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THE BOLTZMANN EQUATION WITH AN EXTERNAL FORCE
ON THE TORUS: INCOMPRESSIBLE NAVIER-STOKES-FOURIER

HYDRODYNAMICAL LIMIT

MARC BRIANT, ARNAUD DEBUSSCHE, JULIEN VOVELLE

Abstract. We study the Boltzmann equation with external forces, not neces-
sarily deriving from a potential, in the incompressible Navier-Stokes perturba-
tive regime. On the torus, we establish Cauchy theories that are independent
of the Knudsen number in Sobolev spaces. The existence is proved around a
time-dependent Maxwellian that behaves like the global equilibrium both as time
grows and as the Knudsen number decreases. We combine hypocoercive proper-
ties of linearized Boltzmann operators with linearization around a time-dependent
Maxwellian that catches the fluctuations of the characteristics trajectories due
to the presence of the force. This uniform theory is sufficiently robust to derive
the incompressible Navier-Stokes-Fourier system with an external force from the
Boltzmann equation. Neither smallness, nor time-decaying assumption is required
for the external force, nor a gradient form, and we deal with general hard poten-
tial and cut-off Boltzmann kernels. As a by-product the latest general theories for
unit Knudsen number when the force is sufficiently small and decays in time are
recovered.

Keywords: Boltzmann equation with external force, Hydrodynamical limit, In-
compressible Navier-Stokes equation, Hypocoercivity, Knudsen number.
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1. Introduction

The Boltzmann equation is used to model rarefied gas dynamics when particles
undergo elastic binary collisions, when one studies the gas from a mesoscopic point
of view. It describes the time evolution of f = f(t, x, v): the distribution of the
particles constituing the gas in position x and velocity v. The equation can be
derived from Newton’s law under the assumption of rarefied gases [14] and it reads

(1.1) τ∂tF + v · ∇xF =
1

Kn
Q(F, F ).

1
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The parameter Kn is a physical parameter, called the Knudsen number, that gauges
the continuity of the gas. Physically speaking, a small Knudsen number indicates
that fluid equations are more accurate to describe the gas. The parameter τ in (1.1)
is a relaxation time.

For given ranges of the parameters τ and Kn, one can show that the physical
observables - mass, momentum and energy - of the solution F converge are well
approached by solutions of acoustic equations or Euler equation or incompressible
Navier-Stokes equations, among others. We refer to [34, 33, 20] for a deep discussions
on the matter. We will consider the regime

τ = Kn = ε,

with ε → 0. Describing by the decomposition F = µ + εf the fluctuations of
amplitude ε of the solution F around a global equilibrium µ, we expect an asymptotic
description of f in terms of the incompressible Navier-Stokes-Fourier equations:

∂tu− ν∆u+ u · ∇u+∇p = 0,

∇ · u = 0,(1.2)

∂tθ − κ∆θ + u · ∇θ = 0,

together with the Boussinesq relation

(1.3) ∇(ρ+ θ) = 0.

It is interesting to mention that due to initial conservation laws for the Boltzmann
equation, the Boussinesq equation actually imposes ρ+ θ = 0, which in turns gives
(1.2) [20].

The resulting perturbative Boltzmann equation is

(1.4) ∂tf +
1

ε
v · ∇xf =

1

ε2
L[f ] +

1

ε
Q̃(f, f)

where L is a linear operator.
Describing the evolution of the macroscopic parameters, the density, the momen-

tum and the energy associated to f as ε tends to 0 has been the subject of numerous
works starting from the a priori very weak convergence given by the Bardos-Golse-
Levermore program [6] and using a wide range of tools from spectral theory in
Fourier space [19, 11] to the setting of renormalized solutions [22, 23]. We point out
[27, 12] in particular as they rely on two different manifestations of a very important
property of the Boltzmann linear operator L: its hypocoercivity, which will play
a central part in our study. Note that one may differentiate here the perturbative
approach of References [11, 27, 12], for example, from the approach “in the large”
of [5, 6, 8, 9, 10, 30, 21, 22, 23, 29, 2].

The present article focuses on the Boltzmann equation when the gas under con-
sideration is evolving on the d-dimensional torus Td and is influenced by an external
force ~Et(x). We would like to derive the incompressible Navier-Stokes-Fourier hy-
drodynamical limit of the latter. In this setting, the Boltzmann equation reads, for
(t, x, v) in [0, Tmax)× Td × Rd,

(1.5) ∂tF (t, x, v) +
1

ε
v · ∇xF (t, x, v) + ε ~Et(x) · ∇vF (t, x, v) =

1

ε
Q(F, F )(t, x, v).



BOLTZMANN EQUATION WITH EXTERNAL FORCES 3

The bilinear operator Q(g, h) is given under its symmetric form:

Q(g, h) =
1

2

∫
Rd×Sd−1

Φ (|v − v∗|) b (cosθ) [h′g′∗ + h′∗g
′ − hg∗ − h∗g] dv∗dσ,

where f ′, f∗, f
′
∗ and f are the values taken by f at v′, v∗, v

′
∗ and v respectively.

Define: 
v′ =

v + v∗
2

+
|v − v∗|

2
σ

v′∗ =
v + v∗

2
− |v − v∗|

2
σ

, and cos θ =

〈
v − v∗
|v − v∗|

, σ

〉
.

All along this paper we consider the Boltzmann equation with assumptions

(H1) Hard potential or Maxwellian potential (γ = 0), that is to say there is a
constant CΦ > 0 such that

(1.6) Φ(z) = CΦz
γ , γ ∈ [0, 1].

(H2) Strong Grad’s angular cutoff [24], expressed here by the fact that we assume
the non-negative function b to be C1 with the following controls

(1.7) ∀z ∈ [−1, 1], b(z), |b′(z)| 6 Cb.

Remark 1.1. We may relax (1.6) into Φ(z) � zγ, in the sense that C1
Φz

γ 6 Φ(z) 6
C2

Φz
γ for all z, where C1

Φ and C2
Φ are two positive constants. We may also assume,

instead of (1.7), that

(1.8) sup
z∈(−1,1)

b(z) < +∞,

and that the non-degeneracy hypothesis

(1.9) inf
σ2,σ3∈Sd−1

∫
σ3∈Sd−1

min{b(σ1 · σ3), b(σ2 · σ3)}dσ3 > 0,

is satisfied. Under (1.7), we can use [4] to get a spectral gap estimate on the linearized
operator L (see (3.9)), while, under (1.8)-(1.9), this is [31] that can be applied.

There are two direct observations one can make comparing (1.5) to the standard
Boltzmann equation (1.1). Firstly, the conservation of momentum and energy do
not hold, and we are only left with the a priori mass conservation

(1.10) ∀t ∈ [0, Tmax),
d

dt

∫
Td×Rd

F (t, x, v)dxdv = 0.

Secondly, the global equilibrium of the Boltzmann equation

(1.11) ∀v ∈ Rd, µ(v) =
1

(2π)d/2
e−
|v|2
2 ,

which satisfies Q(µ, µ) = 0 is no longer a stationary solution to (1.5). However, as ε
vanishes we expect the dynamics of the Boltzmann equation with external force to
converge towards µ(v). We aim at constructing an existence and uniqueness theory
in Sobolev spaces for solutions to (1.5) uniformly in ε. We shall look for solutions
in a perturbative setting, mimicking the classical decomposition F = µ + εf , that
will catch the hydrodynamical regime of the incompressible Navier-Stokes-Fourier
with external force. More precisely, we intend to show that if, at initial time, F0 is
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sufficiently close to µ(v), then so is F (t). Moreover the perturbations of the mass,
momentum and energy:

ρε(t, x) = ε−1

∫
Rd

[F (t, x, v)− µ(v)] dv(1.12)

uε(t, x) = ε−1

∫
Rd
v [F (t, x, v)− µ(v)] dv(1.13)

θε(t, x) = ε−1

∫
Rd

|v|2 − d√
2d

[F (t, x, v)− µ(v)] dv(1.14)

converge to (ρ, u, θ), which are Leray solutions to the following Navier-Stokes-Fou-
rier’s system (1.15)-(1.16):

∂tu− ν∆u+ u · ∇u+∇p =
~Et(x)

2
,

∇ · u = 0,(1.15)

∂tθ − κ∆θ + u · ∇θ = 0,(1.16)

together with the Boussinesq relation (1.3). Leray solutions of the latter means
weak solutions integrated against test functions with null divergence. We show that
(ρ, u, θ) are solutions in this weak sense, but, due to the estimates in Sobolev spaces
with high indexes that we obtain (cf. Theorem 2.5), these solutions are classical,
regular solutions close to the equilibrium state (1, 0, 1)..

The present hydrodynamical problem has not been addressed yet in the mathe-
matical litterature, and even the works with ε = 1 on the Boltzmann equation with
an external force (1.5) in full generality are scarce. The main issue being that veloci-
ty derivatives can grow very rapidly. To our knowledge only [16] deals with general
~Et(x): they solve the perturbative Cauchy theory around µ in Sobolev spaces for

ε = 1 as long as the force ~Et(x) is small and decreases to 0 as time increases (the
latter assumption is removable if d > 5 or if one solely deals with linear terms).

There have been several studies for ε = 1 when the force comes from a poten-
tial ~Et(x) = ∇xVt(x). The latest result in this setting seems to be [28] and deals
with large potential in an L∞ framework, we refer to the references therein for the
potential force framework. This framework is however irrelevant to derive Navier-
Stokes-Fourier system with force because one can only construct Leray solutions
from Boltzmann-type equations and such solutions do not see gradient terms.

At last we would like to present a related issue, still for ε = 1, that is when the
force is nonlinear: ~Et(x) = ~Et[f ](x). This happens in electromagnetism for instance.
Several results have been obtained in these settings in Sobolev space for perturba-
tion of the global equilibrium. The advantage of this nonlinearity is a feedback
that keeps the smallness of the force along the flow. We point out Vlasov-Poisson-
Boltzman equations [26, 17, 18, 36, 37] or Vlasov-Maxwell-Boltzmann equations [15],
the strategies of which will prove themselves useful in our methods. See also [3] for
a non-perturbative approach to those systems.

One of the main issue when dealing with the Boltzmann equation with an external
force comes from the fact that the perturbative regime F = µ + f gives rise to a
differential equation in f that includes the term ~Et(x)(x) · vf . The latter generates
a loss of weight in standard Sobolev estimates. The latest result we are aware of for
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general non-potential forces comes from [16], where the authors work in the whole

spatial domain Rd close to µ and ~Et(x) is assumed to be small and time-decaying
like (1 + t)−α if 3 6 d < 5. Moreover their collision operator must satisfy the hard
spheres assumption γ = 1 and b(cos θ) = 1. Working with a hard sphere kernel was
mandatory in [16] to compensate the loss of weight in v, by means of the negative
feedback of the linear Boltzmann operator, which generates a gain of 1 + |v|γ (see
(3.9)). Note however, that when only studying the semigroup generated by the

linear part of the pertubative regime they do not need any time-decay for ~Et. It is
important to understand that µ is no longer a stationary state when ~Et(x) 6= 0 so
one hope that µ shall be stable when the force is very small or in the limit ε tends
to 0 where formal Chapman-Enskog expansion easily shows that the first order term
must be µ. To deal with non small force we propose a different regime.

The idea we have arises from the time-dependent norms proposed in [18, 37, 15],
that compensate the increase of weight due to the nonlinearity of the external force.
On the other hand, in a completely different setting, [1] linked the external force in
a fractional Vlasov-Fokker-Planck equation to a new equilibrium that evolves with
the external force. The new equilibrium can be explicitely written for the fractional
Vlasov-Fokker-Planck equation whereas the non-local part of the Boltzmann equa-
tion seems to prevent such a direct treatment. However, we try to combine the two
point of views described above : we cannot explicitely extract a new equilibrium for
the Boltzmann equation with external force so we fake it by studying the equation
around a Maxwellian distribution that depends on ~Et(x). Such an approach sees the
external force as a fluctuation of the classical characteristics of the Boltzmann equa-
tion rather than a direct interaction on the solution. We are therefore able to relax
the hard sphere assumption, as the loss of weight generated by the external force is
effectively compensated, although not by the non-positivity of the linear operator,
but thanks to the negative feedback offered by the fluctuation of the Maxwellian.
When ~Et(x) is time-decaying, not only our strategy works for general hard potential
kernels with angular cut-off, but it also enables to treat large forces. The core of the
proof relies on the construction of twisted Sobolev norms, in the spirit of [32, 12],
which pushes out the hypocoercivity of the Boltzmann linear equation. Namely, the
commutator [v · ∇x,∇v] = −∇x offers a full negative feedback on x derivatives and
one thus would like to work with functional of the form

‖f‖2 = a ‖f‖2
L2
x,v

+ b ‖∇xf‖2
L2
x,v

+ c ‖∇vf‖2
L2
x,v

+ d〈∇xf,∇vf〉L2
x,v

and equivalently in Hs
x,v regularity.The mixed term in the twisted norm uses the

commutator property and is sufficient in the classical case ~Et = 0. The presence
of the external force, however, requires a more subtle use of this mixed part that
will have to compensate much more terms arising from pure spatial derivatives. We
shall see the interplay between the negative feedback offered by the commutator on
one side and the one offered by the fluctuation on the other side. The main issue
being the negative feedback coming only from the orthogonal part of the solution
when dealing with pure x derivatives. Using commutator for fixed pure x-derivatives
proved itself sufficient for the classical Boltzmann equation ~Et = 0 but in our case
they have to be dealt with at the same time.

Unfortunately, when ~Et(x) does not display a time-decaying property we can only
use this strategy on fixed time intervals [0, T0], for any T0 > 0, but not globally in
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time. However, and of important note, in the hydrodynamical regime ε → 0 our
method provides solutions close to the global maxwellian µ(v).

All these thoughts make us look at the perturbative regime around
(1.17)

∀(t, v) ∈ [0,+∞)× Rd, M(t, v) =
e−ε

1+e A
1+t

(2π)d/2
e−
|v|2
2 (1+ε1+e a

1+t) = µe−ε
1+e A+a

|v|2
2

1+t

where A and a stand for positive constant that we shall define in due time. Of core
importance, e has to belong to (0, 1). We refer to Remark 4.3 and Remark 4.7 to
understand that when e = 0 then the fluctuation M is not close enough to µ to
perform a relevant hydrodynamical limit whereas when e = 1 the fluctuation goes
to fast towards µ compared to the variations of the characteristics.

We study the perturbative regime

(1.18) ∀(t, x, v) ∈ R+ × Td × Rd, F (t, x, v) = M(t, x) + εM
1
2f(t, x, v)

which leads to the following perturbative equation

(1.19) ∂tf+
1

ε
v·∇xf+ε ~Et(x)·∇vf+εE(t, x, v)f =

1

ε2
L[f ]+

1

ε
Γ[f, f ]−2E(t, x, v)M1/2

where L and Γ are respectively the standard linear and bilinear perturbative Boltz-
mann operators around M

L[f ] =
2√
M
Q(M,

√
Mf)

Γ[f, f ] =
1√
M
Q(
√
Mf,

√
Mf)

and we defined the perturbative force term
(1.20)

∀(t, x, v) ∈ R+×Td×Rd, E(t, x, v) =
1

2

(
εeA+ a |v|

2

2

(1 + t)2
−
(

1 + ε1+e a

1 + t

)
~Et(x) · v

)
.

We conjecture that, by use of the maxwellian regularising properties of the com-
pact part of L, one could directly solve the Cauchy problem around a global maxwel-

lian F = µ + ε
√
µf for f in Hs

x,v

(
eε

2 A+a|v|1+0

1+t

)
when ~Et or ε are sufficiently small.

However, it would implies some technicalities we did not want to tackle in the present
manuscript, where we are only interested in the limit when ε vanishes: working in
L2
x,v framework makes usual properties of L[f ] directly applicable, thus our proofs

only emphasizes the characteristics fluctuations. Moreover, the strategy we use en-
ables to compensate a quadratic loss of weight |v|2 (rather than the sole |v| specific
to the present problem), which may suit further investigations for more complex
forces.

2. Main results

2.1. Notations. For j = (j1, . . . , jd) and l = (l1, . . . , ld) multi-indexes we define

∂jl f =
∂|l|

∂xl11 · · · ∂x
ld
d

∂|j|

∂vj11 · · · ∂v
jd
d

f.
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And we define the multi-index: ∀i ∈ {1, . . . , d} , δi = (δik)16k6d. For clarity purposes,
and as it plays a central role for the linearized Boltzmann operator we shall use the
shorthand notation

∀β ∈ R, ‖f‖L2
β

=

(∫
Td×Rd

f(t)2〈v〉β dxdv
)1/2

, 〈v〉 := (1 + |v|2)1/2.

Finally, we shall index by x, v or (x, v) the norms that will be used::

‖f‖L2
x

=

(∫
Td
f(x, v)2dx

) 1
2

, ‖f‖L2
v

=

(∫
Rd
f(x, v)2dv

) 1
2

,

‖f‖L2
x,v

=

(∫
Td×Rd

f(x, v)2dxdv

) 1
2

.

The same notations apply for Sobolev spaces Hs
x (only x-derivatives), Hs

v (only v-
derivatives) and Hs

x,v (both derivatives).
In what follows any positive constant depending on a parameter α will be denoted

Cα. Note that we will not keep track on the dependencies over d, γ or b(cos θ).

2.2. Results on Cauchy theories. When ~Et is a given force we shall prove the
following Cauchy problem. We recall Definition (1.17) of the fluctuation of a global
Maxwellian

∀(t, v) ∈ [0,+∞)× Rd, M(t, v) =
e−ε

1+e A
1+t

(2π)d/2
e−
|v|2
2 (1+ε1+e a

1+t) with e ∈ (0, 1).

We get a Cauchy theory under the perturbative regime around a given M .

Theorem 2.1. Let the Boltzmann operator satisfies hypotheses (H1)− (H2) and let

s be in N. Further assume that ~Et verifies

(2.1)
∥∥∥ ~Et(x)

∥∥∥
L∞t W

s,∞
x

6 CE, ∀t > 0,

∫
Td
~Et(x)dx = 0.

There exists s0 ∈ N∗ such that for any s > s0 the following holds. Let T0 > 0 and
Cin > 0. There exists εT0,Cin,E,s > 0 such that if ε = 1 or 0 < ε < εT0,Cin,E,s, there
exists a norm

‖·‖Hsx,v ∼
∑
|l|6s

∥∥∂0
l ·
∥∥
L2
x,v

+ ε
∑
|j|+|l|6s
|j|>1

∥∥∂jl ·∥∥L2
x,v

and AT0,E,s, aT0,E,s, δT0,E,s, CT0,E,s > 0 such that if Fin = M + ε
√
M fin with

‖fin‖Hsx,v 6 δT0,E,s and

∣∣∣∣∣∣
∫
Td×Rd

 1
v

|v|2

 fin(x, v)
√
M |t=0 dxdv

∣∣∣∣∣∣ 6 Cinε
e,

then there exists a unique solution F = M + ε
√
M f on [0, T0) to the Boltzmann

equation with external force (1.5) and it satisfies

∀t ∈ [0, T0), ‖f(t)‖Hsx,v 6 max
{
‖fin‖Hsx,v , CT0,E,s

}
.

All the constants can be computed explicitly and are independent of ε.

Let us make a few comments about the theorem above.
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Remark 2.2. • The Hs
x,v-norm is defined by (4.25) and the equivalence of

norm is independent of ε.

• The hypothesis of cancellation of the first Fourier coefficient ~̂Et(0) in (2.1)
is not really necessary1. Since the Boltzmann operator is commuting with
translations in v, the change of variable

v′ = v + εwt, wt :=

∫ t

0

~̂Es(0)ds

operates a reduction to the case where ~̂Et(0) = 0. In the case of a general
forcing term satisfying only the bound by CE in (2.1), the result of Theo-
rem 2.1 holds true, except that the decomposition of F has to be modified
into the following expansion:

F (t, x, v) = M(t, v − εwt) + ε
√
M(v − εwt) f(t, x, v − εwt),

where f is solution to (1.19) with a forcing term ~Et
′
:= ~Et − ~̂Et(0).

• We get a local existence result for ε = 1 for a non-small, non time-decreasing
force and with more general kernels than considered formerly (only hard
spheres has been obtained to our knowledge [16]). This is the first result
of this kind we are aware of. Moreover, we get close-to-global Maxwellian
µ existence for small CE, recovering and extending on the torus the latest
results (see Remark 2.4).
• We agree that in the case ε = 1 when CE or T0 are taken larger and larger,

the fluctuation M is getting closer to 0 and our problem thus boils down to the
perturbative study around a vacuum state. However, as proven in Corollary
2.3, in the regime of small epsilon we obtain a perturbative theory around the
classical Maxwellian µ.
• We do not have to impose any decay in time on the force. On the con-

trary a polynomial decay is used, for instance, in [16]. As explained in the
introduction, this comes from the use of a time-dependent Maxwellian as ref-
erence state. We think that our strategy is applicable if one looks at solution

F = µ + ε
√
µh with h belonging to Hs

x,v

(
eε

1+e A+a|v|1+0

1+t

)
for small ε, by use

of a gain of integrability of K = L + ν. It would have been more technical
to treat this case, and we thus decided to take a clearer approach which is
sufficient to deal with the issue of the hydrodynamical limit.
• Note that the hypothesis

(2.2)

∣∣∣∣∣∣
∫
Td×Rd

 1
v

|v|2

 fin(x, v)
√
M |t=0 dxdv

∣∣∣∣∣∣ 6 Cinε
e

says that some global moments of fin in both the space and velocity variables
are small with ε. Actually, we may replace the right-hand side Cinε

e of (2.2)
by any quantity that tends to 0 with ε. In the following Remark 2.6, we
comment the incidence of (2.2) on the initial data for the solution to (1.15)-
(1.3).

1However, as such, it ensures a condition of quasiconservation of the total momentum in Navier-
Stokes equation, which is used to obtain the estimate (4.17)
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As a corollary of Theorem 2.1 we obtain a global perturbative Cauchy theory close
to µ.

Corollary 2.3. Under the assumptions of Theorem 2.1 there exists εT0,E,s, δT0,E,s
and CT0,E,s such that if 0 < ε 6 εT0,E,s and Fin = µ+ ε

√
µ fin with

‖fin‖Hsx,v 6 δT0,E,s and

∫
Td×Rd

 1
v

|v|2

 fin(x, v)
√
µ dxdv = 0,

then there exists a unique solution F = µ+ ε
√
µf on R+ to the Boltzmann equation

with external force (1.5) and it satisfies

∀t ∈ [0, T0), ‖f(t)‖Hsx,v 6 max
{
‖fin‖Hsx,v + εeCT0,E,s, CT0,E,s

}
.

Again, all the constants could be computed explicitly and are independent of ε.

Remark 2.4. Two remarks are important at this point.

• We emphasize that taking ε sufficiently small could be seen as requiring CE
to be sufficiently small in our estimates. The strenght of our result is that
the resulting Incompressible Navier-Stokes limit can display non small force
~Et.

• We point out that T0 = +∞ is not reached in our study because of the negative
return of our fluctuation that only works for finite T0 (see Proposition 3.1).

However, adapting our proofs when
∥∥∥ ~Et∥∥∥ 6 CE

(1+t)α
with α > 1 around M =

µe
ε1+e A+a|v|2

(1+t)α−1 gives that not only Proposition 3.1 is true for T0 = +∞ but
also Corollary 2.3 holds globally in time and yields a polynomial time decay
(see Remark 5.1): these are the results of [16] when ε = 1 which we recover
on the torus.

2.3. Result on the hydrodynamical limit. Corollary 2.3 states that if one rela-
bels the solution fε = ε−1(F −µ)µ−

1
2 then we have uniform bounds on fε in Sobolev

spaces and an existence theorem that does not depend on ε for the initial data. This
yields the following convergence result.

Theorem 2.5. Let T0 > 0 and Fε be the solution built in Corollary 2.3 on [0, T0]
and define fε = ε−1 F−µ√

µ
. Then the sequence (fε)ε>0 converges (up to an extraction)

weakly-* in L∞[0,T0]H
s
x,v towards an infinitesimal Maxwellian:

(2.3) lim
ε→0

fε(t, x, v) =

[
ρ(t, x) + v · u(t, x) +

|v|2 − d
2

θ(t, x)

]
√
µ,

where (ρ, u, θ) solves the incompressible Navier-Stokes-Fourier system in the sense
of Leray with force (1.15) together with the Boussinesq equation (1.3).

Remark 2.6. If the data are well prepared in the sense that fin is of the form

(2.4) fin(x, v) =

[
ρin(x) + v · uin(x) +

|v|2 − d
2

θin(x)

]
√
µ,
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with ∇ · uin = 0 and ρin + θin = 0 and

(2.5)

∫
Td
ρin(x)dx = 0,

∫
Td
uin(x)dx = 0

( (2.5) is a consequence of (2.2)), then we expect (by adaptation of the arguments
of the proof of [12, Theorem 2.5]) to have strong convergence in (2.3) in the space
C([0, T ];Hs

xL
2
v), and (ρ, u, θ) to be a regular solution to (1.15)-(1.3) on [0, T0] with

initial datum (ρin, uin, θin).

3. Properties and estimates on the external operator and the
Boltzmann operator

In the present section we focus on the linear operator L[f ], the multiplicative
E(t, x, v) and then on all the operators appearing in the perturbed equation (1.19).

3.1. Estimates on the external operator E(t, x, v). In this section, we will give
some estimates on E(t, x, v) and fix the constants a, A and α for the rest of the
manuscript. A consequence on the notations used in the paper is that we will drop
the specific dependence of constants on the values a, A and α. Since ~Et(x) is a
datum of the problem on which no smallness assumption is required, we will also
drop the possible dependency on E: Ca,A,α,E = C, except in the Proposition below

so that the reader can clearly see the improvement we can make when ~Et decreases
in time, that is CE ∼ (1 + t)−α as mentionned in Remark 2.4.

Proposition 3.1. Let E be defined by (1.20) and let s be any integer. Under the
assumption ∥∥∥ ~Et(x)

∥∥∥
L∞t W

s,∞
x

6 CE < +∞,

for any T0 and Λ > 0, there exists AT0,Λ and aT0,Λ > 0 such that the following
properties hold. Positivity:

(3.1) ∀(t, x, v) ∈ [0, T0)× Td × Rd, E(t, x, v) > εeΛ
(
1 + |v|2

)
− 1

4εe
1ε<1.

Pure spatial derivative estimates: if s > 1
(3.2)
∃CT0,s,Λ > 0, ∀ |l| > 1, ∀(t, x, v) ∈ [0, T0)× Td × Rd,

∣∣∂0
l E(t, x, v)

∣∣ 6 CT0,s,Λ |v| .

Second derivative estimates: if s > 2
(3.3)
∃CT0,s,Λ > 0, ∀ |j| > 1and |j|+|l| > 2, ∀(t, x, v) ∈ [0, T0)×Td×Rd,

∣∣∂jl E∣∣ 6 CT0,s,Λ.

Higher order derivatives in v: if s > 3

(3.4) ∀ |j| > 2 and |j|+ |l| > 3,
∣∣∂jl E(t, x, v)

∣∣ = 0.

Proof of Proposition 3.1. The Proposition is rather straightforward. We recall:

E(t, x, v) =
εe(2A+ a |v|2)

4(1 + t)2
− 1

2

(
1 + ε1+e a

1 + t

)
~Et(x) · v
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First a mere Cauchy-Schwarz inequality followed by Young inequality raises that for
all t in [0, T0)

E(t, x, v) > εe 2A+ a |v|2

4(1 + t)2
− CE

2
|v| − ε1+eaCE

2(1 + t)
|v|

> εe

[
A

2(1 + t)2
− ε2aC2

E

]
+ εe |v|2

[
a

8(1 + t)2
− C2

E

4

]
− 1

4εe

So we can first choose a = aT0,Λ sufficiently large so that

a

8(1 + T0)2
− C2

E

4
> Λ

and then choose A = AT0,Λ sufficiently large so that

A

2(1 + T0)2
− aC2

E > Λ.

This yields the positivity property (3.1) because if ε = 1 we can make A larger
so that 1/4 is also absorbed. The rest of the estimates are direct computations
once constant have been fixed. Note that the constants are independent of t since

1
1+t
6 1. �

Remark 3.2. Of important note is the fact that Λ shall be fixed later independently
of ε: the value of Λ is determined in Proposition 4.5. We shall carefully keep track
of the dependencies in Λ to ensure that no bad loop can occur.

3.2. Known properties of the Boltzmann operator. We gather some well-
known properties of the linear Boltzmann operator L (see [13, 14, 35, 25] for in-
stance). For 1 6 i 6 d, let us set

φ0(v) = 1, φi(v) = vi, φd+1(v) =
1

2
(|v|2 − d).

The operator L (which is time-dependent) is a closed self-adjoint operator in L2
v

with kernel

(3.5) Ker (L) = Span
{

1, v, |v|2
}√

M = Span {φ0(v), . . . , φd+1(v)}
√
M,

and (φ0

√
M, ·, φd+1

√
M) is an orthogonal basis of Ker (L) in L2

v. We denote by πL
the orthogonal projection onto Ker (L) in L2

v:

(3.6) πL(f) =
d+1∑
i=0

(∫
Rd
f(v∗)φi(v∗)

√
M(t, v∗) dv∗

)
φi(v)

√
M(t, v),

where we have used the normalized family

φ0 = φ0, φ1 = φ1, . . . , φd = φd, φd+1 =

√
d

2
φd+1.

We set π⊥L = Id − πL. The projection πL(f(x, ·))(v) of f(x, v) onto the kernel of L
is called the fluid part whereas π⊥L (f) is called the microscopic part.

The operator L can be written under the following form

(3.7) L = −ν(v) +K,
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where ν(v) is the collision frequency

ν(v) =

∫
Rd×Sd−1

b (cos θ) |v − v∗|γM∗ dσdv∗

and K is a bounded and compact operator in L2
v. We give a series of estimates on

the operators above that have been proved in the case a = A = 0 in references we
gave above. We solely empasize that the constants do not depend on t.

Proposition 3.3. Let s be in N, |l|+ |j| 6 s and f be in Hs
x,v.

The collision frequency is strictly positive

(3.8) ∀v ∈ Rd, 0 < ν0,s,Λ〈v〉γ 6 ν(v) 6 ν1,s,Λ〈v〉γ.
The operator L acts on the v-variable and has a spectral gap λ0,Λ > 0 in L2

x,v

(3.9) 〈∂0
l L(f), ∂0

l f〉L2
x,v
6 −λ0,Λ

∥∥π⊥L (∂0
l f)
∥∥2

L2
γ
.

There exists λs,Λ, Cs,Λ > 0 such that, if |j| > 1, then

(3.10) 〈∂jl L[f ], ∂jl f〉L2
x,v
6 −λs,Λ

∥∥∂jl f∥∥2

L2
γ

+ Cs,Λ ‖f‖2
Hs−1
x,v

.

At last we have the following estimates on scalar products: for 0 6 |l| 6 s − 1 and
any η0 > 0 there exists CΛ,η0 such that:

(3.11) 〈∂0
l+δi

L[f ], ∂δil f〉L2
x,v

=
λ0,ΛCΛ,η0

ε

∥∥π⊥L (∂0
l+δi

f
)∥∥

L2
γ

+ ελ0,Λη0

∥∥∂δil f∥∥2

L2
γ
.

Before getting into the proof of Proposition 3.3, let us emphasize that the mul-
tiplication by λ0,Λ in the scalar product estimate is of core importance for the case
ε = 1.

Proof of Proposition 3.3. If we denote by Lµ = −νµ + Kµ the linear operator when
A = a = 0 then the results hold for Lµ, νµ and Kµ: see for instance [4, 31] for the
spectral gap, [32, -(H1’)+(H2’) page 13] for Sobolev estimates and [12, Appendix
B.2.3 and B.2.5] for the scalar product.

The operator L only acts on the velocity variable thus the change of variable

v∗ 7→

(√
1 +

ε1+ea

1 + t

)−1

v∗

shows

(3.12) L[f ](v) =

(
1 +

ε1+ea

1 + t

)− d+γ
2

e−
ε1+eA
1+t Lµ[f̃ ]

(
v

√
1 +

ε1+ea

1 + t

)

where f̃(v) = f

(
v√

1+ ε1+ea
1+t

)
. As 0 6 (1 + t)−1 6 1, inequalities (3.8)− (3.9)− (3.10)

directly follow from the case a = A = 0.
The scalar product (3.11) is a mere Cauchy-Schwarz inequality with Young in-

equality with constant η0. Let us show that the resulting constant is of the form
Cη0λ0,Λ. Denoting h = 1 + ε1+ea

1+t
, integrating (3.12) against f yields

〈L[f ], f〉L2
x,v

= h−
2d+γ

2 e−
ε1+eA
1+t 〈Lµ[f̃ ], f̃〉L2

x,v
6 −h−

2d+γ
2 e−

ε1+eA
1+t

∥∥∥π̃⊥Lµ (f̃)∥∥∥2

L2
γ

6 −λ0,0h
− d+γ

2 e−
ε1+eA
1+t

∥∥π⊥L (f)
∥∥2

L2
γ
.
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We thus see that λ0,Λ = λ0,0h
− d+γ

2 e−
ε1+eA
1+t and h−

d+γ
2 e−

ε1+eA
1+t is exactly the quantity

appearing in (3.12) so the expected (3.11) follows. �

We conclude the present section with estimates on the bilinear operator Γ[f, g].

Proposition 3.4. Let s0 = d+ 1 then for any s > s0, for any |j|+ |l| 6 s and any

η0, η
′
0 > 0, the following holds for f , g and h in H

|j|+|l|
x,v ,∣∣∣〈∂0

l Γ(g, h), f〉L2
x,v

∣∣∣ 6 λ0,Λη0

ε

∥∥π⊥L (f)
∥∥2

L2
γ

+ ελ0,ΛCs,η0

(
‖g‖2

Hs
xL

2
v
‖h‖2

Hs
xL

2
v,γ

+ ‖h‖2
Hs
xL

2
v
‖g‖2

Hs
xL

2
v,γ

)
∣∣∣〈∂jl Γ(g, h), f〉L2

x,v

∣∣∣ 6 η′0
ε
‖f‖2

L2
γ

+ εCs,Λ,η′0

(
‖g‖2

Hs
x,v
‖h‖2

Hs
γ

+ ‖h‖2
Hs
x,v
‖g‖2

Hs
γ

)
.

Proof of Proposition 3.4. As above, these estimates have been obtained when A =
a = 0 and therefore the same arguments as before extend them to the general
case. We refer the reader to [12, Appendix A.2] for constructive proofs in the case
A = a = 0. We find the standard control∣∣∣〈∂0

l Γ(g, h), f〉L2
x,v

∣∣∣ 6 Cs,Λ

(
‖g‖Hs

xL
2
v
‖h‖Hs

xL
2
v,γ

+ ‖h‖Hs
xL

2
v
‖g‖Hs

xL
2
v,γ

)∥∥π⊥L (f)
∥∥
L2
γ
,∣∣∣〈∂jl Γ(g, h), f〉L2

x,v

∣∣∣ 6 Cs,Λ

(
‖g‖Hs

x,v
‖h‖Hs

γ
+ ‖h‖Hs

x,v
‖g‖Hs

γ

)
‖f‖L2

γ
,

that we complete with Young inequality. The dependency in λ0,Λ follows exactly
from the same argment as in the proof of Proposition 3.3. �

3.3. Estimates for each operator. The perturbative equation (1.19) that we shall
study can be decomposed as the evolution by 6 different operators:

∂tf = −1

ε
v · ∇xf − ε ~Et(x) · ∇vf − εE(t, x, v)f +

1

ε2
L[f ] +

1

ε
Γ[f, f ]− 2E(t, x, v)M1/2

:=
6∑
i=1

Si(t, x, v).

We prove a series of Lemmas to estimate each operator in Sobolev norms. To clarify
the computations we shall use the convention that ∂jl f = 0 whenever the multi-
indexes j or l contains one negative component. Thus any integration by parts can
be computed.
Strategy. Our final aim is to get an estimate on the weighted norm (see (4.6))

(3.13) f 7→
∑
|l|6s

∥∥∂0
l f
∥∥2

L2
x,v

+ ε2
∑
|l|+|j|6s
|j|>1

∥∥∂jl f∥∥2

L2
x,v
.

Standard energy estimates will provide some gain and loss terms. The gain terms
are due

• to the spectral gap estimates (3.9) and (3.10): they are

(3.14) − λ0,Λ

ε2

∑
|l|6s

∥∥π⊥L (∂0
l f)
∥∥2

L2
x,v
, −λs,Λ

∑
|l|+|j|6s
|j|>1

∥∥∂jl f∥∥2

L2
x,v

;
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• to the operator E : associated to the derivative ∂jl , we have a gain (with

weight |v|2) which is − ε1+eΛ
2

∥∥∂jl f∥∥2

L2
2

(see Lemma 3.7 below).

In a procedure that is standard for the derivation of hypocoercive estimates, we
also introduce a correction by the twisted terms ε〈∂0

l+δi
f, ∂δil f〉L2

x,v
in (3.13). Note

those terms are pondered with a weight ε. Those terms will provide the gain term

−
∥∥∂0

l+δi
f
∥∥2

L2
x,v

(see Lemma 3.6 below). Combining those latter terms with the terms

of the second sum in (3.14), we obtain (up to the terms of order 0) a gain of almost a
full Hs

x,v-norm, having no weight ε. This is why the occurrence of a term C‖f‖2
Hs
x,v

in

the forthcoming estimates (Lemma 3.5 to 3.8) is admissible, a control on the size of
the constant C being possibly necessary to ensure a good control when all estimates
are gathered (which is done step by step in Proposition 4.1, Proposition 4.4, Propo-
sition 4.5). In Proposition 4.5, we also study the evolution of the global moments
of f ε (in combination with a Poincaré-Wirtinger inequality), in order to recover the
term of order 0 that is lacking in our estimates.

Lemma 3.5. Let s be in N and for f in Hs
x,v define S1(t, x, v) = −1

ε
v · ∇xf .

Then for any η1 > 0, there exists Cη1 > 0 such that for any multi-indexes l, j such
that |l|+ |j| 6 s,∣∣∣〈∂jl S1, ∂

j
l f〉L2

x,v

∣∣∣ 6
 η1

ε2

∥∥∂jl f∥∥2

L2
x,v

+ 1
η1

d∑
k=1

∥∥∥∂j−δkl+δk
f
∥∥∥2

L2
x,v

if |j| > 1

0 if j = 0.

We have moreover

〈∂0
l+δi

S1, ∂
δi
l f〉L2

x,v
= − 1

2ε

∥∥∂0
l+δi

f
∥∥2

L2
x,v
.

Proof of Lemma 3.5. By direct computations

〈∂jl (v · ∇xf) , ∂jl f〉L2
x,v

=
∑

j1+j2=j

d∑
k=1

∫
Td×Rd

(
∂j10 vk

) (
∂j2l+δkf

)
∂jl f dxdv

=
d∑

k=1

∫
Td×Rd

vk
(
∂jl+δkf

)
∂jl f +

d∑
k=1

∫
Td×Rd

(
∂j−δkl+δk

f
)
∂jl f

=
d∑

k=1

∫
Td×Rd

(
∂j−δkl+δk

f
)
∂jl f dxdv.

We used the property ∂j10 (vk) = 0 if (|j1| > 2) or (|j1| = 1 and j1 6= δk). The first
result then follows from Cauchy-Schwarz and Young inequalities: for any η1 > 0,∫

Td×Rd

(
∂j−δkl+δk

f
)
∂jl f dxdv 6

η1

ε

∫
Td×Rd

(
∂j−δkl+δk

f
)2

dxdv +
ε

η1

∫
Td×Rd

(
∂jl f
)2
dxdv.

The second equality comes from direct integration by parts. �

Lemma 3.6. Let s be in N and for f in Hs
x,v define S2(t, x, v) = −ε ~Et(x) · ∇vf .

Then for any η2 > 0, there exists Cη2 > 0 such that for any multi-indexes l, j
satisfying |l|+ |j| 6 s, we have∣∣∣〈∂jl S2, ∂

j
l f〉L2

x,v

∣∣∣ = 0 if l = 0,
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and∣∣∣〈∂jl S2, ∂
j
l f〉L2

x,v

∣∣∣
6 ε1+eη2Λ

∥∥∂jl f∥∥2

L2
x,v

+ ε1−eCη2
Λ

( ∑
16i,k6d

∥∥∥∂j+δkl−δi f
∥∥∥2

L2
x,v

+ ‖f‖2

H
|j|+|l|−1
x,v

)
,

if |l| > 0, where Λ is given by Proposition (3.1). We have moreover∣∣∣〈∂0
l+δi

S2, ∂
δi
l f〉L2

x,v

∣∣∣ 6 ε2+eη2Λ
∥∥∂δil f∥∥2

L2
x,v

+
Cη2
εeΛ

d∑
k=1

∥∥∥∂δkl f∥∥∥2

L2
x,v

+
Cη2
εe
‖f‖2

H
|l|
x,v
.

Proof of Lemma 3.6. Here again direct computations give∣∣∣〈∂jl ( ~Et(x) · ∇vf
)
, ∂jl f〉L2

x,v

∣∣∣ =

∣∣∣∣∣
d∑

k=1

∑
l1+l2=l

∫
Td×Rd

∂0
l1
Ek(x)∂j+δkl2

f∂jl f dxdv

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
d∑

k=1

∑
l1+l2=l
|l2|<|l|

∫
Td×Rd

∂0
l1
Ek(x)∂j+δkl2

f∂jl f dxdv

∣∣∣∣∣∣∣∣
6
∥∥∥ ~Et∥∥∥

W s,∞
x

d∑
k=1

∑
|l2|<|l|

∫
Td×Rd

∣∣∣∂j+δkl2
f
∣∣∣ ∣∣∂jl f ∣∣ dxdv

and here again combining Cauchy-Schwarz and Young inequality with constant εeη2

yields the expected result.
Let us look at the second estimate. We have

〈∂0
l+δi

S2, ∂
δi
l f〉L2

x,v
= −ε

∑
l1+l2=l+δi

d∑
k=1

∫
Td×Rd

∂0
l1
Ek∂

δk
l2
f∂δil f dxdv.

The higher derivative appears when l2 = l + δi and by integration by parts we see∫
Td×Rd

Ek∂
δk
l+δi

f∂δil f dxdv = −
∫
Td×Rd

∂0
δi
Ek∂

δk
l f∂

δi
l f −

∫
Td×Rd

Ek∂
δk
l f∂

δi
l+δi

f

= −
∫
Td×Rd

∂0
δi
Ek∂

δk
l f∂

δi
l f −

∫
Td×Rd

Ek∂
δi
l f∂

δk
l+δi

f

which implies∫
Td×Rd

Ek∂
δk
l+δi

f∂δil f dxdv = −1

2

∫
Td×Rd

∂0
δi
Ek∂

δk
l f∂

δi
l f dxdv

and therefore the result follows from Cauchy-Schwarz and Young inequalities with
constant ε1+eη2. �

Lemma 3.7. Let s be in N and for f in Hs
x,v define S3(t, x, v) = −εE(t, x, v)f ,

where we recall that E is given by (1.20).
Then there exists C3 > 0 such that for any multi-indexes l, j such that |l|+ |j| 6 s,

〈∂jl S3, ∂
j
l f〉L2

x,v
6

{
− ε1+eΛ

2

∥∥∂jl f∥∥2

L2
2

+ ε1−e 1ε<1

4

∥∥∂jl f∥∥2

L2
x,v

+ ε1−eC3

Λ
‖f‖2

H
|j|+|l|−1
x,v

−ε1+eΛ ‖f‖2
L2
2

+ ε1−e

4
1ε<1 ‖f‖2

L2
x,v

if |j|+ |l| = 0
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where Λ is given by Proposition (3.1). Moreover, for any η3 > 0, there exists Cη3 > 0
such that∣∣∣〈∂0

l+δi
S3, ∂

δi
l f〉L2

x,v

∣∣∣ 6ε2+eη3Λ
∥∥∂δil f∥∥2

L2
2

+ ε2−eΛCη3
∥∥∂0

l+δi
f
∥∥2

L2
x,v

+ ε1−e 1ε<1

4

(∥∥∂0
l+δi

f
∥∥2

L2
x,v

+
∥∥∂δil f∥∥2

L2
x,v

)
+
C,η3
Λεe
‖f‖2

H
|l|
x,v
.

Proof of Lemma 3.7. The inequality for |j| = |l| = 0 is a direct consequence of
Proposition 3.1 and more precisely (3.1). When |j|+ |l| > 0 we compute

〈∂jl (Ef) , ∂jl f〉L2
x,v

=
∑

j1+j2=j

∑
l1+l2=l

∫
Td×Rd

∂j1l1 E∂
j2
l2
f∂jl f dxdv.

Proposition 3.1 tells us that most of the derivatives of E vanish: when (|j1| > 2 and
|j1|+ |l1| > 3). We therefore decompose the sum into three different parts:

∑
j1+j2=j

∑
l1+l2=l

∫
Td×Rd

∂j1l1 E∂
j2
l2
f∂jl f dxdv =

∫
Td×Rd

E
(
∂jl f
)2

+
∑

l1+l2=l
|l1|>1

∫
Td×Rd

∂0
l1
E∂jl2f∂

j
l f

+
∑

j1+j2=j
|j1|=1

∑
l1+l2=l

∫
Td×Rd

∂j1l1 E∂
j2
l2
f∂jl f

+
∑

j1+j2=j
|j1|=2

∫
Td×Rd

∂j10 E∂
j2
l f∂

j
l f.

Proposition 3.1 gives us the estimate of the first term, see (3.1). In the second
and third terms

∣∣∂j1l1 E∣∣ is bounded by Cs(1 + |v|), see (3.2) − (3.3). Finally, in the

fourth term we have
∣∣∂j10 E

∣∣ bounded by Cs. Hence using Cauchy-Schwarz and Young
inequality with η > 0:

〈∂jl (Ef) , ∂jl f〉L2
x,v
>
∫
Td×Rd

εeΛ
(
1 + |v|2

)
(1− 2ηCs)

(
∂jl f
)2
dxdv

− 1ε<1

4εe

∥∥∂jl f∥∥2

L2
x,v
− Cs,Λ,η

εe
‖f‖2

H
|j|+|l|−1
x,v

.

We choose η sufficiently small and the result follows.
The second estimate is derived in the same spirit. We have

〈∂0
l+δi

S2, ∂
δi
l f〉L2

x,v
=

∑
l1+l2=l+δi

∫
Td×Rd

∂0
l1
E∂0

l2
f∂δil f dxdv.

When |l1| > 1 then |l2| 6 l and
∣∣∂0
l1
E
∣∣ 6 CsΛ |v| 6 CsΛ |v|, by Proposition 3.1.

Therefore using Cauchy-Schwarz and Young inequality with constant ε1+eη3 > 0 we
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have∣∣∣∣∣∣∣∣
∑

l1+l2=l+δi
|l1|>1

∫
Td×Rd

∂0
l1
E∂0

l2
f∂δil f dxdv

∣∣∣∣∣∣∣∣ 6
∫
Td×Rd

ε1+eη3Λ(1 + |v|2)
(
∂δil f

)2
dxdv

+
ΛCs,η3
ε1+e

‖f‖2

H
|l|
x,v
.

At last, when l1 = 0 we use Proposition 3.1 to bound |E| 6 εeCsΛ(1 + |v|2) + 1ε<1

4εe

and get with the Young inequality∣∣∣∣∫
Td×Rd

E∂0
l+δi

f∂δil f dxdv

∣∣∣∣ 6ε1+eΛη3

∫
Td×Rd

(1 + |v|2)
(
∂δil f

)2
dxdv

+ ΛCs,η3

∫
Td×Rd

(1 + |v|2)
(
∂0
l+δi

f
)2
dxdv

+
1ε<1

4εe

(∥∥∂0
l+δi

f
∥∥2

L2
x,v

+
∥∥∂δil f∥∥2

L2
x,v

)
.

This concludes the proof. �

It remains to estimate the last operator S6, which is a mere multiplicative operator.

Lemma 3.8. Let s be in N and for f in Hs
x,v define S6(t, x, v) = −E(t, x, v)M1/2,

where we recall that E is given by (1.20).
Then for any η4 > 0, there exists CΛ,η4 > 0 such that for any multi-indexes l, j such
that |l|+ |j| 6 s, we have

〈∂jl S6, ∂
j
l f〉L2

x,v
6

{
η4 ‖πL (∂0

l f)‖2
L2
x,v

+ CΛ,η4 if j = 0
η4
ε2

∥∥∂jl f∥∥2

L2
γ

+ ε2CΛ,η4 if |j| > 1.

Moreover, we have∣∣∣〈∂0
l+δi

S6, ∂
δi
l f〉L2

x,v

∣∣∣ 6 η4λ0,Λ

ε

∥∥∂δil f∥∥2

L2
γ

+ εCΛ,η4 .

Proof of Lemma 3.8. We can use the estimates on E derived in Proposition 3.1, that
we multiply by the Maxwellian

√
M . Looking at the kernel of L given by (3.5) we see

that E
√
M belongs to Ker(L) and so does ∂0

l E
√
M for any multi-index l. Therefore

by Cauchy-Schwarz inequality∣∣∣〈∂0
l

(
EM1/2

)
, ∂0

l f〉L2
x,v

∣∣∣ =
∣∣∣〈∂0

l

(
EM1/2

)
, πL

(
∂0
l f
)
〉L2

x,v

∣∣∣
6
∥∥∂0

l

(
EM1/2

)∥∥
L2
x,v

∥∥πL (∂0
l f
)∥∥

L2
x,v

6 Cs,Λ
∥∥πL (∂0

l f
)∥∥

L2
x,v
.

When there are v derivatives we still have ∂jl
(
EM1/2

)
that is a polynomial times a

Maxwellian and therefore belongs to L2
x,v. Thus∣∣∣〈∂jl (EM1/2

)
, ∂jl f〉L2

x,v

∣∣∣ 6 Cs,Λ
∥∥∂jl f∥∥L2

x,v
.

Also for similar reasons∣∣∣〈∂0
l+δi

(
EM1/2

)
, ∂δil f〉L2

x,v

∣∣∣ 6 Cs,Λ
∥∥∂δil f∥∥L2

x,v
.



18 MARC BRIANT, ARNAUD DEBUSSCHE, JULIEN VOVELLE

Those three estimates yield the expected results using the Young inequality. �

4. A priori estimates in Sobolev spaces

We provide here Sobolev estimates for the nonlinear perturbed equation (1.19).
We shall work in twisted Sobolev norms that catch the hypocoercivity of the Boltz-
mann perturbed linear operator. Indeed, as shown by the estimates on the Boltz-
mann linear operator L, we do have a full negative feedback, and a gain of weight,
as soon as ∂jl includes one velocity derivative. Unfortunately, the negative feedback
offered by L on pure spatial derivative only controls the orthogonal part π⊥L . In the
exact same spirit as [32, 12], a small portion of scalar product between spatial and
velocity derivative is added to the standard Sobolev norm in order to take advantage
of the commutator

[v · ∇x,∇v] = −∇x.

We shall establish a priori estimates in Sobolev space to the perturbed equation
(1.19) that we recall here

∂tf = −1

ε
v · ∇xf − ε ~Et(x) · ∇vf − εE(t, x, v)f +

1

ε2
L[f ] +

1

ε
Γ[f, f ]− 2E(t, x, v)M1/2

:=
6∑
i=1

Si(t, x, v).

(4.1)

We gather the estimates derived in Section 3 to construct and equivalent Sobolev
norm of f that can be controlled As T0, a and A > 0 have been fixed in Proposition
3.1 we drop the dependencies on the subscripts. Also, as we shall always work with
derivatives of order less than a given s, we drop the dependencies on s. Note however
that a lot of different parameters are involved and so, to avoid any loop in their later
choice, we will index the constants with these parameters, even if it complicates the
reading: the important dependencies are Λ and ηi.

We shall address the velocity derivatives and the pure spatial derivatives at dif-
ferent orders in ε, in the spirit of [12]. In what follows we shall use the notation

(4.2) ∀f ∈ Hs
x,v, ‖f‖2

Hsε
=
∑
|l|6s

∥∥∂0
l f
∥∥2

L2
x,v

+ ε2
∑
|j|+|l|6s
|j|>1

∥∥∂jl f∥∥2

L2
x,v
.

4.1. Estimates for spatial derivatives. As mentioned at the beginning of the
present section the pure x-derivatives in Sobolev spaces must be handled with the
help of the transport operator. We thus define
(4.3)

∀l ∈ Nd, ∀1 6 i 6 d, Ql,i(f) = p
∥∥∂0

l+δi
f
∥∥2

L2
x,v

+ qε2
∥∥∂δil f∥∥2

L2
x,v

+ εr〈∂0
l+δi

f, ∂δil f〉L2
x,v
.

The numbers p, q and r are constants that we shall define later and select to ensure
that Ql,i(f) is a norm equivalent to its standard Sobolev counterpart. Before getting
a full Sobolev estimate, we first study the term Ql,i. The crucial idea being that the

terms ‖f‖2
L2
x,v

arising from S2 will be controlled by the fluctuation of the characteris-

tics (i.e. the gain due to S3), rather than by the negative feedback of the Boltzmann
operator, whilst the source term S6 will find itself controlled by the latter. In what
follows our Propositions are divided into two different cases: ε = 1 and ε < 1. The
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difference here is that, in the case ε = 1, we must keep the negative feedback brought
by the fluctuation, whereas for small ε we can discard it (see Remark 4.2).

Proposition 4.1. Let s be in N and l be a multi-index such that |l| = s. There exist
0 < εs 6 1 for which we have the following results.

Case 0 < ε 6 εs. There exists p, q, r and C0 > 0, such that

Ql,i(·) ∼
∥∥∂0

l+δi
·
∥∥2

L2
x,v

+ ε2
∥∥∂δil ·∥∥2

L2
x,v

and if f is a solution to the perturbative equation (4.1), then

∀t ∈ [0, T0),
d

dt
Ql,i(f) 6− 2

(
1

ε2

∥∥π⊥L (∂0
l+δi

f
)∥∥2

L2
γ

+
∥∥∂0

l+δi
f
∥∥2

L2
x,v

+
∥∥∂δil f∥∥2

L2
γ

)
+ ε1−eC0

∑
16j,k6d

∥∥∥∂δkl+δi−δjf∥∥∥2

L2
γ

+ C0ε
2
∑

16j,k6d

∥∥∥∂δi+δkl−δj f
∥∥∥2

L2
γ

+ C0

[
‖f‖2

Hs+1
ε
‖f‖2

Hs+1
γ

+ ‖f‖2
Hs
x,v

+ 1
]
.

Case ε = 1. There exists p, q, r and C0 > 0 such that

Ql,i(·) ∼
∥∥∂0

l+δi
·
∥∥2

L2
x,v

+
∥∥∂δil ·∥∥2

L2
x,v

and if f is a solution to the perturbative equation (4.1), then for any Λ > 1,

∀t ∈ [0, T0),
d

dt
Ql,i(f) 6− 2λs,Λ

(∥∥π⊥L (∂0
l+δi

f
)∥∥2

L2
γ

+
∥∥∂0

l+δi
f
∥∥2

L2
x,v

+
∥∥∂δil f∥∥2

L2
γ

)
− Λ

∥∥∂0
l+δi

f
∥∥2

L2
2
− Λ

∥∥∂δil f∥∥2

L2
2

+ C0

∑
16j,k6d

∥∥∥∂δkl+δi−δjf∥∥∥2

L2
2

+ C0

∑
16j,k6d

∥∥∥∂δi+δkl−δj f
∥∥∥2

L2
2

+ C0,Λ

[
‖f‖2

Hs+1
ε
‖f‖2

Hs+1
γ

+ ‖f‖2
Hs
x,v

+ 1
]
.

All the constants involved depend explicitly on T0, s and E.

Proof of Proposition 4.1. We recall that f is solution to

∂tf =
6∑
j=1

Sj(t, x, v)

which directly implies that

d

dt
Ql,i(f) =

6∑
j=1

p〈∂0
l+δi

Sj, ∂
0
l+δi

f〉L2
x,v

+ ε2q〈∂δil Sj, ∂
δi
l f〉L2

x,v
+ εr〈∂0

l+δi
Sj, ∂

δi
l f〉L2

x,v
.
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We therefore directly apply Propositions 3.3 and 3.4 to control S4 and S5, whereas
we use Lemmas 3.5, 3.6, 3.7 and 3.8 for the other terms. It yields

1

2

d

dt
Ql,i(f) 6

Cη0r + pη0 − p
ε2

λ0,Λ

∥∥π⊥L (∂0
l+δi

f
)∥∥2

L2
γ

+

[
qε2

η1

+ η4p+ ε1−e 1ε<1

4
p+ ε

1ε<1

4
r − r

] ∥∥∂0
l+δi

f
∥∥2

L2
x,v

+

[
q(η1 + η′0 + η4 + ε3−e1ε<1

4
) + r(η0 + η4)λ0,Λ + ε2−e1ε<1

4
r − qλs,Λ

] ∥∥∂δil f∥∥2

L2
γ

+ ε1+eΛ
[
Cη3r + η2p−

p

2

] ∥∥∂0
l+δi

f
∥∥2

L2
2

+ ε3+eΛ
[
η2q + (η2 + η3)r − q

2

] ∥∥∂δil f∥∥2

L2
2

+ ε1−e

[
pCη2 + d

Cη2
Λ
r

] ∑
16j,k6d

∥∥∥∂δkl+δi−δjf∥∥∥2

L2
x,v

+
[
ε2qCη2

] ∑
16j,k6d

∥∥∥∂δi+δkl−δj f
∥∥∥2

L2
x,v

+ Cp,q,r,Λ,η

[
‖f‖2

Hs+1
ε
‖f‖2

Hs+1
γ

+ ‖f‖2
Hs
x,v

+ 1
]
.

(4.4)

We firstly emphasize that the twice indexed sums are a cruder estimate than the
one we actually derived in the Lemmas: we added some terms that were formerly
absent, but we think it provides a better reading. We secondly emphasize that
the estimate on the bilinear term S5 in Proposition 3.4 gives a control of the form
‖f‖2

Hs+1
x,v
‖f‖2

Hs+1
γ

which translates into a control of the form ‖f‖2
Hs+1
ε
‖f‖2

Hs+1
γ

when

multiplying by powers of ε. We lastly used ‖πL (∂0
l f)‖L2

x,v
6 ‖∂0

l f‖L2
x,v

when applying

Lemma 3.8.
In what follows, we recall that 0 < ε 6 1. We shall now choose the constants

carefully, which is why we indexed all generic constant by their dependencies in
order to avoid any loop.

Remark 4.2. The choices are different for ε = 1 or any ε < 1 because the control of

the specific term T :=
∑

16j,k6d

∥∥∥∂δkl+δi−δjf∥∥∥2

L2
x,v

will be achieved in two different ways.

For ε = 1, the negative feedback of the fluctuation
∥∥∂δil f∥∥L2

2
can control these terms,

taking Λ sufficiently large. Such an approach does not work for general values of
ε (because we control v-derivatives with a degenerate weight ε2). In the general
case therefore, the term T will be absorbed by the negative feedback that the linear
Boltzmann operator provides, and this latter approach requires a sufficiently small
value of ε.

Note that this distinction is quite artificial, and is due to our choice of Sobolev

norm with coefficient ε2
∥∥∂δil ·∥∥2

L2
x,v

. Working with this weighted norm facilitates var-

ious computations and estimates, but [12] showed that a finer norm, which is not
degenerating when ε tends to 0, can catch the hypocoercivity of the Boltzmann lin-
ear operator. With more technicalities, we think we could use the latter norm to
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avoid this splitting into two regimes, and always control the problematic term with
the negative feedback generated by the fluctuations for any ε.

We start with the case ε < 1 and fix the following quantities:

(1) Λ = 1;
(2) q sufficiently large such that −qλs,1 6 −5;
(3) η1 small enough such that qη1 6 1;
(4) r sufficiently large such that q

η1
− 3r

4
6 −4;

(5) η0 = η′0 small enough such that

• 2η0 − λs,1 6 −λs,1
2

,
• 2η0q + 2η0λ0,1r 6 −1;

(6) η2 small enough such that η2 6 1/8 and η2r 6 q/8;
(7) η3 small enough such that η3r 6 q/8;
(8) p sufficiently large such that

• C1,η0r + pη0 − p 6 −1,
• Cη3r + η2p− p

2
6 0,

• r2 6 pq and q 6 p so that Ql,i(·) ∼
∥∥∂0

l+δi
·
∥∥2

L2
x,v

+ ε2
∥∥∂δil ·∥∥2

L2
x,v

(9) η4 6 η0 small enough such that η4p 6 1 - note that point this allows to use
point (5) above;

(10) At last we need ε small enough such that ε1−e p
4
6 1, ε3−e q

4
, ε2−e r

4
6 1.

Such a choice yields exactly the expected result for 0 < ε < 1.

Remark 4.3. One clearly sees here that, if e were too large, e > 1, then one could
not make ε1−e p

4
small as desired. In other terms, in that case of large coefficient e,

the amplitude of the evolution of the v characteristics would not be compensated by
the gain due, via hypocoercive estimates, to the free transport in x.

Now let us deal with the particular case ε = 1. The crucial step will be to

fix the constants p, r and η2 to ensure that the term
∑

16j,k6d

∥∥∥∂δkl+δi−δjf∥∥∥2

L2
x,v

has a

multiplicative constant independent of Λ. Then Λ should precisely be chosen large
enough to absorb these contributions. In order to achieve this goal we transform
(4.4) by estimating

qη1

∥∥∂δil f∥∥2

L2
γ
6 Cqη1

∥∥∂δil f∥∥2

L2
2

and 2rη0λ0,Λ

∥∥∂δil f∥∥2

L2
γ
6 Crη0

∥∥∂δil f∥∥2

L2
2
,

since λ0,Λ 6 λ0,0 from the proof of Proposition 3.3. We infer, for Λ > 1, the estimate

d

dt
Ql,i(f) 6 [Cη0r + pη0 − p]λ0,Λ

∥∥π⊥L (∂0
l+δi

f
)∥∥2

L2
γ

+

[
q

η1

+ η4p− r
] ∥∥∂0

l+δi
f
∥∥2

L2
x,v

+ [2qη′0 − qλs,Λ]
∥∥∂δil f∥∥2

L2
γ

+ Λ
[
Cη3r + η2p−

p

2

] ∥∥∂0
l+δi

f
∥∥2

L2
2

+ Λ
[
(Cη1 + η2 + η4)q + (Cη0 + η2 + η3 + η4)r − q

2

] ∥∥∂δil f∥∥2

L2
2

+ [pCη2 + dCη2r]
∑

16j,k6d

∥∥∥∂δkl+δi−δjf∥∥∥2

L2
x,v

+ qCη2
∑

16j,k6d

∥∥∥∂δi+δkl−δj f
∥∥∥2

L2
x,v

+ Cp,q,r,Λ,η

[
‖f‖2

Hs+1
ε
‖f‖2

Hs+1
γ

+ ‖f‖2
Hs
x,v

+ 1
]
.
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We can now choose our different constants in the following way:

(1) q = 8;
(2) η1 small enough such that Cqη1 6 1;
(3) r sufficiently large such that q

η1
− r 6 −3;

(4) η0, η2 and η3 small enough such that
• η0 6 1

4
,

• Cη1 + 2η2 6 1,
• (Cη0 + 2η2 + η3)r 6 1,
• η2 6 1

4

(5) η′0 = η′0(Λ) small enough such that 3η′0 6 −λs,Λ
(6) p sufficiently large such that

• Cη0r + 2pη0 − p 6 −1,
• Cη3r + η2p− p

2
6 −1,

• r2 6 pq and q 6 p so that Ql,i(·) ∼
∥∥∂0

l+δi
·
∥∥2

L2
x,v

+ ε2
∥∥∂δil ·∥∥2

L2
x,v

.

(7) At last η4 6 η2 small enough such that η4p 6 1 - note that point this allows
to use point (5) above;.

These choices yield the expected result, emphasizing that we manage to choose p,
q, r and Cη2 independently of Λ. �

4.2. Estimates for velocity derivatives. We now turn to the terms that include
velocity derivatives for which the linear Boltzmann operator provides a full negative
feedback (this is the second term in (3.14)).

Proposition 4.4. Let s be in N∗ and l and j be multi-indexes with |l|+ |j| = s+ 1
with |j| > 2. There exist 0 < εs 6 1
Case 0 < ε 6 εs. There exists λs,1, C1 > 0 such that if f is a solution to the

perturbative equation (4.1) then

∀t ∈ [0, T0),
d

dt

∥∥∂jl f∥∥2

L2
x,v
6− λs,1

ε2

∥∥∂jl f∥∥2

L2
γ

+ C1

∑
16i,k6d

∥∥∥∂j+δkl−δi f
∥∥∥2

L2
γ

+ C1

d∑
k=1

∥∥∥∂j−δkl+δk
f
∥∥∥2

L2
x,v

+
C1

ε2

[
‖f‖2

Hs+1
ε
‖f‖2

Hs+1
γ

+ ‖f‖2
Hs
x,v

+ 1
]
.

Case ε = 1. There exists C1 > 0 such that if f is a solution to the perturbative
equation (4.1) then for any Λ > 1,

∀t ∈ [0, T0),
d

dt

∥∥∂jl f∥∥2

L2
x,v
6− λs,Λ

∥∥∂jl f∥∥2

L2
γ

+ C1

d∑
k=1

∥∥∥∂j−δkl+δk
f
∥∥∥2

L2
x,v

− Λ
∥∥∂jl f∥∥2

L2
2

+ C1

∑
16i,k6d

∥∥∥∂j+δkl−δi f
∥∥∥2

L2
2

+ C1,Λ

[
‖f‖2

Hs+1
ε
‖f‖2

Hs+1
γ

+ ‖f‖2
Hs
x,v

+ 1
]
.

All the constants depend explicitly on s, E and T0.
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Proof of Proposition 4.4. As for Ql,i, we recall that f is solution to

∂tf =
6∑
j=1

Sj(t, x, v)

so we directly apply Propositions 3.3 and 3.4 to control S4 and S5, whereas we use
Lemmas 3.5, 3.6, 3.7 and 3.8 for the other terms. We have

1

2

d

dt

∥∥∂jl f∥∥2

L2
x,v
6
η0 + η′0 + η1 + η4 + ε3−e 1ε<1

4
− λs,Λ

ε2

∥∥∂jl f∥∥2

L2
γ

+
[
ε1+eη2Λ− ε1+eΛ

] ∥∥∂jl f∥∥2

L2
2

+
1

η1

d∑
k=1

∥∥∥∂j−δkl+δk
f
∥∥∥2

L2
x,v

+ ε1−eCη2
∑

16i,k6d

∥∥∥∂j+δkl−δi f
∥∥∥2

L2
x,v

+
C1,Λ

ε2

[
‖f‖2

Hs+1
ε
‖f‖2

Hs+1
γ

+ ‖f‖2
Hs
x,v

+ 1
]
.

(4.5)

Here again our choice of constant will differ if ε = 1. First let us consider the
general case 0 < ε < 1. We take

(1) Λ = 1;
(2) η0 = η′0 = η1 = η4 small enough such that

• η0 + η′0 + η1 − λs,1 6 −λs,1/2,
• η2 6 1/2;

(3) ε sufficiently small such that ε3−e

4
6 λs,1

4
.

and these choices lead to the expected estimate.
The particular case ε = 1 is dealt with differently and we modify (4.5) by esti-

mating

η1

∥∥∂jl f∥∥2

L2
γ
6 η1

∥∥∂jl f∥∥2

L2
2
,

to obtain

1

2

d

dt

∥∥∂jl f∥∥2

L2
x,v
6 [η0 + η′0 − λs,Λ]

∥∥∂jl f∥∥2

L2
γ

+ [2η1 + η2Λ− Λ]
∥∥∂jl f∥∥2

L2
2

+
1

η1

∑
16k6d

∥∥∥∂j−δkl+δk
f
∥∥∥2

L2
x,v

+ Cη2
∑

16i,k6d

∥∥∥∂j+δkl−δi f
∥∥∥2

L2
x,v

+ C1,Λ,η

[
‖f‖2

Hs+1
ε
‖f‖2

Hs+1
γ

+ ‖f‖2
Hs
x,v

+ 1
]
.

Taking Λ > 1 we can choose the constants η1 and η2 independently of Λ in the same
manner as for the general case and obtain the expected result. �

4.3. Estimates for the full Sobolev norm. We now gather the previous estimates
to establish a full control over the twisted Sobolev norm. We start with the Sobolev
norm corresponding to a fixed total number of derivatives, and then, layer by layer,
deal with the norm that estimates all the derivatives.

Proposition 4.5. Let s > s0 (where s0 is given in Proposition 3.4) and 1 6 s′ 6 s.
Then there exists Λ > 0, λs′ > 0, Cs′ > 0 and 0 < εss

′ 6 1 such that for (ε = 1 or
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0 < ε 6 εs′) there exists a functional Fs′ such that

Fs′ ∼
∑
|l|=s′

∥∥∂0
l ·
∥∥2

L2
x,v

+ ε2
∑

|l|+|j|=s′
|j|>1

∥∥∂jl ·∥∥2

L2
x,v

and if f is a solution to the perturbative equation (4.1) then for any Λ > 0, for all
t ∈ [0, T0),

d

dt
Fs′(f) 6− λ

 1

ε2

∑
|l|=s′

∥∥π⊥L (∂0
l f
)∥∥2

L2
γ

+
∑

|l|+|j|=s′
|j|>1

∥∥∂jl f∥∥2

L2
γ

+
∑
|l|=s′

∥∥∂0
l f
∥∥2

L2
x,v


+ Cs′

[
‖f‖2

Hsε
‖f‖2

Hs
γ

+ ‖f‖2

Hs′−1
x,v

+ 1
]
.

All the constants depend on s, E and T0.

Proof of Proposition 4.5. We present the proof in two different cases: ε sufficiently
small first and then ε = 1. The technicalities are identical but the absorbtion
mechanisms are different as explained in Remark 4.2. Consider some constant Bj,l >
0 to be fixed later, and define the functional

Fs′(f) =
∑
|l|=s′

d∑
i=1

Ql,i(f) + ε2
∑

|l|+|j|=s′
|j|>2

Bj,l

∥∥∂jl f∥∥2

L2
x,v
.

By Proposition 4.1, we know that, for any B > 0:

Fs ∼
∑
|l|=s′

∥∥∂0
l ·
∥∥2

L2
x,v

+ ε2
∑

|l|+|j|=s′
|j|>1

∥∥∂jl ·∥∥2

L2
x,v
.

Case ε sufficiently small. Using directly Proposition 4.1 and Proposition 4.4
we see that, for Bj,l = B sufficiently large, we have a constant CB > 0 independent
of ε such that

d

dt
Fs′(f) 6−

 1

ε2

∑
|l|=s′

∥∥π⊥L (∂0
l f
)∥∥2

L2
γ

+
∑

|l|+|j|=s′
|j|>1

∥∥∂jl f∥∥2

L2
γ

+
∑
|l|=s′

∥∥∂0
l f
∥∥2

L2
x,v


+ εCB

∑
|l|+|j|=s′

∑
16i,k6d

∥∥∥∂j+δkl−δi f
∥∥∥2

L2
γ

+
∥∥∥∂j−δkl+δj

f
∥∥∥2

L2
x,v

+ C1,B

[
‖f‖2

Hsε
‖f‖2

Hs
γ

+ ‖f‖2

Hs′−1
x,v

+ 1
]
.

Therefore taking ε sufficiently small allows to absorb the second line with the nega-
tive first term. This is the expected result.

Case ε = 1. The proof is exactly the same. Gathering Proposition 4.1 and
Proposition 4.4 with Bj,l < 1, we infer that there exists C > 0 independent of Λ and
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Bj,l such that

d

dt
Fs′(f) 6− λs′,Λ

(∑
|l|=s′

∥∥π⊥L (∂0
l f
)∥∥2

L2
γ

+
∑
|l|=s′

∥∥∂0
l f
∥∥2

L2
x,v

+
∑

|l|+|j|=s′
|j|>2

Bj,l

∥∥∂jl f∥∥2

L2
γ

+
∑
|l|=s′−1

∥∥∂δil f∥∥2

L2
γ

)

+ C1

∑
|j|+|l|=s′
|j|>2

Bj,l

d∑
k=1

∥∥∥∂j−δkl+δk
f
∥∥∥2

L2
γ

− Λ
∑

|j|+|l|=s′

∥∥∂jl f∥∥2

2

+ C

 ∑
|l|+|j|=s′

∑
16i,k6d

∥∥∥∂j+δkl−δi f
∥∥∥2

L2
2

+
∥∥∥∂j−δkl+δj

f
∥∥∥2

L2
2


+ C

[
‖f‖2

Hsε
‖f‖2

Hs
γ

+ ‖f‖2

Hs′−1
x,v

+ 1
]
.

We can then choose Bj,l = Bj,l(Λ) sufficiently small hierarchically to absorb

C1

∑
|j|+|l|=s′
|j|>2

Bj,l

d∑
k=1

∥∥∥∂j−δkl+δk
f
∥∥∥2

L2
γ

inside the full negative terms on the first line of the estimate. As C is independent
of Λ (due to the fact that we could choose the Bj,l < 1) we can at last fix Λ
sufficiently large such that the L2

2-norms give a negative contribution. This concludes
the proof. �

We finally have all the tools to perform a full Hs
x,v estimate. The following propo-

sition indeed shows that our choice of perturbative regime compensate the modifi-
cation of the characteristics due to the presence of the external force even on the
fluid part of the solution πL(f).

Proposition 4.6. Let s > s0 (where s0 is given in Proposition 3.4). Then there
exists Λ > 0, C > 0 and 0 < εs 6 1 such that, for ε = 1 or 0 < ε 6 εs, there exists
a functional

(4.6) ‖·‖2
Hsx,v
∼
∑
|l|6s

∥∥∂0
l ·
∥∥2

L2
x,v

+ ε2
∑
|l|+|j|6s
|j|>1

∥∥∂jl ·∥∥2

L2
x,v

such that, if f is a solution to the perturbative equation (4.1) with initial data fin

satisfying ∣∣∣∣∣∣
∫
Td×Rd

 1
v

|v|2

 fin(x, v)
√
M |t=0 dxdv

∣∣∣∣∣∣ 6 Cinε
e,

then

∀t ∈ [0, T0),
d

dt
‖f‖2

Hsx,v
6− (λ− Cs ‖f‖2

Hsε
) ‖f‖2

Hs
γ

+ Cs.(4.7)
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All the constants depend on s, E and T0, but are independent of ε.

Proof of Proposition 4.6. As we shall see, the proof follows directly from Proposition
4.5 apart from s = 1 which has to be treated more carefully due to the lack of full
negative return on the L2

x,v-norm. Fixing s in N∗ we use Proposition 4.5 to construct

d

dt

s∑
s′=2

αs′Fs(f)

6 −λ
s∑

s′=1

 1

ε2

∑
|l|=s′

∥∥π⊥L (∂0
l f
)∥∥2

L2
γ

+
∑

|l|+|j|=s′
|j|>1

∥∥∂jl f∥∥2

L2
γ

+
∑
|l|=s

∥∥∂0
l f
∥∥2

L2
x,v


+ C

∑
16s′6s

αs′ ‖f‖2

Hs′−1
x,v

+ Cs

[
‖f‖2

Hsε
‖f‖2

Hs
γ

+ 1
]
,

where αs′ are constants that we choose sufficiently small hierarchically (from s to 1)
in order to absorb the first positive term at rank s′ on the right-hand side by the
negative feedback at rank s′ − 1. We infer for all t in [0, T0),

(4.8)
d

dt

s∑
s′=2

αs′Fs(f)

6 −λ
s∑

s′=1

 1

ε2

∑
|l|=s′

∥∥π⊥L (∂0
l f
)∥∥2

L2
γ

+
∑

|l|+|j|=s′
|j|>1

∥∥∂jl f∥∥2

L2
γ

+
∑
|l|=s

∥∥∂0
l f
∥∥2

L2
x,v


+ ‖f‖2

H1
x,v

+ Cs

[
‖f‖2

Hsε
‖f‖2

Hs
γ

+ 1
]

and we have from Proposition 4.5:

∑
16s′6s

αs′Fs(f) ∼
∑

16s′6s

∑
|l|6s′

∥∥∂0
l ·
∥∥2

L2
x,v

+ ε2
∑

|l|+|j|6s′
|j|>1

∥∥∂jl ·∥∥2

L2
x,v


so that

(4.9)
d

dt

s∑
s′=2

αs′Fs(f) 6 −
(
λ

2
− Cs ‖f‖2

Hsε

)
‖f‖2

Hs
γ

+ Cs ‖f‖2
H1
x,v

+ Cs.

Control of fluid part by spatial derivatives. A key property of our proof
will be to recover the full coercivity on the L2

x,v-norm by controlling ‖πL(f)‖2
L2
x,v

by

‖∇xf‖2
L2
x,v

which is fully coercive. First, as the eigenfunction of L are polynomials

times Maxwellian, see (3.5) and (3.6), we easily obtain (we refer to [12, equation
(3.3)] for a direct proof) that there exists cπ, Cπ > 0 such that

(4.10) ∀0 6 |j|+ |l| 6 s, cπ
∥∥∂jl π⊥L (f)

∥∥2

L2
x,v
6
∥∥πL (∂0

l f
)∥∥2

L2
γ
6 Cπ

∥∥πL (∂0
l f
)∥∥2

L2
x,v
.
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So the only part left to estimate is ‖πL(f)‖2
L2
x,v

. Coming back to (3.6), we have, for

a constant C depending on a,A, e and T0,

‖πL(f)‖2
L2
x,v
6 C

d+1∑
i=0

∫
Td
|〈f, φi

√
M〉|2dx.

We use the Poincaré-Wirtinger inequality to obtain, for possibly a different constant
C,

‖πL(f)‖2
L2
x,v
6 C

d+1∑
i=0

[∫
Td
|∇x〈f, φi

√
M〉|2dx+

∣∣∣∣∫
Td
〈f, φi

√
M〉dx

∣∣∣∣2
]
,

which gives in turn

(4.11) ‖πL(f)‖2
L2
x,v
6 C ‖∇x(πL(f))‖2

L2
x,v

+ C

∫
Rd

∣∣∣∣∫
Td
πL(f)dx

∣∣∣∣2 dv.
For the classical Boltzmann equation the preservation of mass, momentum and ener-
gy gives the cancellation

∫
Td πL(f)dx = 0, which is no longer satisfied here however.

We come back to the original equation (1.5) on F = M + ε
√
M f :

∂tF +
1

ε
v · ∇xF + ε ~Et(x) · ∇vF =

1

ε
Q(F, F ).

We multiply this equation by 1, v and |v|2 and we integrate over Td × Rd. This
yields

d

dt

∫
Td×Rd

F (t, x∗, v∗)dx∗dv∗ = 0,(4.12)

d

dt

∫
Td×Rd

v∗F (t, x∗, v∗)dx∗dv∗ = ε

∫
Td×Rd

~Et(x∗)F (t, x∗, v∗)dx∗dv∗,(4.13)

d

dt

∫
Td×Rd

|v∗|2 F (t, x∗, v∗)dx∗dv∗ = 2ε

∫
Td×Rd

~Et(x∗) · v∗F (t, x∗, v∗)dx∗dv∗.(4.14)

Note that we used that Q(f, g) is orthogonal to Ker(L) in L2
x,v. We insert the relation

F = M + ε
√
M f in the previous estimates. We compute and bound for δ = 0 or

δ = 2,∣∣∣∣∫
Td×Rd

|v∗|δ (M(0, x∗, v∗)−M(t, x∗, v∗))

∣∣∣∣ =
e−ε

1+e A
1+t

(1 + ε1+e a
1+t

)
2d+δ

4

− e−ε
1+eA

(1 + ε1+ea)
2d+δ

4

6 ε1+eCa,A.(4.15)

From (4.12), (4.15) and the smallness hypothesis (2.2), we deduce that

(4.16) sup
t∈[0,T0]

∣∣∣∣∫
Td×Rd

f∗(t)
√
M∗(t) dx∗dv∗

∣∣∣∣ 6 Cεe.

We use the cancellation condition in (2.1) and (2.2) to get

(4.17) sup
t∈[0,T0]

∣∣∣∣∫
Td×Rd

v∗f∗(t)
√
M∗(t) dx∗dv∗

∣∣∣∣
6 Cεe + εT0CE sup

t∈[0,T0]

∫
Td

∣∣∣∣∫
Rd
v∗f∗(t)

√
M∗(t)dv∗

∣∣∣∣ dx.
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We use the bounds

εT0CE sup
t∈[0,T0]

∫
Td

∣∣∣∣∫
Rd
v∗f∗(t)

√
M∗(t)dv∗

∣∣∣∣ dx
6 εT0CE sup

t∈[0,T0]

‖πL(f(t))‖L2
x,v
6 Cεe + ε2(1−e) sup

t∈[0,T0]

‖πL(f(t))‖2
L2
x,v

to obtain

(4.18) sup
t∈[0,T0]

∣∣∣∣∫
Td×Rd

v∗f∗(t)
√
M∗(t) dx∗dv∗

∣∣∣∣ 6 Cεe + ε2(1−e) sup
t∈[0,T0]

‖πL(f(t))‖2
L2
x,v
.

A similar procedure gives
(4.19)

sup
t∈[0,T0]

∣∣∣∣∫
Td×Rd

|v∗|2f∗(t)
√
M∗(t) dx∗dv∗

∣∣∣∣ 6 Cεe + ε2(1−e) sup
t∈[0,T0]

‖πL(f(t))‖2
L2
x,v
.

The identities (4.16)-(4.18)-(4.19) above imply

(4.20) sup
t∈[0,T0]

∫
Rd

∣∣∣∣∫
Td
πL(f(t))dx

∣∣∣∣2 dv 6 Cε2e + 2ε2(1−e) sup
t∈[0,T0]

‖πL(f(t))‖2
L2
x,v
.

We combine (4.20) with (4.11) to obtain

sup
t∈[0,T0]

‖πL(f(t))‖2
L2
x,v
6 C ‖∇x(πL(f(t)))‖2

L2
x,v

+ Cε2e + 2ε2(1−e) sup
t∈[0,T0]

‖πL(f(t))‖2
L2
x,v
.

For ε small enough, this gives

(4.21) ‖πL(f)‖2
L2
γ
6 CπC ‖∇x(πL(f(t)))‖2

L2
x,v

+CπCε
2e 6 C ′π

(
‖∇x(f(t))‖2

L2
x,v

+ 1
)
,

where Cπ was defined in (4.10).

Evolution of the H1-norm. Let us now look at the evolution of the full H1
x,v-

norm. We take p, q and r and define

Q1(f) = p ‖∇xf‖2
L2
x,v

+ qε2 ‖∇vf‖2
L2
x,v

+ εr〈∇xf,∇vf〉L2
x,v
.



BOLTZMANN EQUATION WITH EXTERNAL FORCES 29

Using the estimates given in Section 3 exactly as for (4.4) but keeping explicit the
dependencies CΛ = C

Λ
we find

1

2

d

dt
Q1(f) 6

Cη0r + pη0 − p
ε2

λ0,Λ

∥∥π⊥L (∇xf)
∥∥2

L2
γ

+

[
qε2

η1

+ η4p+ ε1−e 1ε<1

4
p+ ε

1ε<1

4
r − r

]
‖∇xf‖2

L2
x,v

+

[
q(η1 + η′0 + η4 + ε3−e1ε<1

4
) + r(η0 + η4)λ0,Λ + ε2−e1ε<1

4
r − qλs,Λ

]
‖∇vf‖2

L2
γ

+ ε1+eΛ
[
Cη3r + η2p−

p

2

]
‖∇xf‖2

L2
2

+ ε3+eΛ
[
η2q + (η2 + η3)r − q

2

]
‖∇vf‖2

L2
2

+ ε1−e

[
pCη2 + d

Cη2
Λ
r

]
‖∇vf‖2

L2
x,v

+

[
q

C1C
′
π

Λ
+ 3pε1−e C2C

′
π

Λ
+ 2rε1−e C3C

′
π

Λ

]
‖∇xf‖2L2

x,v

+ Cp,q,r,Λ,η

[
‖f‖2

Hsε
‖f‖2

Hs
γ

+
∥∥π⊥L f∥∥2

L2
x,v

+ 1
]
.

We solely decomposed the ‖f‖2
L2
x,v

appearing in (4.4) into πL(f) - which we controlled

thanks to (4.21) - and π⊥L (f). To clarify we emphasized in bold the newly added
terms. For ε < 1 we see that we can make exactly the same choices for the constants
as in Proposition 4.1 with the following two modifications which have no impact on
the proof:

• (8) p sufficiently large such that C1,η0r+ qC1 + pη0− pλ0,1 6 −2 - instead of
C1,η0r + pη0 − p 6 −1

• (10) ε small enough as before plus 3pε1−eC2C′π
Λ

+ 2rε1−eC3C′π
λ
6 λ0,1.

In the case ε = 1 it is easier since the choices made in Proposition 4.1 leave Λ > 1
free so we can fix all the constant in the same way - recall that p, q and r are
independant of Λ - and then choose Λ sufficiently large such that

q
C1C

′
π

Λ
+ 3pε1−eC2C

′
π

Λ
+ 2rε1−eC3C

′
π

Λ
6 −1

2

[
qε2

η1

+ η4p+ ε1−e 1ε<1

4
p+ ε

1ε<1

4
r − r

]
.

In all cases we can find p, q and r such that Q1 ∼ ‖∇x·‖2
L2
x,v

+ ε2 ‖∇v·‖2
L2
x,v

and

1

2

d

dt
Q1(f) 6− λ

[
1

ε2

∥∥π⊥L (∇xf)
∥∥2

L2
γ

+ ‖∇vf‖2
L2
γ

+ ‖∇xf‖2
L2
x,v

]
+ Cs ‖f‖2

Hsε
‖f‖2

Hsγ
+ Cs

∥∥π⊥L (f)
∥∥2

L2
x,v

+ Cs.

(4.22)

At last, the evolution of the full L2
x,v-norm is derived as before using the estimates

given in Section 3. One bounds

d

dt
‖f‖2

L2
x,v
6− λ0,Λ

ε2
(1− 2η0)

∥∥π⊥L (f)
∥∥2

L2
γ
− ε1+eΛ ‖f‖2

L2
2

+ ε1−e 1ε<1

4
‖f‖2

L2
x,v

+ λ0,Λ ‖f‖2
Hsε
‖f‖2

Hs
γ

+ 2CΛ,η0 .
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Once we fix η0 sufficiently small and use the orthogonal projection together with the
control of πL(f) by the spatial derivatives (4.21) the above implies

d

dt
‖f‖2

L2
x,v
6−

[
λ

ε2
− ε1−e 1ε<1

4

] ∥∥π⊥L (f)
∥∥2

L2
γ
− ε1+eΛ ‖f‖2

L2
2

+ ε1−e 1ε<1

4
‖∇xf‖2

L2
x,v

+ Cs ‖f‖2
Hsε
‖f‖2

Hs
γ

+ Cs.

(4.23)

We add α(4.22)+(4.23) with α sufficently small so that αCs
∥∥π⊥L (f)

∥∥2

L2
x,v

from (4.22)is

absorbed by λ
2ε2

∥∥π⊥L (f)
∥∥2

L2
x,v

from (4.23). Then we can make ε = 1 or ε sufficiently

small and obtain

(4.24)
1

2

d

dt

(
‖f‖2

L2
x,v

+ αQ1(f)
)
6 −λ′ ‖f‖2

H1
γ

+ Cs ‖f‖2
Hsε
‖f‖2

Hs
γ

+ Cs.

Conclusion of the proof. Taking a small parameter η, the linear combination
η(4.9) + (4.24) shows the existence of λ > 0 and Cs > 0 such that

1

2

d

dt

(
‖f‖2

L2
x,v

+Q1(f) + η
s∑

s′=2

Fs′(f)

)
6 −(λ− Cs ‖f‖2

Hsε
) ‖f‖2

Hs
γ

+ Cs

which concludes the proof by defining

(4.25) ‖f‖2
Hsx,v

= ‖f‖2
L2
x,v

+Q1(f) + η
s∑

s′=2

Fs′(f).

�

Remark 4.7. We see in the derivation of the estimate (4.15), that we need e > 0,
to ensure that, although not conserved, the global quantities associated to the mass,
momentum and energy of the perturbation f are controlled in a suitable way.

5. Proofs of the main results

At last, we have all the tools to give the proof of the main results.

5.1. Results on the Cauchy theory for the Boltzmann equation.

Proof of Theorem 2.1. The proof of existence follows from a standard iterative sche-
me:

∂tfn+1 +
1

ε
v · ∇xfn+1 + ε ~Et(x) · ∇vfn+1 + εE(t, x, v)fn+1

=
1

ε2
L[fn+1] +

1

ε
Γ[fn, fn+1]− 2E(t, x, v)M1/2.

A detailed procedure is given in [12, Section 6.1] for ~Et = 0. This proof is directly

applicable here, in combination with our estimates of S2 and S3 (terms involving ~Et).
We obtain a uniform bound on a sequence of approximations (fn)n∈N in L∞t H

s
x,v ∩

L1
tH

s
γ , and therefore the strong convergence towards f in less regular Sobolev spaces

by Rellich’s theorem. The uniqueness of the solution is also standard when ~Et =
0. When ~Et is non-trivial, uniqueness directly follows from our a priori estimate
method applied to the difference f−g of two solutions: the linear parts are estimated



BOLTZMANN EQUATION WITH EXTERNAL FORCES 31

in exactly the same way and the bilinear term is controledl when ‖f‖2
Hs
x,v

+‖g‖2
Hs
x,v

is

small enough, which is why we obtain the uniqueness only in a perturbative regime.
We infer from our a priori estimates described in Proposition 4.6 that

∀t ∈ [0, T0),
d

dt
‖f‖2

Hsx,v
6 −(λ− Cs ‖f‖2

Hsε
) ‖f‖2

Hs
γ

+ Cs.

Coming back to the definition of the Hs
ε-norm given by (4.2) we see that it is uni-

formly equivalent to the Hs
x,v-norm. Therefore we have

∀t ∈ [0, T0),
d

dt
‖f‖2

Hsx,v
6 −(λ− Cs ‖f‖2

Hsx,v
) ‖f‖2

Hs
γ

+ Cs.

As ‖·‖Hsx,v 6 ‖·‖Hs
γ

we directly apply Grönwall lemma which implies that

∀t ∈ [0, T0), ‖f(t)‖Hsx,v 6 max
{
‖fin‖Hsx,v , CT0,E,s

}
as long as ‖f‖2

Hsx,v
(t = 0) is sufficiently small.

Remark 5.1. In the specific case where
∥∥∥ ~Et∥∥∥ 6 CE

(1+t)α
with α > 1 the second con-

stant Cs behaves like Cs/(1+t)α (CE is merely replaced by CE/(1+t)α in the compu-
tations). Grönwall lemma then gives a polynomial time decay for f for sufficiently
small ε.

�

The corollary follows at once.

Proof of Corollary 2.3. The corollary is a direct consequence of Theorem 2.1 and
our definition of fluctuation M . Indeed, direct computations show that

∃Cs > 0, ∀t > 0, ‖µ−M‖Hs
x,v
6 ε1+eCs.

Therefore, using the notations of Theorem 2.1(∥∥∥∥Fin − µ
ε
√
µ

∥∥∥∥
Hs
x,v

6
δT0,E,s

2

)
⇒

(∥∥∥∥Fin −M
ε
√
M

∥∥∥∥
Hs
x,v

6
δT0,E,s

2
+ εeCs

)
which raises the expected corollary for ε sufficiently small because e > 0: we con-
struct a solution provided by Theorem 2.1 and this solution remains close to µ by
an additive constant εeCs. �

5.2. Results on the Hydrodynamical limit. We are left with the computation
of the limit equations and convergence issues.

Proof of Theorem 2.5. Let T0 > 0 and Fε be the solution built in Corollary 2.3
on [0, T0] and define fε = ε−1 F−µ√

µ
. The sequence (fε)ε>0 is uniformly bounded in

L∞[0,T0]H
s
x,v and solves

(5.1) BEε(fε) = ε2E(t, x, v)µ1/2 + ε3
[
~Et(x) · ∇vf + E(t, x, v)f

]
where BEε(f) is the standard Boltzmann equation operator given by

BEε(f) = ε2∂tf + εv · ∇xf − L[f ]− εΓ[f, f ]
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and we recall that

E(t, x, v) = εe 2A+ a |v|2

4(1 + t)2
− 1

2

(
1 + ε1+e a

1 + t

)
~Et(x) · v.

Having (fε)ε>0 uniformly bounded in L∞[0,T0]H
s
x,v means that up to a subsequence fε

converges weakly-* in this space towards f . The choice of s > s0 allows us to take
the weak-* limit in BEε(fε) as it is now standard in the field [11, 33], [12, Section
8] and obtain

lim
ε→0

BEε(f) = L[f ].

The right-hand side of (5.1) is linear in fε and it therefore converges weakly-* towards
0. In the limit one must have

L[f ] = 0 so f(t, x, v) =

[
ρ(t, x) + v · u(t, x) +

|v|2 − d
2

θ(t, x)

]√
µ(v).

The fluid equations are obtained by integrating in velocity (5.1) against
√
µ, v
√
µ

and |v|2−(d+2)
2

√
µ. The computations on the Boltzmann equation part BEε(fε) have

been done and proven rigorously for weaker convergences [7, 20] and one obtain that

lim
ε→0

1

ε

∫
Rd

 1
v

|v|2−(d+2)
2

√µBEε(fε)dv =

 ∇x · u(t, x)
∇x(ρ+ θ)
∗


and so looking at the right-hand side of (5.1) we see that in the limit

∇x · u(t, x) = 0 and ∇x(ρ+ θ) = 0

which are the incompressibility and Boussinesq relation.
Looking at the order ε2 in BEε(fε) yields the Navier-Stokes-Fourier system in the

Leray sense [7, 20] - that is integrated against test functions with null divergence. It
only remains to see what the right-hand side of (5.1) becomes in the limit at order
ε2:

lim
ε→0

1

ε2

∫
Rd

 1
v

|v|2−(d+2)
2

[ε2E(t, x, v)µ+ ε3
[
~Et(x) · ∇vf + E(t, x, v)f

]√
µ
]
dv

= lim
ε→0

∫
Rd

 1
v

|v|2−(d+2)
2

 ~Et(x)

2
· vµdv =

 0
1
2
~Et(x)
0

 .

Therefore, taking the limit of the hydrodynamic quantities when ε goes to 0 of
ε−2(5.1) yields that (ρ, u, θ) is a Leray solution to the incompressible Navier-Stokes
equation with a force (1.15) together with the Boussinesq equation (1.3).

�
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