted, by using the algorithm presented in [24]: on the one hand, this procedure can be used

to set the variational formulation for restoring images corrupted by pure Poisson noise and on the other to265

select edge–preserving regularization, aiming to preserve sharp edges, which eases the entire procedure of
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particles estimation. The Bregman procedure of [24] has been chosen instead of possibly simpler procedures

(e.g., [35, 36]) for its ability to increase contrast [37, 38, 39] in the restored images, which is a desirable

feature. A visual inspection on the difference between the Gaussian filtering and the employed Bregman

technique is depicted in Figure 11, where a zoom of the 4–th frame is shown. The Bregman procedure270

uses as inner solver the AEM algorithm [40], with a maximum of 1000 iterations maximum and stopped

via the criterion described in [24] with a tolerance of 10−4, the fixed number of external iterations is 3, the

regularization parameter µ is set to 0.1. The fit–to–data function f0 is the generalized Kullback–Leibler and

the regularization functional is the Total Variation, which preserves sharps edges.

(a) Blurred & noisy. (b) Clear image. (c) Gaussian filtering. (d) Bregman.

Figure 11: From left to right: Blurred & noisy frame, original image (without blurring and noise), Gaussian filterng and

Bregman restoration. These images are examples from the 4–th frame, they are displayed in the range [0, 255]. The Bregman

technique is able to separate in a more reliable way the particles and at the same time is providing with more sharp edges,

due to the choice of regularization function. In this case, the regularization is given by the Total Variation functional. It could

happen that Gaussian filtering makes merge two or more particle in one big component, increasing the difficulties in recognized

different objects.

Using this approach in Line 2 of Algorithm 1, yields the following results: P = 0.0627,V = 0.0316275

and T = 0.0752, with 99 particles recognized. The most important difference lies in the estimated radius:

with Gaussian filtering the mean error (obtained by a t–location scale fit) is −0.0134, while the Bregman

technique leads to an error of −0.0018: hence, using the Gaussian filtering leads to overestimate the radius

of the particles. Since just one single experiment is not sufficient to support this claim, further tests are

carried on and presented in Table 3: one with a lower vertical resolution (Nz = 10), where the dimension280

and the discretization of the volume is the same, while the number of particles is 50 and the radius is set to

1.1µm. The second test is performed on a dataset with the same characteristic of the first one presented in

this paragraph: Dx = Dy = 76.8µm, Dz = 7µm, 100 particles of radius a = 1µm, Nx = Ny = 512, Nz = 22.

Table 3 shows that using the correct denoising procedure produces better results in terms of error285

estimation and of number of recognized particles; moreover, choosing the correct denoising technique allows
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Nz Technique P V T a− re Nrec(%)

10
Gaussian Filter 0.0622 0.0271 0.0712 -0.0096 46.7 (93.4%)

Bregman 0.0628 0.0177 0.0677 -0.0013 47.6 (95.2%)

22
Gaussian Filter 0.0626 0.0380 0.0793 -0.0138 98.8 (98.8%)

Bregman 0.0637 0.0291 0.0746 -0.0019 99.4 (99.4%)

Table 3: Results obtained by 10 runs of the algorithm. The Bregman technique provides better results overall, both for Nz = 10

and Nz = 22. The error on the estimated radius is given by the mean obtained by the t–location scale distribution fit, as was

done in Figure 10(b); for the case Nz = 10, looking at the simple arithmetic mean, the Bregman procedure shows to be much

more precise in the radius’ estimation, in fact it gives an error of −0.0028, while the Gaussin filtering results in an error of

−0.0119. For the case Nz = 22. The overall behaviour of the Bregman approach in terms of error measurements is slightly

better, but the number of found particles is closer to the maximum and the estimation of the radius improved, reaching an

error of 0.1%.

to estimate more precisely the radius: in fact, for Nz = 10 using Gaussian filtering leads to an error of

almost 1%, while the Bregman technique reduces the error to 0.1%. For Nz = 22 the difference is more

pronounced: classical filtering gives an error of ∼ 1.4%, while again the proposed approach results in an

error of only 0.1%. The hypothesis that the overestimation of the radius actually depends on the denoising290

and deblurring techinque is true: at a first sight, it seems from Table 1 that this is a determinate error [15]

of the algorithm, but this last experiment tells the opposite. The procedure used to improve the quality of

the images influences the performance of the particle estimation algorithm.

While on the one hand, the two denoising procedures are similar, because both require parameters setting

(e.g., the Bregman technique requires the tuning of the regularization parameter, of the tolerance for the295

stopping criterion; the filtering techniques requires to choose the type of filter and its parameters); on the

other hand, the optimization technique has drawbacks as its computational cost and the time need to restore

each frame, while simple filtering is more or less free in these terms. There is a trade–off (as it usually occurs

in cases such these) between performance and time/computational cost.

Real 3D data. This paragraph is devoted to applying the proposed algorithm to real 3D data. The scanned300

volume has Dx = Dy = 64µm, Dz = 4.1µm, discretized into an array of dimension 512× 512× 10, leading

to dx = dy = 0.125µm, dz = 0.41µm; 50 scans of the volume were recorded, with a dt = 0.5s. The diameter

of the particles is 3µm (a = 1.5µm) and they are suspended in a ∼ 70% − 30% glycerol/water mixture

(viscosity of ∼ 0.017 Pa s). The instrument used to acquire this data is a confocal microscope (Zeiss LSM

700) with a 100×NA 1.4 oil immersion objective (Zeiss Plan–APOCHROMAT). The frames are restored305

using the Bregman procedure previously described with the following settings: AEM as inner solver with
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a Total Variation functional as regularization, maximum number of allowed iterations set to 1000 within a

tolerance of 10−4 for the stopping criterion described in [24] with α = 2, 3 external iteration are allowed.

Since the images are given without any information about their recording, a Gaussian PSF1 with σ = 1 and

zero mean is assumed as blurring operator, a background term equal to the minimum value of the image,310

and Poisson noise affecting the frames. All these assumptions are consistent with the type of the images

produced by the aforementioned instrument. Figure 12 shows in its first row the 6–th acquired frame at

(a) Original. (b) Bregman. (c) Gauss filter.

(d) Original, particular. (e) Bregman, particular. (f) Gauss filter, particular.

Figure 12: From left to right, from up to bottom. The images have to be read in pairs: for the z–th slice, the left image refers

to the noisy and blurred frame, while the right image refers to the restored one. It is clear that the contrast of the image

is significantly improved, reducing the diffuse areas, mainly in the highest frames. All the images are displayed in the range

[0, 255].

time t = 1, the restored version via Bregman technique and the filtered image via a Gaussian filter. In the

second row a particular of these image is presented: the visual inspection makes clear that the usage of the

1fspecial(’gaussian’,512,1).
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correct denoising technique allows to reduce the glowing halo all among the frame and moreover provides315

with more sharp edges, all this contributes in making easier the recognition of the profiles.

Algorithm 1 is set with an initial woi of width 2 × 0.1rk (see Subsection 3.1 for the details), with a

threshold which is 1.5 times the value given by Otsu’s method, ρraw = 0.3, ρest = 0.3. The frames at time

t = 1 are shown in Figure 14: the goodness of result is more evident in the particular shown in the last

panel.320

Figure 13 provides a visual inspection of the reconstructed position of the particles at time t = 1: this

reconstruction faithfully respects the true position, as it is clear by comparing the 3D plot with the frames

depicted in Figure 14, where the recovered profiles of the particles are superimposed on the original images.

In these images, the top left corner corresponds to the point (0, 0, kdz) in the 3D space, being k the number

of the frame. A closer inspection of Figure 13 and 14 demonstrates that the proposed procedure finds325

particles close to the boundaries of the frames, as well as the ones near the top or the bottom of the volume.

Figure 13: 3D recovering of the position of the particles at time t = 1.
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Figure 14: Panel from 1 to 10

contain the original images with

the superposition of the recog-

nized profiles (in red). Last panel:

particular of the 7–th frame.
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5. Conclusion

In this work, a particle segmentation and position estimation methodology is presented. Assuming fixed

spherical particles with a known radius, this procedure uses the 2D gradient information on the profiles

of the particles and employs a weighted regularized Least Square fit to find the 2D center and the radius330

of the profile intersecting each frame. Using geometric properties, the coordinates of the 3D center are

retrieved with an accuracy better than 10% of a voxel, which is the state–of–the–art performance of this

type of algorithms. Furthermore, the intermediate steps implemented for the 3D reconstruction allow also

to recover the particles’ position within each 2D frame, with a subpixel precision. Reliable results for the

3D positioning are achieved even for a low vertical resolution: the total error is indeed under the 10%335

of a voxel. Moreover, the very low error on the radius estimation suggests that this procedure improve

a priori information about the radius of particles of uncertain dimension. This work demonstrate that

the preprocessing of the frames requires particularly tailored techniques, depending on noise type: since

Poisson noise is the most common noise affecting the images, simple Gaussian filtering is not sufficient.

One of the available image restoration techniques is then applied in this context: although they are more340

demanding in term of computational cost and time, the application of this strategies leads to a general

improvement of the position estimation. Moreover, this approach significantly increases the precision on

the radius estimation, and it provide deeper insights on the role of Gaussian filtering in this task, proving

that it induces an overestimation. Future work will involve better segmentation techniques for pathological

cases, employing more tailored approaches such as regularized approaches inspired by the Mumford-Shah345

functional. The case of spherical particles with unknown radius will be also handled. The reliable results

in positioning directly suggest that the proposed technique can be embedded in a more general procedure

devoted to tracking procedure, where the particles are no longer fixed but may subjected to significant

Brownian motion between slice acquistion.
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(2016-2017) and at ESIEE Paris (2017-2018). He is researcher at ESP department, University of Milan. His

interest include optimization, regularization techniques.

Francesco Bonacci received his physics degree at the University of Perugia (2016). He is now Ph.D.

student in the Navier laboratory (UMR 8205) in Marne-La-Vallée, Paris. He started to work on the rheology

of dense colloidal suspensions. His general research interests involve the physics of soft materials (colloids,455

emulsions, polymers).

Tarik Bourouina holds M.Sc. in Physics, M. Eng. in Optoelectronics, Ph.D. in MEMS (1991), and
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