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A Simple Proof of the Generalized Riemann’s

Hypothesis
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Abstract

This article is the continuation of the previous RH proof[1]. We present
a simple proof of the Riemann’s Hypothesis for Dirichlet L−functions
where we apply the same method we used to prove RH.
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1 Dirichlet L−functions

Let’s (zn)n≥1 be a sequence of complex numbers. A Dirichlet series[3] is a

series of the form

∞∑

n=1

zn

ns
, where s = σ+ iτ is complex. The zeta function

is a Dirichlet series. Let’s define the function L(s) of the complex s:

L(s) =

∞∑

n=1

zn

ns
.

• If (zn)n≥1 is a bounded, then the corresponding Dirichlet series con-
verges absolutely on the open half-plane where ℜ(s) > 1.

• If the set of sums zn + zn+1 + ... + zn+k for each n and k ≥ 0 is
bounded, then the corresponding Dirichlet series converges on the
open half-plane where ℜ(s) > 0.

• In general, if zn = O(nk), the corresponding Dirichlet series con-
verges absolutely in the half plane where ℜ(s) > k + 1.

The function L(s) is analytic on the corresponding open half plane[2-3].
To define Dirichlet L−functions we need to define Dirichlet characters.

A function χ : Z 7−→ C is a Dirichlet character modulo q if it satisfies
the following criteria:
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• (i) χ(n) 6= 0 if (n, q) = 1.

• (ii) χ(n) = 0 if (n, q) > 1.

• (iii) χ is periodic with period q :χ(n+ q) = χ(n) for all n.

• (iv) χ is multiplicative :χ(mn) = χ(m)χ(n) for all integers m and n.

The trivial character is the one with χ0(n) = 1 whenever (n, q) = 1.
Here are some known results for a Dirichlet character modulo q. For

any integer n we have χ(1) = 1. Also if (n, q) = 1, we have (χ(n))φ(q) =
1 with φ is Euler’s totient function. χ(n) is a φ(q)−th root of unity.
Therefore, |χ(n)| = 1 if (n, q) = 1, and |χ(n)| = 0 if (n, q) > 1.
Also, we recall the cancellation property for Dirichlet characters modulo
q: For any n integer

q∑

i=1

χ(i+ n) =

{

φ(q), if χ = χ0 the trivial character

0, if otherwise, χ 6= χ0

(1)

The Dirichlet L−functions are simply the sum of the Dirichlet se-
ries. Let’s χ be a Dirichlet character modulo q, The Dirichlet L−function
L(s, χ) is defined for ℜ(s) > 1 as the following:

L(s, χ) =

+∞∑

n=1

χ(n)

ns
(2)

They are a natural generalization of the Riemann zeta-function ζ(s) to
an arithmetic progression and are a powerful tool in analytic number
theory. The Dirichlet series, converges absolutely and uniformly in any
bounded domain in the complex s-plane for which ℜ(s) ≥ 1 + γ, γ > 0.
In the particular case of the trivial character χ0, L(s, χ0) extends to a
meromorphic function[2-5] in ℜ(s) > 0 with the only pole at s = 1.

If χ is a non-trivial character, we have

L(s, χ) = s

∫ +∞

1

∑n≤x
n=1 χ(n)

xs+1
dx (3)

Since the sum in the integrand is bounded, this formula gives an
analytic continuation of L(s, χ) to a regular function in the half-plane
ℜ(s) > 0. Also, like the zeta function, the Dirichlet L−functions have
their Euler product[1-2]. For ℜ(s) > 1:

L(s, χ) =
∏

pPrime

(

1− χ(p)

ps

)−1

(4)

Therefore, if χ = χ0 is a trivial character mod q, we have, for q = 1,

L(s, χ0) = ζ(s) (5)

And for q > 1, we have,

L(s, χ0) = ζ(s)
∏

p/q

(

1− 1

ps

)

(6)
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For this reason the properties of L(s, χ0) in the entire complex plane are
determined by the properties of ζ(s).

Let’s now q′ be the smallest divisor (prime) of q. Let’s χ′ be the
Dirichlet character χ′ mod q′. For any integer n such that (n, q) = 1, we
have also (n, q′) = 1 and χ(n) = χ′(n). χ′ is called primitive and L(s, χ)
and L(s, χ′) are related analytically such that if χ 6= χ0:

L(s, χ) = L(s, χ′)
∏

p/q

(

1− χ′(p)
ps

)

(7)

L(s, χ) and L(s, χ′) have the same zeros in the critical strip 0 < ℜ(s) < 1.
Also, for a primitive character χ, (i.e.χ = χ′) L(s, χ) has the following

functional equation:

τ (χ)Γ(
1− s+ a

2
)L(1− s, χ) =

√
π(

q

π
)siaq

1

2 Γ(
s+ a

2
)L(s, χ) (8)

Where Γ is the Gamma function and a = 0 if χ(−1) = 1 and a = 1 if
χ(−1) = −1, and τ (χ) =

∑q
k=1 χ(k) exp(

2πki
q

).
When ℜ(s) > 1 there is no zero for L(s, χ). When ℜ(s) < 0, for a

primitive character χ, we have the trivial zeros of L(s, χ): s = a − 2k,
where k is a positive integer and a is defined above. For more details,
please refer to the references[1-8].

2 The Generalized Riemann Hypothesis

The Generalized Riemann Hypothesis states that the Dirichlet L−functions
have all their non-trivial zeros on the critical line ℜ(s) = 1

2
.

We know that for any character χ modulo q, all non-trivial zeros of
L(s, χ) lies in the critical strip {s ∈ C : 0 < ℜ(s) < 1}. From the
functional equation above we have that if:

• s0 is a non-trivial zero of L(s, χ), then 1− s0 is a zero of L(s, χ).

• s0 is a non-trivial zero of L(s, χ), then 1− s0 is a zero of L(s, χ).

Therefore, we just need to prove that for any character1 χ modulo q, there
is no non-trivial zeros of L(s, χ) in the right hand side of the critical strip
{s ∈ C : 1

2
< ℜ(s) < 1}.

3 Proof of the Generalized Riemann Hy-

pothesis

Let’s take a complex number s such that s = σ+ iτ . Unless we explicitly
mention otherwise, let’s suppose that 0 < σ < 1, τ > 0 and L(s, χ) = 0

where L(s, χ) =
∑+∞

n=1
χ(n)
ns and χ is a non-trivial Dirichlet character χ

modulo q. When q = 2 there is only one Dirichlet character and it is

1In fact, we just need to prove it for the primitive characters.
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trivial. So here we are going to assume that q ≥ 3.

We have from the integral equation (3) above:

L(s, χ) = s

∫ +∞

1

∑n≤x
n=1 χ(n)

xs+1
dx (9)

We have from the Riemann’s integral in [1]:

ζ(s) =
s

s− 1
− s

∫ +∞

1

{x}
xs+1

dx (10)

In this article, we leverage on the RH proof in [1] to proof GRH. Also,
we will use the same method and notations as in [1]. Let’s recall from [1]
the following notations:

ǫ0(x) = {x} (11)

ǫn+1(x) =
1

x

∫ x

0

dt ǫn(t) (12)

ǫ(x) =
+∞∑

k=0

ǫk(x) (13)

Lemma 3.1. Let’s consider two variables σ and τ such that σ > 0, τ > 0
and s = σ+ iτ . Let’s L(s, χ) be a L−function where χ is a character (not
necessarily a Dirichlet character) such that:

L(s, χ) =
λs

s− 1
− s

∫ +∞

1

(
λ{x}+ fλ(x)

)

xs+1
dx (14)

With the function x → fλ(x) is bounded over R
+ and null over the in-

terval [0, 1] and the complex constant λ 6= 0. Let’s define the sequence of

functions fn and fn such that f0(x) = f0(x) =
fλ(x)

λ
and for each n ≥ 1:

fn+1(x) =
1

x

∫ x

0

dt fn(t) (15)

fn+1(x) =
1

x

∫ x

1

dt fn(t) (16)

f(x) =

+∞∑

k=0

fk(x) (17)

If L(s, χ) = 0, then:

1. For each n:
∫ +∞

1

dx
ǫn(x) + fn(x)

x1+s
= − 1

(1− s) 2n
(18)

2. For each n:
∫ +∞

1

dx
ǫn(x) + fn(x)

x2−s
= − 1

(s) 2n
(19)
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3. For each x ≥ 1:

fn(x) = fn(x) (20)

4. For each n and x ≥ 1:

fn(x) =
1

(n− 1)!

1

x

∫ x

1

dt f0(t)
(
ln(

x

t
)
)n−1

(21)

5. For each x ≥ 1:

lim
n→+∞

2n fn(x) = 0 (22)

6. For each x ≥ 0:

f(x) = f0(x) +

∫ x

1

dt
f0(t)

t
(23)

7. There exists a constant M > 0 such that for each x ≥ 0:

|ǫ(x) + f(x)| ≤ 2 +M + (M + 1) ln(x) (24)

Proof. Let’s take s such that L(s, χ) = 0, therefore we can write:

λs

s− 1
− s

∫ +∞

1

(
λ{x}+ f(x)

)

xs+1
dx = 0 (25)

Therefore, since s 6= 0 and λ 6= 0, we have:

∫ +∞

1

ǫ0(x) + f0(x)

xs+1
dx =

1

s− 1
(26)

We use the same method used in the lemma 1.2 in [1] to prove this
lemma.

Lemma 3.2. Let’s consider two variables σ and τ such that 0 < σ ≤ 1
2
,

τ > 0 and s = σ+iτ . Let’s L(s, χ) be a L−function where χ is a character
(not necessarily a Dirichlet character) such that:

L(s, χ) =
λs

s− 1
− s

∫ +∞

1

(
λ{x}+ f(x)

)

xs+1
dx (27)

With the function x → f(x) is bounded over R
+ and null over the interval

[0, 1] and the complex constant λ 6= 0.
Let’s define the sequence of functions En,σ(x), Fn,σ(x), Gn,σ(x) and

Hn,σ(x) over [1,+∞) for each n ≥ 1 as follows:

En,σ(x) = ℑ
[ ∫ x

1

dt

(
fn(t) + ǫn(t)

)

t1+s

]

(28)

Fn,σ(x) = ℜ
[ ∫ x

1

dt

(
fn(t) + ǫn(t)

)

t1+s

]

(29)

Gn,σ(x) =
(
En,σ(x)

)2
+

(
Fn,σ(x)

)2
(30)

Hn,σ(x) = Gn,1−σ(x)−Gn,σ(x) (31)
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Where ℑ(z) and ℜ(z) are the imaginary and the real parts of the complex

z. Let’s denote a0 = e
3

2τ and b0 = e
π

2τ .
If L(s, χ) = 0, then:

1. There is exist a large enough integer N0 such that for each n ≥ N0,
there exists xn > b0 such as:

Hn,σ(xn) = 0 (32)

2. There is exist a large enough integer N0 such that for each n ≥ N0,
there exists xn > b0 such as:

+∞∑

k=n+1

Hk,σ(xn) = 0 (33)

In other terms:

+∞∑

k=n+1

Gk,1−σ(xn) =
+∞∑

k=n+1

Gk,σ(xn) (34)

Proof. Let’s prove the first point. We have σ ≤ 1
2
and a0 = e

3

2τ , b0 = e
π

2τ .
From lemma 1.2 in [1], we have:

lim
n→+∞

2n ǫn(x) = x (35)

And from lemma 3.1, we have:

lim
n→+∞

2n fn(x) = 0 (36)

Therefore for each x ≥ 1:

lim
n→+∞

ℑ
[ 2n

(

ǫn(x) + fn(x)
)

x1+s

]

= − sin(τ ln (x))

xσ
(37)

lim
n→+∞

ℜ
[ 2n

(

ǫn(x) + fn(x)
)

x1+s

]

=
cos(τ ln (x))

xσ
(38)

lim
n→+∞

ℑ
[ 2n

(

ǫn(x) + fn(x)
)

x2−s

]

=
sin(τ ln (x))

x1−σ
(39)

lim
n→+∞

ℜ
[ 2n

(

ǫn(x) + fn(x)
)

x2−s

]

=
cos(τ ln (x))

x1−σ
(40)

Thanks to the Dominated Convergence Theorem applied on the sequence
of functions in (37− 40) over the bounded interval [1, a0], we can write:

lim
n→+∞

22n Gn,σ(a0) =
(∫ a0

1

dt
sin(τ ln (t))

tσ

)2

+
(∫ a0

1

dt
cos(τ ln (t))

tσ

)2

(41)

lim
n→+∞

22n Gn,1−σ(a0) =
(∫ a0

1

dt
sin(τ ln (t))

t1−σ

)2

+
(∫ a0

1

dt
cos(τ ln (t))

t1−σ

)2

(42)
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Thanks to lemma 1.4 in [1], we can calculate the integrals in the equations
(41− 42), we conclude:

22n Gn,σ(a0) ∼n→+∞ fa0
(1− σ) =

a
2(1−σ)
0 − 2a

(1−σ)
0 cos(τ ln (a0)) + 1

(1− σ)2 + τ 2
(43)

22n Gn,1−σ(a0) ∼n→+∞ fa0
(σ) =

a2σ
0 − 2aσ

0 cos(τ ln (a0)) + 1

σ2 + τ 2
(44)

Where fa is strictly increasing as we saw in lemma 1.4 in [1]. Therefore

lim
n→+∞

22n Hn,σ(a0) = fa0
(σ)− fa0

(1− σ) < 0 (45)

Therefore, there is exist a large enough integer N0 such that for each
n ≥ N0:

22n Hn,σ(a0) < 0 (46)

Let’s take now n ≥ N0. From lemma 3.1, have:

2n
∫ +∞

1

dt

(

ǫn(t) + fn(t)
)

t1+s
= − 1

(1− s)
(47)

2n
∫ +∞

1

dt

(

ǫn(t) + fn(t)
)

t2−s
= − 1

(s)
(48)

Therefore:

lim
x→+∞

Gn,σ(x) = ℑ
(∫ +∞

1

dt

(

ǫn(t) + fn(t)
)

t1+s

)2

+ ℜ
(∫ +∞

1

dt

(

ǫn(t) + fn(t)
)

t1+s

)2

(49)

=
1

22n ‖1− s‖2
(50)

And the same for the case with 1− s, we can write:

lim
x→+∞

Gn,1−σ(x) = ℑ
(∫ +∞

1

dt

(

ǫn(t) + fn(t)
)

t2−s

)2

+ℜ
( ∫ +∞

1

dt

(

ǫn(t) + fn(t)
)

t2−s

)2

(51)

=
1

22n ‖s‖2
(52)

Therefore:

lim
x→+∞

Hn,σ(x) =
1

22n

( 1

‖s‖2
− 1

‖1− s‖2
)

> 0 (53)

Since the function Hn,σ is continuous over [1,+∞). From (46) and (53)
and thanks to the Mean value theorem, we can conclude that there exists
an xn > b0 such that:

Hn,σ(xn) = 0 (54)

�
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To prove the second point, we use the same method as in the second
point of lemma 1.3 in [1]. Let’s N0 be the same as defined during the first
point. Let’s define now the sequence of functions s(n, σ, x) such that for
n ≥ N0 and x ≥ 1:

s(n, σ, x) =
n∑

k=N0

Gk,σ(x) (55)

From the equations (45-46), we can deduce that:

+∞∑

k=N0

Hk,σ(a0) ≤ 0 (56)

In order to use the Mean Value theorem like in the point 1) of this

lemma, 1) we will prove that the function s(+∞, σ, x)
(

resp. s(+∞, 1 −

σ, x)
)

is continuous over [1,+∞). and 2) we will prove that:

lim
x→+∞

+∞∑

k=N0

Hk,σ(x) =
1

3 4N0−1

( 1

‖s‖2
− 1

‖1− s‖2
)

> 0 (57)

Let’s take a sequence (yn ≥ 1) such that it has a limit y. y can be
finite or +∞. The proof is similar for both cases. So, let’s consider the
double sequence s(n, σ,m) such that:

s(n, σ,m) = s(n, σ, ym) (58)

We will prove that the double sequence (s(n, σ,m)) is a Cauchy sequence
using the same method as in lemma 1.3 in [1]. We will use the points (6)
and (7) of the lemma 3.1 to support the same steps as in [1]. �

Lemma 3.3. Let’s consider two variables σ and τ such that 0 < σ ≤ 1
2
,

τ > 0 and s = σ+iτ . Let’s L(s, χ) be a L−function where χ is a character
(not necessarily a Dirichlet character) such that:

L(s, χ) =
λs

s− 1
− s

∫ +∞

1

(
λ{x}+ f(x)

)

xs+1
dx (59)

With the function x → f(x) is bounded over R
+ and null over the interval

[0, 1] and the complex constant λ 6= 0.
If L(s, χ) = 0, then:

σ =
1

2
(60)

Proof. With the result of lemmas 3.1 and 3.2, we use the same methods
used in lemmas 1.4, 1.5 and 1.6 in [1] to prove this lemma.

From the lemma 3.3 above we can conclude the following corollary.
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Corollary 3.3.1. Let’s consider two variables σ and τ such that σ > 0,
τ > 0 and s = σ + iτ . Let’s q > 1 be an positive integer. Let’s L(s, χ) be
a L−function where χ is a Dirichlet character mod q with no cancellation
property such that:

q
∑

n=1

χ(n) 6= 0 (61)

If L(s, χ) = 0, then:

σ =
1

2
(62)

Proof. Let’s take x > 1 a real number. Let’s denote nx = ⌊x⌋ be the
integer part of x. We have nx = x − {x}. We denote qx and rx the
quotient and the rest of the Euclidean division of nx by q as follows:
nx = qqx + rx. Therefore we can write:

x∑

n=1

χ(n) =

qx−1∑

n=0

q∑

k=1

χ(nq + k) +

rx∑

k=1

χ(nq + k) (63)

= qx

q∑

n=1

χ(n) +

rx∑

k=1

χ(k) (64)

=
x− {x} − rx

q

q∑

k=1

χ(n) +

rx∑

k=1

χ(k) (65)

=
x

q

q
∑

k=1

χ(n)−
(
{x}+ rx

)

q

q
∑

k=1

χ(n) +

rx∑

k=1

χ(k) (66)

Let’s define the constant λ and the function g as follows:

λ =

∑q
k=1 χ(n)

q
(67)

g(x) =

(
{x}+ rx

)

q

q∑

k=1

χ(n)−
rx∑

k=1

χ(k) (68)

= λ{x}+ λrx −
rx∑

k=1

χ(k)

︸ ︷︷ ︸

f(x)

(69)

It is clear that the function f(x) is bounded over R
+ and null over

[0, 1]. And by assumption we have λ 6= 0. Therefore, we can calculate
L(s, χ) as follows:

L(s, χ) = s

∫ +∞

1

∑n≤x
n=1 χ(n)

xs+1
dx (70)

= s

∫ +∞

1

λx− g(x)

xs+1
dx (71)

= s

∫ +∞

1

λ

xs
dx− s

∫ +∞

1

λ{x}+ f(x)

xs+1
dx (72)

(73)
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If ℜ(s) > 1, we can conclude:

L(s, χ) =
λs

s− 1
− s

∫ +∞

1

λ{x}+ f(x)

xs+1
dx (74)

We can extend the equation (74) over the region ℜ(s) > 0. L(s, χ) has a
holomorphic continuation as a function of s to the whole complex plane
(see [3, 6, 7, 8]). Therefore, we apply the lemma 3.3 to prove that σ = 1

2
.

�

Remark. As a direct result of the above corollary, we can see that GRH
is true for the series (

∑

n≥1
1

(qn+p)s
) with p > 0 and q > 1 are integers.

Lemma 3.4. Let’s consider two variables σ and τ such that σ > 0, τ > 0
and s = σ + iτ . Let’s q > 1 be an positive integer. Let’s L(s, χ) be
a L−function where χ is a Dirichlet character mod q with cancellation
property such that:

q∑

n=1

χ(n) = 0 (75)

Therefore:

L(s, χ) =
(1− q1−s

q

) s

s− 1
− s

∫ +∞

1

(
1−q1−s

q

)
{x}+ f(x)

xs+1
dx (76)

Where f is a bounded function over R
+ and null over the interval [0, 1].

Proof. We will use the zeta function ζ(s) to prove our case.
Let’s now write the following for s > 1:

ζ(s) =

+∞∑

n=1

1

ns
(77)

=

∞∑

n=0

q
∑

i=1

1

(qn+ i)s
(78)

=

q
∑

i=1

∞∑

n=0

1

(qn+ i)s
(79)

Therefore

(
1− 1

qs

)
ζ(s) =

q−1
∑

i=1

∞∑

n=0

1

(qn+ i)s
(80)

Also

L(s, χ) =
+∞∑

n=1

χ(n)

ns
(81)

=

+∞∑

n=0

q∑

i=1

χ(i)

(qn+ i)s
(82)

=

q
∑

i=1

χ(i)

+∞∑

n=0

1

(qn+ i)s
(83)
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Therefore since χ(q) = 0

L(s, χ) =

q−1∑

i=1

χ(i)
+∞∑

n=0

1

(qn+ i)s
(84)

Since
∑q

n=1 χ(n) = 0 and χ(1) = 1, we can write the following:

+∞∑

n=0

1

(qn+ 1)s
= L(s, χ)−

q−1
∑

i=2

χ(i)

+∞∑

n=0

1

(qn+ i)s
(85)

+∞∑

n=0

1

(qn+ 1)s
=

(
1− 1

qs

)
ζ(s)−

q−1
∑

i=2

+∞∑

n=0

1

(qn+ i)s
(86)

Therefore

(
1− 1

qs

)
ζ(s)− L(s, χ) =

q−1
∑

i=2

(
1− χ(i)

)
+∞∑

n=0

1

(qn+ i)s
(87)

Let’s denote L(s, i)2≤i≤q−1 as follows:

L(s, i) =

+∞∑

n=0

1

(qn+ i)s
(88)

We can write also:

L(s, i) = s

∫ +∞

1

∑n≤x
n=1 χi(n)

xs+1
dx (89)

Where χi is the character of L(s, i):

• (i) χi(qn+ i) = 1

• (ii) χi(qn+ j) = 0 if j 6= i

Let’s take x > 1 a real number. Let’s denote nx = ⌊x⌋ be the integer part
of x. We have nx = x − {x}. We denote qx and rx the quotient and the
rest of the Euclidean division of nx by q as follows: nx = qqx + rx. Let’s
denote the following:

λi =

∑q
k=1 χi(n)

q
=

1

q
(90)

fi(x) =

(
{x}+ rx

)

q

q∑

k=1

χi(n)−
rx∑

k=1

χi(k) (91)

=

(
{x}+ rx

)

q
−

rx∑

k=1

χi(k) (92)

Therefore from the equation (74):

L(s, i) =
s

q(s− 1)
− s

∫ +∞

1

fi(x)

xs+1
dx (93)
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Therefore, we can write the equation (87) as follows:

(
1− 1

qs

)
ζ(s)− L(s, χ) =

q−1∑

i=2

(
1− χ(i)

)
L(s, i) (94)

=
s

q(s− 1)

q−1∑

i=2

(
1− χ(i)

)
− s

q−1∑

i=2

(
1− χ(i)

)
∫ +∞

1

fi(x)

xs+1
dx (95)

Thanks to the cancellation property, we can conclude that:

(
1− 1

qs

)
ζ(s)− L(s, χ) =

s(q − 1)

q(s− 1)
− s

∫ +∞

1

∑q−1
i=2

(
1− χ(i)

)
fi(x)

xs+1
dx (96)

From the equation (10) we replace the ζ(s) by its L− function:

L(s, χ) =
1− q1−s

q

s

(s− 1)
− s

∫ +∞

1

(
1− q−s

)
{x} −∑q−1

i=2

(
1− χ(i)

)
fi(x)

xs+1
dx (97)

Let’s define the function g(x) as follows:

g(x) =
(
1− q

−s
)
{x} −

q−1
∑

i=2

(
1− χ(i)

)
fi(x) (98)

=
1− q1−s

q
{x} − (1− 1

q
)rx +

q−1
∑

i=2

(
1− χ(i)

)
rx∑

k=1

χi(k) (99)

=
1− q1−s

q
{x}+ f(x) (100)

Where f is unrelated to s, bounded over R
+ and null over [0, 1]. We

can also write:

f(x) = −(1− 1

q
)rx +

q−1∑

i=2

(
1− χ(i)

)
rx∑

k=1

χi(k) (101)

=
rx

q
−

rx∑

k=1

χ(k) (102)

And

L(s, χ) =
(1− q1−s

q

) s

s− 1
− s

∫ +∞

1

(
1−q1−s

q

)
{x}+ f(x)

xs+1
dx (103)

Lemma 3.5. Let’s consider two variables σ and τ such that 0 < σ < 1,
τ > 0 and s = σ + iτ . Let’s q > 1 be an positive integer. Let’s L(s, χ)
be a L−function where χ is a Dirichlet character mod q with cancellation
property such that:

q
∑

n=1

χ(n) = 0 (104)
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Let’s suppose that s = σ + iτ is a zero for L(s, χ). i.e L(s, χ) = 0.
Therefore

σ =
1

2
(105)

And the Generalized Riemann’s Hypothesis is true.

Proof. The proof is straightforward as we can use the lemmas 3.3 and 3.4.
From lemma 3.4 we can write the following:

L(s, χ) =
λs

s− 1
− s

∫ +∞

1

λ{x}+ f(x)

xs+1
dx (106)

λ =
1− q1−s

q
(107)

Where f is a bounded function over R
+. Then, we apply the lemma 3.3

to conclude that

σ =
1

2
(108)

And the Generalized Riemann’s Hypothesis is true.

�

3.1 Conclusion

We saw that if s is a zeta zero, then real part ℜ(s) can only be 1
2
. There-

fore, the Generalized Riemann Hypothesis (GRH) is true: The non-trivial
zeros of a L−Dirichlet function have real part equal to 1

2
. With this, we

conclude the Factoring problem is in P and therefore P = NP.
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