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Abstract

Particle estimation is a classical problem arising in many science fields, such as

biophysics, fluid mechanics, bio-medical imaging. Many interesting applications

in these areas involve 3D data: this work presents a technique to estimate the

3D coordinates of the center of spherical particles. This procedure provides

an estimation of both the center and the profile of the 2D intersections of the

particles with the frames, by coupling the usage of Total Variation functional

and of a regularized weighted Least Square fit. The 2D information is used

to retrieve the 3D coordinates using geometrical properties. The performance

of this procedure strongly depends on the quality of the acquisition, hence a

particularly tailored denoising technique is applied for Poisson noise: this leads

to a better estimation of the particle positions.
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1. Introduction

Particle tracking techniques are widely employed in several science fields for

identifying particular structures or processes of interest. Some important exam-

ples include biophysics, where these techniques are involved in the observation

of molecular level motion of kinesin in microtubules and of motion of myosin on5

actin [1, 2], in the study of the infection path of a virus [3, 4] or in the inves-

tigation of cytoskeletal filaments [5]; another topic involving particles tracking

problem regards the observation of protein motion in cell membranes [6, 7, 8] or

intracellular transport [9]. Other interesting areas of application include fluid

dynamics and mechanics, in particular Rheology [10], where the thermal mo-10

tion of Brownian particles has been tracked to study local rheological properties

[11, 12]; complex fluids [13, 14]; and Microrehology in Medicine [15]. Colloidal

works have benefited from developments in particle tracking procedures in the

study of phase transition [16] and of pair interaction potential [17]. It has been

pointed out [18] that particles have different meanings depending on the appli-15

cations: a single molecule, a virus, a spherical object. In this work, a particle

is a spherical object around 1 micrometer in diameter, observed in confocal

microscopy.

Particle tracking consists of two main steps: particle position estimation

and trajectory reconstruction. Following [19], in this work a numerical simula-20

tion of the standard setup is adopted: the simulated system consists of a CCD

camera connected to a microscope which records images (frames) of molecules

or spherical particles. In [19] (and references therein), a particular focus on

microrheology-related problems is considered, and the balance between high

spatial resolution and timescale of data acquisition is considered in depth: the25

former leads to approximate multiple–tracking techniques while the latter al-

lows a greater flexibility and provides an high statistical accuracy. In [20] the

spatial resolution influence was investigated. In the presented paper, the first

step of particle tracking problem is solved: the proposed algorithm provides

estimations of the particles position with subpixel resolution, both in two and30
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three dimensional cases. The proposed procedure aims mainly to treat the static

error [19], which arise from noise affecting this type of experiments; this static

error is equivalent to the notion of precision in [20].

In the past, several procedure have been proposed to estimate the particle po-

sition: cross–correlation of a sequence of images [1, 21, 22], centroid techniques35

[23, 24, 25, 26], Gaussian fitting [27, 28]. Some of them claim subpixel resolution,

and in [20] a wide comparison of these techniques showed that significant numer-

ical experimentation is needed before validating such results. Other methods

includes combinatorial optimization [29], nearest neighbour [30], Kalman filter-

ing coupled with probabilistic data association [31], use of the Viterbi algorithm40

[32] and several others. An experimental comparison of a pletora of methods

can be found in [18]. In this work, our proposed procedure is first tested on

synthetic but realistic data. The algorithm proved itself to be providing good

performance on such data, hence it is applied on real 3D data with satisfactory

results.45

The procedure presented in this paper provides position estimations of 3D

spherical particles: this approximation is inspired by the problem of estimating

the motion of spherical nanoparticles suspended in a fluid. A novel approach

based on Total Variation functional and on Least Square fitting is proposed to

locate the center of the spherical particles in 2D frames. The 3D centers of the50

particles are hence estimated using geometric properties and employing the 2D

information retrieved in the previous steps. The algorithm achieves subpixel

resolution both in the 2D case, i.e. in estimating the position of the particles

within frames, and in the 3D case.

This paper is organized as follows: in Section 2 the simulation procedure is55

described, in order to get realistic 3D data to validate the proposed algorithm.

In Section 3 details of the proposed procedure are given: the pre–processing of

the frames and the estimation of the 2D centers, and then the 3D estimation.

Section 4 is devoted to the numerical experimentation on both synthetic and

realistic data; finally, in Section 5, conclusions are drawn.60

Notation. Bold letters, bold capital letters and Latin (or Greek) letters
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denote vectors, matrices and scalars, respectively. The i–th element of the vector

x is denoted by xi. The notation N
(
µ, σ2

)
indicates a Gaussian distribution of

mean µ and variance σ2. I denotes the identity matrix, 0 the vector with all

zeros entries.65

2. Data Creation: Simulation Procedure

The synthetic datasets used to validate the proposed algorithm are simulated

following these steps, which are inspired by the characteristics of real settings:

• N spherical particles of radius a are randomly placed in a 3D volume of

dimension Dx×Dy×Dz. The particles are assumed to have all the same,70

known radius;

• the 3D volume is discretized into an array of Nx ×Ny ×Nz voxels; each

voxel has dimension dx× dy × dz, being dx = Dx/Nx,dy = Dy/Ny,dz =

Dz/Nz. Nz represents the number of 2D frames. Each particle is dis-

cretized in this volume;75

• aiming to simulate realistic data, a blurring operator is applied to each

frame, then Gaussian and/or Poisson noise is respectively added to or

composed with each image.

In the following the creation of the dataset is described precisely

Position simulation. The continuous positions {xi}i=1,...,N of the N particles80

are randomly chosen in Dx × Dy × Dz, via an uniform distribution. The 3D

position of the i–th particle is denoted via xi = (xi, yi, zi)
>

.

Discretization. Given the continuous coordinates xi of the i–th particle and the

radius a, the voxels at distance less or equal to a are filled with a value of H,

while the others are set to h, aiming to have a non–zero constant background.85

In our simulations, we set h = 10 and H = 220. These values were chosen in

order to simulate realistic tiff images, which usually have values in [0, 255]. In
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(a) Discretization, 2D. (b) Discretization, 3D. (c) Frame.

Figure 1: Panel 1(a): discretization of a disk. The true center is represented by the orange

dot together with the true profile in the same color. The pixels at a dstance less than a are

set to H (highlighted in light blue), while the others are set to h. It is clear that is not always

possible to discretize the disk in a symmetric fashion. The procedure follows the same ratio

for the 3D case (1(b). Panel 1(c): blurred and noisy frame

Figure 1 a 2D explanation of this procedure is depicted: the 3D case follows the

same procedure.

Blurring and Noise. A blurring operator of Gaussian type (dimension: 5 × 5

pixels, of zero mean and unitary variance, created via the MatLab function

imfilter) is applied to each frame, simulating the perturbation given by the

acquisition system. Gaussian noise of level σn is the added to each frame: let

be η ∼ N (0, σnI) a realization of a Gaussian multivalued random variable of

zero mean and covariance matrix σnI. The noise η is added according to the

following formula (which is a slight modification of the one in [33])

Fz = Fz + σn
η

‖η‖F
(1 + ‖Fz‖F)

being Fz the z–th frame and ‖·‖F the Froebenius norm. A different η is created90

for each frame. Moreover, in order to have the most realistic data, Poisson noise

is composed with the images, via the MatLab function imnoise, employed by

the rescaling 1e12*imnoise(1e-12*F,’Poisson’), being F the current frame

(see the MatLab help for the imnoise function for more details about this

procedure.). Finally, the intensity values of each frame are rescaled into the95
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interval [0, 255]. See Figure 1(c) for a visual inspection of the result.

3. Algorithm

The steps for the particles recognition problem in the 3–dimensional case

are presented in Algorithm 1:

Algorithm 1 Let Nz be the frames’s mumber, a the radius of the particles.

1: for z = 1, . . . , Nz do

2: Denoising of z–th frame.

3: Search for the K connected components {Lk}k=1,...,K , in the z–th frame.

4: for k = 1 . . . ,K do

5: Compute the center of mass mk of the k–th component.

6: Open a window in the denoised frame, centered in mk.

7: Compute the k–th center via a regularized weighted Least Square fit.

8: Create the two candidates for computing the center of the particle in 3D.

9: Compute the estimated centers of the particles via a weighted mean.

Subsection 3.1 is devoted to illustrating the idea and the procedures beyond100

lines 2–7 of Algorithm 1, while Subsection 3.2 explains how the 2D information

obtained from the frames can be used to estimate the particle center coordinates

in 3 dimensions.

3.1. Frames Processing

The procedures described in lines 2–7 are listed and expanded below.105

Denoising. The presence of noise, together with the blurring operator, could

lead to some artefacts in the particle position and diameter estimation, hence a

denoising and deblurring procedure is necessary. A simple approach is using a

Gaussian filtering [34]: this procedure is very quick and inexpensive, performed

via the FFT MatLab’s native algorithms, see Figure 2(b) for the results. The110

pros of this approach are that it reduces the presence of the noise and in its

speed; while the drawbacks lie in the fact that the image is oversmoothed: the

perturbing effect of the PSF is augmented , resulting in blurred edges.
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We propose a method based on an optimization method: given the noisy

and blurred frame g, one is led to compute the denoised frame f̃ as

f̃ = argmin
f∈C

f0(Hf + b;g) + µf1(f)

where C is a convex, non–empty closed set of constrains (e.g., the non–negative

orthant), H is the blurring operator representing the PSF, b is a constant back-115

ground term, µ > 0 is a real parameter and f0 and f1 are the fit–to–data

and regularization functions, respectively. This problem has been deeply in-

vestigated in recent years, leading to the development of a great number of

valid optimization algorithms [35, 36, 37, 38]. Moreover, this formulation of the

problem allows us to choose the function f1 in order to preserve some desired120

characteristic (e.g., sharp edges) on the recovered image.

Search for the connected components. In order to get an estimation of the profile

and of the center of the particles in the current frame, they must be localized

first. The strategy is quite simple: the first step consists of thresholding the

denoised frame, by employing the Otsu method [39, 34] (see Figure 2(c)). Then,125

the K connected components {Lk}k=1,...,K in the thresholded frame are recog-

nized and labeled (Figure 2(d)). The Matlab function bwlabel is set to assume

the 8–connected neighbours. At this stage, the area of each k–th connected

component is stored in ak: this area will be used for the estimation in 3 dimen-

sions of the center (see (3)). The center of mass mk of Lk is computed, together130

with a first raw estimation rk of the radius: rk is the distance of mk from the

furthest pixel in Lk (Figure 3(a)).

Least Square Fit. Once the connected components are recognized, a least square

fit is performed on each one in order to estimate the profile and the center of

the particle. First of all, a Total Variation functional [37] is applied to the

current denoised frame, namely D, aiming to find the edges of the particles

(Figure 3(c)). Denoting (with an abuse of notation) the partial derivatives via

∂x and ∂y in the two directions, the Total Variation function on D reads as

TV(D) =

√
(∂xD)

2
+ (∂yD)

2
. (1)
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(a) Original. (b) Denoised. (c) Thresholded. (d) Labeled.

Figure 2: Particular of the frame of Figure 1(c). From left to right: a region of interest

with two separeted particles. Second panel: result of the Gaussian filtering. The noise is

reduced, but the edges are blurred. Third panel: thresholding via the Otsu method. Last

panel: labeling procedure, where different colors mean different labels. The order of labeling

does not influence the final result.

The data are discrete, hence a discrete version of TV is implemented: the deriva-

tives are computed via centered differences with 2nd order accuracy. Centered

differences with 4th order accuracy were tested, but no significant differences135

were observed in the final results.

For sake of clarity, we focus on the k–th component, assuming that is well

separated from all the others.

(a) mk and rk. (b) WOI. (c) Thresholded TV. (d) Estimation.

Figure 3: Procedure for the least square fit, focusing on a single connected component. First

panel: connected component, with its center of mass and raw radius estimation. Second

panel: window of interest around the localized particle. Third panel: chosen pixels for the

least square fit, with the relative intensity values. Fourth panel: estimated center together

with the profile, based on the thresholded values.
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1. A squared window of interest (WOI) centered in mk of width 2× (1.5rk)

is opened (Figure 3(b)) in TV (D). If a particle is near to one edge of the140

frame, the window is reduced until it falls entirely in to the frame. This

reduction is not performed evenly on the two dimension: it could lead to

a rectangular WOI.

2. The WOI is thresholded via a value obtained again with the Otsu method:

this thresholding yields the positions of the largest changes in intensity,145

which are ideally located on the profile edge, and at the same time discards

the fluctuations given by the residual noise (Figure 3(c)).

3. The position of the q pixels above the threshold are stored in an array

{xi, yi, wi}i=1,...,q together with the corresponding intensity values wi.

4. A constrained regularized Least Square fit is performed (Figure 3(d)):
α̃1

α̃2

α̃3

 = α ∼ argmin
α2

1+α
2
2−α3−a2≤0

1

2
‖WRα−Wy‖22 +

µ

2
‖α‖22 (2)

where

W =



√
w1 0 . . . 0

0
√
w2 . . . 0

0 0
. . . 0

0 0 . . .
√
wq



R =



−2x1 −2y2 1

−2x2 −2y2 1

−2x3 −2y3 1
...

...
...

−2xq −2yq 1


, y = −


x21 + y21

x22 + y22
...

x2q + y2q


and a is the true radius of the particles. The coordinates of the estimated150

center (xek, y
e
k) are simply (α̃1, α̃2), while the estimated radius rek is com-

puted as rek =
√
α̃2
1 + α̃2

2 − α̃3: this is the main reason for the constrain

in Equation (2).

The regularization term is included due to the fact that the matrix WR
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could be ill–conditioned [40], hence the algorithm could fail to converge to155

a feasible solution (e.g., if the estimated radius is greater than a): in order

to avoid that, the parameter µ is set as 1/K, being K the condition num-

ber of WR. Numerical experiments have shown that K is usually large,

hence µ is small, resulting on a small influence on the regularization, but

still sufficient to avoid infeasible solutions. Sometimes K is so large that160

even the regularization does not allow to achieve a feasible estimation. In

this case, the regularization parameter is repeatadely increased by a factor

1.1 until the constraint is satisfied.

Remark 1. One may wonder if a simpler procedure could be used in place of

this Total Variation approach. We compared the results (on synthetic tests)165

obtained via our proposed approach with the ones achieved with a more direct

strategy. This simple procedure estimates the center of each particle profile via

the weighted mean of the elements of the connected component, while the radius

is computed employing the variances of these elements. In this way, the achieved

total error T is around 0.15, the Vertical error V is close to 0.10–0.11 and the170

Plane error P ranges between 0.08 and 0.09. Comparing these results with the

one obtained via the Total Variation approach convincingly shows that the latter

strategy is more effective.

We now focus on a pathological case, where two particles are very close

(Figure 4(a)): the situation is problematic, but still tractable. When the WOI175

is opened around one particle, it may happen that some pixels belonging to

the edge of the other fall inside the window (Figure 4(a) and Figure 4(b)),

affecting the least square procedure as it is evident in Figure 4(c). Thus, a

further control is needed in this case. Another search for connected components

is performed inside the WOI: if the number of the found components is greater180

than 1 (Figure 4(d)), then only the largest one is kept (Figure 4(e)). Adopting

this procedure leads to a better fit, as shown in Figure 4(f).

Unfortunately, the case in Figure 5(a) can occur: the above procedure fails

to recognize two distinct particles and compute a center which is very close to

10



(a) 2 particles in the WOI. (b) Thresholded WOI. (c) Perturbed LS fit.

(d) Two components. (e) Largest component. (f) Improved LS fit.

Figure 4: Upper panels: when two (or more) particles are very close but still separated,

selecting a large WOI may lead to include some undesired pixels in the LS fit, resulting into

a perturbed result. Bottom panels: searching inside the WOI for all connected components

avoids the problem depicted in upper panels. If the particles are close but disconnected, one

can easily isolate the largest component which is related to the particle, and hence a reliable

LS fit can be reached.

the center of mass of the particles. Two possible strategy are proposed, but185

they still need to be investigated.

The first is to perform some morphological operations [41, 34], in order to be

allowed to recognize the different particles.

The second consists of performing a LS fit using an ellipse model, instead of

a circumference (Figure 5(c)): if the ratio of the semi–axes of the ellipse is190

either highly greater or lower than 1, it means that inside the ellipse there are

more than one particle, due to the assumption of the spherical properties of the

particles. Another check is given by the eccentricity of the ellipse. Thus, using
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(a) Two particles. (b) One component. (c) Ellipse with axes. (d) 2 WOIs (yellow).

Figure 5: From left to right: true image, labelled component, estimated ellipse, WOI divided

in two more WOIs. In the fourth panel, the window of interest is divided along the longest

axis. The example shown refers to a vertical ellipse, but the procedure can take into account

arbitrarily oriented ellipses.

the information (length and orientation) of the axes of the ellipse, the WOI can

be divided in two smaller WOIs (Figure 5(d)): another LS ellipse fit is pursued195

in each portion. For each one, the ratio of the semi–axis is checked again: if it

is around 1, then a particle is found, on the other case the same procedure is

iterated.

Remark 2. The situation depicted in Figure 4 can be worse: 3 or more particles

can cluster, leading to an ellipsoid fit which strongly resembles a circumference.200

In this undesired case, the control on the ratio of the semi–axis could be mis-

leading while the eccentricity can give a more reliable output. Another strategy

could be to rely on more advanced image segmentation than simple thresholding,

e.g. via a Mumford–Shah functional [42, 43, 44, 45, 46, 47]

3.2. 3–dimensional Estimation205

The procedure lying beyond lines 8–9 of Algorithm 1 for the estimation of

the center of the particles is now explicited. It consists of two main steps: first,

given the 2D estimation of the center of a particle in a frame, two possible 3D

candidates are computed via the Pythagorean theorem. In a second step, we

cluster all candidates belonging to the same particle.210
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Creation of the candidates. This procedure relies on the assumption that the

radius a of the particles is known. Focussing on a single particle, assuming

we have estimated its center (xe, ye) and the radius re of its circular profile in

the z–th frame. The distance d between the true center and the considered

frame is easily computed by d =
√
a2 − (re)2 (cfr. Figure 6(a)). Hence, the215

two candidates for the third coordinate are zdz − d and zdz + d (with dz the

vertical discretization, equal to the separation between acquisition planes). At

this point, no prior information is known about where the true center is located.

A single particle can be spanned by Z frames, namely: hence in the ideal case Z

z–th frame

a

d

r
e

Estimate 2D center

candidate

candidate

true center

z–th frame

(a) Computation of the center candidates .

Frames

Estimated 2D centers

Relative candidates

(b) A cluster (in the blue region).

Figure 6: Panel (a): a vertical section of a particle. The horizontal line represent the z–

th frame, on which an estimated center (xe, ye) (blue point) and estimated radius (re) are

computed. The information on the true radius a allows to compute the distance d of the true

center (black +) from the z–th frame, leading to two different candidates (red and yellow

points). Panel (b): the procedure is repeated for each estimated center: in this case there are

7 frames intersecting the particle, hence 14 candidates are created. The correct ones cluster

around the true center, in the highlighted circular region.

estimation for the 2D centers are available, one for each frame intersecting the220

particle, leading thus to have 2Z candidates for the true center (Figure 6(b)).

Due to the geometric properties, Z candidates will cluster in a region around

the true center (blue enlighten region in Figure 6(b)): the next step consists in

13



finding this cluster.

Finding the clusters and compute the center. For each center in each frame225

two candidates are created: once all the frames are processed, the situation in

Figure 7 occurs. For the sake of clarity, we call R the set of centers found in the

frames and call C the set of possible candidates computed as described in the

previous paragraph (namely, the points in Figure 7(a)). It is expected that there

should be a clustering around the true centers of the particles. One strategy
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(a) Clusters .
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(b) Isolated clusters around the centers.

Figure 7: Left: after processing of all the frames of the volume, the clustering of the candidates

around the true centers becomes evident. Right: the Z candidates which have to be used for

the estimation of the center. On both figures the colors are displayed only for the sake of

clarity.

230

could consist of searching for the Z nearest neighbours [48, 34] lying in a ball

of radius ρrawa, 0 < ρraw � 1 (recall that Z is the maximum number of frames

spanned by a particle), but a different approach is adopted here:

1. a first raw estimation of the center of the particles is computed, using the

set R;235

2. the Z nearest neighbours to these approximated center are found within

the candidates in C.

The first step groups the points in R that belong to the same particle. Once these

clusters are detected and labelled, the corresponding profiles are considered and
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used in a LS sphere fit, in order to get a first raw estimation of the center of

the particles (see Figure 8(a) for a visual inspection of this procedure). Let

{Ri}i=1,...,q be the set of these raw estimations; focus on one of these, namely

the k–th one. The Z nearest neighbours to Rk are searched within a range ρesta,

0 < ρest � 1: let {(xeki, zeki, zeki)}i=1,...,Z be these neighbours (ideally, these are

the points lying in the small highlighted circle of Figure 6(a)). The estimation

of the k–th center xek = (xek, y
e
k, z

e
k)is computed as

xek =
1

A

Z∑
i=1

aix
e
ki, yek =

1

A

Z∑
i=1

aiy
e
ki, zek =

1

A

Z∑
i=1

aiz
e
ki, (3)

where ai is the area of the connected component related to the center (xeki, y
e
ki)

(see Subsection 3.1) and A =

Z∑
i=1

ai. A weighted mean is employed in order to

lower the influence on the final estimation of unreliable 2D estimations: e.g. the240

ones coming from frames which intersects a particle near its top or its bottom,

leading to high uncertainty.

Remark 3. It could happen that the nearest neighbours to Rk are less than Z:

this can be due to low quality images, because the procedure fails to recover the

2D center in some frames or because the particle has moved during acquisition.245

Remark 4. The perceptive reader may wonder why the 3D procedure does not

accept the LS sphere fit as final estimation of the center. Numerical experiments

show that taking the LS center as final estimation leads to a total error T of

∼20% of a voxel, which is not sufficiently precise in any real–life application,

while adopting our proposed procedure yields significantly better results. See250

Section 4 for the details about error measurements, performance and results.
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(a) Profiles for LS fit.
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Figure 8: (up left) overlay of the estimated center and of the circle profile of a particle over

the spanned frame. The highlighted profiles are used in a LS fit to get a raw estimation of the

center of the particle, indicated with the red plus in Figure 8(b). Up right: the red plus is the

raw estimation of the center, the dots are the possible candidates in C, the orange one are the

Z nearest neighbours to the raw estimation within a range of 0.1: these points are employed

in Equation (3). The reader should pay attention to the different scale of the axis. Bottom:

xy, xz and yz view of the estimated center, of the candidates and of the selected candidates.

4. Numerical Tests

Two different experiments are carried on to validate the performance of

the proposed algorithm. The first is devoted to evaluating the performance

on synthetic datasets. Dataset construction is described in Section 2, with255

two different noise realization (Gaussian plus Poisson noise and pure Poisson).

The evaluation is done by using three different error measurements, described

in the subsequent paragraph. A large number of simulation are carried out,
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aiming to produce a sufficient amount of data to draw reliable conclusions.

Moreover, the performance of the algorithm is also evaluated on the vertical260

resolution, since this is an important issue in real–life application. The second

experiment concerns real 3D data: it consists of considering a scanned volume

of particles with a diameter of 3µm suspended in a glycerol/water mixture.

Both experiments are carried on a MacBookPro, equipped with 16GB RAM

and an Intelr Core™ i7 CPU (2.2GHz), on MatLab 2015a. The MatLab code265

is available at http://www-syscom.univ-mlv.fr/~benfenat/Software.html.

Error Measurements. In order to evaluate the performance of our algorithm,

inspired by [20, 49], three different error measurements are adopted. Denote

with c = (cx, cy, cz)
>

the true coordinates of a center and with e = (ex, ey, ez)
>

the coordinate of the relative estimation.

The total error T as

T =

√
(c− e)

>
D−2 (c− e), D =


dx 0 0

0 dy 0

0 0 dz

 (4)

which aims to measure the error w.r.t. voxel precisions.

The in–plane error P and the out–of–plane error V are defined as

P =

√(
cx − ex

dx

)2

+

(
cy − ey

dy

)2

, V =
|cz − ez|

dz
. (5)

The former aims to measure the error on the estimation of the particles’ position

in the single frames w.r.t. pixel precision, while the latter focuses on the vertical

displacement.

First synthetic test: Gaussian and Poisson noise. Following the notation of270

Section 2, the synthetic dataset is generated using the following settings: Dx =

Dy = 76.8µm, Dz = 7µm, the number N of particles is 100 of radius a = 1µm;

the volume is discretized into a 3D array of dimension Nx = Ny = 512, Nz = 22,

leading to voxels’ dimension dx = dy = 0.15, dz = 0.3182. Two types of noise
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(b) In–plane error.
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Figure 9: From left to righ: V,P and T errors. Each performance stays below the state–of–art

baseline, which is 10% of a pixel/voxel. The medians of the errors are 0.0289, 0.0483, and

0.0712 for V,P and T, respectively.

are affecting the frames: Gaussian (σn = 0.2) and Poisson (see Section 2 for the275

details on how the Poisson noise is added).

Algorithm 1 is applied: the chosen denoising technique (Line 2) consists

simply of filtering via a Gaussian filter of dimension 5 pixels and variance 1.

The window of interest is chosen as described in Subsection 3.1. Due to the

discretization of the 3D volume, the maximum number Z of frames that can be280

spanned by a particle is 7, hence the estimation of the centers (Subsection 3.2)

is achieved by

1. clustering the points in R within a distance equal to 0.2a followed by

estimating the raw center {Rk}k=1,...,q and then

2. search the Z nearest neighbours to each Rk within a distance 0.2a and285

apply (3).

In Figure 9 the three type of errors are depicted; the proposed procedure rec-

ognizes 99 particles (out of 100). The plots in Figure 9 show that the mean of

each error (yellow dashed line) type stays below the 1/10 of a pixel/voxel (red

line), which is the baseline of the state–of–the–art methods [20, 18]. In fact, the290

in–plane error is 0.0596, the out–of–plane error is 0.0371. The total error, given

by (4), is 0.0777, below the state–of–the–art baseline.
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In order to study the behaviour of the procedure on large numbers of par-

ticles, the above simulation is repeated 20 times (for a total of 2000 particles),

storing the errors V,P,T for each run. The histograms of the total error T is295

shown in Figure 10(a), together with its distribution estimation. The histogram

is fit with a Γ distribution with parameters (k, θ),where k is the shape param-

eter and θ is the scale parameter. The mean of T is 0.0811. The behaviour of

the total error is presented alone: the histogram of the in–plane error has the

same appearance, with mean 0.0643, while the histogram of the out–of–plane300

error has also a Γ behaviour but much more concentrate towards zero, with a

mean of 0.0387. All the three errors stay below the expected baseline of 10%

[20]. Our proposed procedure is based on the assumption that the true radius

(a) Distribution of T. (b) Distribution of a− re.

Figure 10: (a): Histogram of the total error T: its mean is 0.0811, its median is 0.0781. The

out–of–plane and the in–plane error has very similar behaviour and can be fitted to the same

distribution. (b): histogram of the signed difference a− re together with its t–location scale

fit. There are more outliers on the left than on the right, and in addition to the fact that the

mean is circa -0.014 this tells that the proposed procedure tends to slightly overestimate the

radius of the particles.

is known: this is a valid assumption in many applications, but with a certain

degree of uncertainty (e.g., the radius can be known within an error of the 10%).305

In order to check if the estimation re of the radii of the particles is reliable, in

Figure 10(b) the histogram of the signed difference a − re is shown, aiming to

evaluate the performance of the algorithm (re is computed by simple geometric
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properties). The chosen distribution for the fit is the t–location scale fit, due to

the heavy tail on the left: this distribution is able to capture also the highest310

error (in absolute value). In this case, there are actually some outliers on the

left of the histogram, as it is evident from Figure 10(b). The mean given by

this distribution is -0.0142: this means that overall the radii of the particles are

overestimated by 1.5%. A first justification of this behaviour can be given by

the blur effect given by the PSF (see Section 2 for the detail) combined with the315

denoising technique adopted, but the next experiment will neglect the influence

of the PSF and it will show how the denoising technique influences the radius

estimation.

Nz: number of frames

10 12 15 20 22 25 30

P 0.0813 0.0774 0.0719 0.0713 0.0643 0.0630 0.0620

V 0.0259 0.0301 0.0318 0.0336 0.0387 0.0471 0.0436

T 0.0883 0.0870 0.0836 0.0844 0.0811 0.0855 0.0824

a− re -0.0117 -0.0129 -0.0141 -0.0138 -0.0142 -0.0133 -0.0137

Nrec 69.4 92.8 96.4 98.2 99.2 99.7 99.8

Table 1: Performance w.r.t. different vertical discretization. There is a faint decreasing

behaviour in the vertical error, which leads in a decrease on the total error. Notice that even

for a low number of frames a low V is achieved. In the last row of the table the error on

the true radius is shown for each resolution. Despite the low resolution, even for Nz = 10 or

Nz = 12 a good estimation is achieved. The means of the differences a− re are obtained via

a t–location scale distributio fit.

The last part is devoted to study the performance w.r.t. the vertical res-

olution, i.e. the number Nz of frames in which the volume is discretized (Nx320

and Ny are unchanged, since most modern microscopes have a high resolution

in both x and y axis). In Table 1 the behaviour of the three kinds of error

are depicted for increasing vertical resolution. For each dimension, 20 different
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simulations were performed, hence 20 different runs of the procedure has been

done: the numbers appearing in Table 1 are the means of the results of these325

simulations. One would expect that the estimation would improve with the

number of frames: actually, the procedure reveals itself to be very robust w.r.t.

the vertical resolution, even with only a few (10 or 12) frames. The difference

a− re is depicted in the 4–th row: for each resolution, this difference is around

-0.013, meaning that, regardless the number of vertical frames, the radius of330

the particles is overestimated by 1.3%. The last line of Table 1 refers to the

(mean) number of estimated particles: the results are very satisfying for all the

resolution but the first one (Nz = 10): this is due to the fact that in this case

a particle can span only 3 frames maximum (more likely just 2 frames), leading

to have a low number of candidates in C. Hence, it is a problem linked to the335

relation between the dimension of the particles and the vertical resolution: for

small particles it is sufficient to slightly increase Nz (Nz = 12 in order to get

very good results), while for larger particles (a = 1.1µm) 10 frames prove to be

sufficient, as it is evident in Table 2)

P V T a− re Nrec(%)

0.0624 0.0262 0.0712 -0.0099 47.3 (95.5%)

Table 2: Results of 20 runs of the procedure with a = 1.1µm, Nz = 10 and N = 50. It is

evident that the poor performance of the procedure when Nz = 10 in Table 1 is due to the

relation between the diameter of the particles and the resolution. Such a low resolution is

however enough for slightly larger particles to get reliable results.

Second synthetic test: Poisson noise. These tests aim at checking whether the340

Gaussian filtering is the right choice for denoising. Let consider the same setting

of the previous experiments: Dx = Dy = 76.8µm, Dz = 7µm, 100 particles of

radius a = 1µm, Nx = Ny = 512, Nz = 22. The difference lies in the noise

corrupting the frames: no Gaussian noise is present (σn = 0) while Poisson noise

affects the data. Algorithm 1 is applied to this dataset: satisfactory results,345
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in line with the ones in Table 1, are obtained (P = 0.0621,V = 0.0331, and

T = 0.0755, 98 particles recognized). Since simple Gaussian filter is not always

sufficient to deal with high level Poisson noise, as suggested in Subsection 3.1

an optimization approach is adopted, by using the algorithm presented in [36]:

on the one hand, this procedure can be used to set the variational formulation350

for restoring images corrupted by pure Poisson noise and on the other to select

edge–preserving regularization, aiming to preserve sharp edges, which eases the

entire procedure of particles estimation. The Bregman procedure of [36] has

been chosen instead of possibly simpler procedures (e.g., [50, 51]) for its ability

to increase contrast [52, 53, 54] in the restored images, which is a desirable355

feature. A visual inspection on the difference between the Gaussian filtering

and the employed Bregman technique is depicted in Figure 11, where a zoom

of the 4–th frame is shown. The Bregman procedure uses as inner solver the

AEM algorithm [55], with a maximum of 1000 iterations maximum and stopped

via the criterion described in [36] with a tolerance of 10−4, the fixed number of360

external iterations is 3, the regularization parameter µ is set to 0.1. The fit–

to–data function f0 is the generalized Kullback–Leibler and the regularization

functional is the Total Variation, which preserves sharps edges.

Using this approach in Line 2 of Algorithm 1, yields the following results:

P = 0.0627,V = 0.0316 and T = 0.0752, with 99 particles recognized. The most365

important difference lies in the estimated radius: with Gaussian filtering the

mean error (obtained by a t–location scale fit) is −0.0134, while the Bregman

technique leads to an error of −0.0018: hence, using the Gaussian filtering leads

to overestimate the radius of the particles. Since just one single experiment is

not sufficient to support this claim, further tests are carried on and presented370

in Table 3: one with a lower vertical resolution (Nz = 10), where the dimension

and the discretization of the volume is the same, while the number of particles is

50 and the radius is set to 1.1µm. The second test is performed on a dataset with

the same characteristic of the first one presented in this paragraph: Dx = Dy =

76.8µm, Dz = 7µm, 100 particles of radius a = 1µm, Nx = Ny = 512, Nz = 22.375
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(a) Blurred & noisy. (b) Clear image. (c) Gaussian filtering. (d) Bregman.

Figure 11: From left to right: Blurred & noisy frame, original image (without blurring and

noise), Gaussian filterng and Bregman restoration. These images are examples from the 4–th

frame, they are displayed in the range [0, 255]. The Bregman technique is able to separate in

a more reliable way the particles and at the same time is providing with more sharp edges,

due to the choice of regularization function. In this case, the regularization is given by the

Total Variation functional. It could happen that Gaussian filtering makes merge two or more

particle in one big component, increasing the difficulties in recognized different objects.

Table 3 shows that using the correct denoising procedure produces better

results in terms of error estimation and of number of recognized particles; more-

over, choosing the correct denoising technique allows to estimate more precisely

the radius: in fact, for Nz = 10 using Gaussian filtering leads to an error of al-380

most 1%, while the Bregman technique reduces the error to 0.1%. For Nz = 22

the difference is more pronounced: classical filtering gives an error of ∼ 1.4%,

while again the proposed approach results in an error of only 0.1%. The hy-

pothesis that the overestimation of the radius actually depends on the denoising

and deblurring techinque is true: at a first sight, it seems from Table 1 that this385

is a determinate error [20] of the algorithm, but this last experiment tells the

opposite. The procedure used to improve the quality of the images influences

the performance of the particle estimation algorithm.

While on the one hand, the two denoising procedures are similar, because

both require parameters setting (e.g., the Bregman technique requires the tuning390

of the regularization parameter, of the tolerance for the stopping criterion; the

filtering techniques requires to choose the type of filter and its parameters); on
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Nz Technique P V T a− re Nrec(%)

10
Gaussian Filter 0.0622 0.0271 0.0712 -0.0096 46.7 (93.4%)

Bregman 0.0628 0.0177 0.0677 -0.0013 47.6 (95.2%)

22
Gaussian Filter 0.0626 0.0380 0.0793 -0.0138 98.8 (98.8%)

Bregman 0.0637 0.0291 0.0746 -0.0019 99.4 (99.4%)

Table 3: Results obtained by 10 runs of the algorithm. The Bregman technique provides better

results overall, both for Nz = 10 and Nz = 22. The error on the estimated radius is given by

the mean obtained by the t–location scale distribution fit, as was done in Figure 10(b); for

the case Nz = 10, looking at the simple arithmetic mean, the Bregman procedure shows to

be much more precise in the radius’ estimation, in fact it gives an error of −0.0028, while the

Gaussin filtering results in an error of −0.0119. For the case Nz = 22. The overall behaviour

of the Bregman approach in terms of error measurements is slightly better, but the number of

found particles is closer to the maximum and the estimation of the radius improved, reaching

an error of 0.1%.

the other hand, the optimization technique has drawbacks as its computational

cost and the time need to restore each frame, while simple filtering is more or

less free in these terms. There is a trade–off (as it usually occurs in cases such395

these) between performance and time/computational cost.

Real 3D data. This paragraph is devoted to applying the proposed algorithm

to real 3D data. The scanned volume has Dx = Dy = 64µm, Dz = 4.1µm, dis-

cretized into an array of dimension 512×512×10, leading to dx = dy = 0.125µm,

dz = 0.41µm; 50 scans of the volume were recorded, with a dt = 0.5s. The400

diameter of the particles is 3µm (a = 1.5µm) and they are suspended in a

∼ 70% − 30% glycerol/water mixture (viscosity of ∼ 0.017 Pa s). The in-

strument used to acquire this data is a confocal microscope (Zeiss LSM 700)

with a 100×NA 1.4 oil immersion objective (Zeiss Plan–APOCHROMAT). The

frames are restored using the Bregman procedure previously described with the405

following settings: AEM as inner solver with a Total Variation functional as

regularization, maximum number of allowed iterations set to 1000 within a tol-
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erance of 10−4 for the stopping criterion described in [36] with α = 2, 3 external

iteration are allowed. Since the images are given without any information about

their recording, a Gaussian PSF1 with σ = 1 and zero mean is assumed as blur-410

ring operator, a background term equal to the minimum value of the image,

and Poisson noise affecting the frames. All these assumptions are consistent

with the type of the images produced by the aforementioned instrument. Fig-

(a) Original. (b) Bregman. (c) Gauss filter.

(d) Original, particular. (e) Bregman, particular. (f) Gauss filter, particular.

Figure 12: From left to right, from up to bottom. The images have to be read in pairs: for

the z–th slice, the left image refers to the noisy and blurred frame, while the right image

refers to the restored one. It is clear that the contrast of the image is significantly improved,

reducing the diffuse areas, mainly in the highest frames. All the images are displayed in the

range [0, 255].

ure 12 shows in its first row the 6–th acquired frame at time t = 1, the restored

1fspecial(’gaussian’,512,1).
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version via Bregman technique and the filtered image via a Gaussian filter. In415

the second row a particular of these image is presented: the visual inspection

makes clear that the usage of the correct denoising technique allows to reduce

the glowing halo all among the frame and moreover provides with more sharp

edges, all this contributes in making easier the recognition of the profiles.

Algorithm 1 is set with an initial woi of width 2× 0.1rk (see Subsection 3.1420

for the details), with a threshold which is 1.5 times the value given by Otsu’s

method, ρraw = 0.3, ρest = 0.3. The frames at time t = 1 are shown in Figure 14:

the goodness of result is more evident in the particular shown in the last panel.

Figure 13 provides a visual inspection of the reconstructed position of the

particles at time t = 1: this reconstruction faithfully respects the true position,425

as it is clear by comparing the 3D plot with the frames depicted in Figure 14,

where the recovered profiles of the particles are superimposed on the original

images. In these images, the top left corner corresponds to the point (0, 0, kdz)

in the 3D space, being k the number of the frame. A closer inspection of

Figure 13 and 14 demonstrates that the proposed procedure finds particles close430

to the boundaries of the frames, as well as the ones near the top or the bottom

of the volume.

Figure 13: 3D recovering of the position of the particles at time t = 1.
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Figure 14: Panel from 1

to 10 contain the original

images with the superpo-

sition of the recognized

profiles (in red). Last

panel: particular of the

7–th frame.

5. Conclusion

In this work, a particle segmentation and position estimation methodology

is presented. Assuming fixed spherical particles with a known radius, this pro-435

cedure uses the 2D gradient information on the profiles of the particles and
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employs a weighted regularized Least Square fit to find the 2D center and the

radius of the profile intersecting each frame. Using geometric properties, the

coordinates of the 3D center are retrieved with an accuracy better than 10% of

a voxel, which was the state–of–the–art performance of this type of algorithms.440

Even for a low vertical resolution, the total error is still acceptable, and the very

low error on the radius estimation suggests that this procedure can improve a

priori information about the radius of particles of uncertain dimension. The

presence of certain type of noise requires a more tailored denoising technique: in

this work it is suggest to employ image restoration technique, which can be more445

demanding in terms of computational time but this strategy leads to a general

improvement of the position estimation. Moreover, this approach significantly

increases the precision on the radius estimation. Future work will involve better

thresholding techniques for pathological cases, handling the case of the unknown

radius; the case where particles are subjected to significant Brownian motion,450

and the proposed algorithm will be employed in a more general particle tracking

procedure.
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Real-time single-molecule imaging of the infection pathway of an adeno-

28

https://doi.org/10.1038/nrmicro1615


associated virus, Science 294 (5548) (2001) 1929–1932 (2001). doi:10.

1126/science.1064103.465

[5] A. Akhmanova, M. O. Steinmetz, Tracking the ends: a dynamic protein

network controls the fate of microtubule tips, Nature Reviews Molecular

Cell Biology 9 (2008) 309 EP – (04 2008).

[6] A. Kusumi, T. A. Tsunoyama, K. M. Hirosawa, R. S. Kasai, T. K. Fujiwara,

Tracking single molecules at work in living cells, Nature Chemical Biology470

10 (2014) 524 EP – (06 2014). doi:10.1038/nchembio.1558.

[7] M. Weiss, Chapter Eleven–crowding, diffusion, and biochemical reactions,

in: R. Hancock, K. W. Jeon (Eds.), New Models of the Cell Nucleus:

Crowding, Entropic Forces, Phase Separation, and Fractals, Vol. 307 of

International Review of Cell and Molecular Biology, Academic Press, 2014,475

pp. 383 – 417 (2014). doi:10.1016/B978-0-12-800046-5.00011-4.

[8] M. J. Saxton, K. A. Jacobson, Single-particle tracking: applications to

membrane dynamics., Annual review of biophysics and biomolecular struc-

ture 26 (1997) 373–99 (1997).

[9] U. Jandt, A.-P. Zeng, Modeling of Intracellular Transport and Compart-480

mentation, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 221–

249 (2012). doi:10.1007/10_2011_104.

[10] L. L. Josephson, J. W. Swan, E. M. Furst, In situ measurement of local-

ization error in particle tracking microrheology, Rheologica Acta (2018).

doi:10.1007/s00397-018-1117-5.485

[11] T. G. Mason, D. A. Weitz, Optical measurements of frequency-dependent

linear viscoelastic moduli of complex fluids, Phys. Rev. Lett. 74 (1995)

1250–1253 (1995). doi:10.1103/PhysRevLett.74.1250.

[12] D. T. Chen, E. R. Weeks, J. C. Crocker, M. F. Islam, R. Verma, J. Gruber,

A. J. Levine, T. C. Lubensky, A. G. Yodh, Rheological microscopy: Lo-490

29

https://doi.org/10.1126/science.1064103
https://doi.org/10.1126/science.1064103
https://doi.org/10.1126/science.1064103
https://doi.org/10.1038/nchembio.1558
https://doi.org/10.1016/B978-0-12-800046-5.00011-4
https://doi.org/10.1007/10_2011_104
https://doi.org/10.1007/s00397-018-1117-5
https://doi.org/10.1103/PhysRevLett.74.1250


cal mechanical properties from microrheology, Phys. Rev. Lett. 90 (2003)

108301 (Mar 2003). doi:10.1103/PhysRevLett.90.108301.

[13] J. Apgar, Y. Tseng, E. Fedorov, M. B. Herwig, S. C. Almo, D. Wirtz,

Multiple-particle tracking measurements of heterogeneities in solutions of

actin filaments and actin bundles., Biophysical Journal 79 (2) (2000) 1095–495

1106 (08 2000).

[14] M. T. Valentine, P. D. Kaplan, D. Thota, J. C. Crocker, T. Gisler, R. K.

Prud’homme, M. Beck, D. A. Weitz, Investigating the microenvironments

of inhomogeneous soft materials with multiple particle tracking, Phys. Rev.

E 64 (2001) 061506 (Nov 2001). doi:10.1103/PhysRevE.64.061506.500

[15] K. K. Chu, D. Mojahed, C. M. Fernandez, Y. Li, L. Liu, E. J. Wilsterman,

B. Diephuis, S. E. Birket, H. Bowers, G. M. Solomon, B. S. Schuster,

J. Hanes, S. M. Rowe, G. J. Tearney, Particle-tracking microrheology using

micro-optical coherence tomography, Biophysical Journal 111 (5) (2016)

1053 – 1063 (2016). doi:https://doi.org/10.1016/j.bpj.2016.07.020.505

[16] C. A. Murray, W. O. Sprenger, R. A. Wenk, Comparison of melting in

three and two dimensions: Microscopy of colloidal spheres, Phys. Rev. B

42 (1990) 688–703 (Jul 1990). doi:10.1103/PhysRevB.42.688.

[17] J. C. Crocker, D. G. Grier, Microscopic measurement of the pair interaction

potential of charge-stabilized colloid, Phys. Rev. Lett. 73 (1994) 352–355510

(Jul 1994). doi:10.1103/PhysRevLett.73.352.

[18] N. Chenouard, I. Smal, F. de Chaumont, M. Maška, I. F. Sbalzarini,
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