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Observations performed with CO2 near its critical point onboard sounding rockets show
that periodical patterns (bands) develop in a two-phase, liquid-vapor system under tan-
gential vibrations in microgravity conditions. Fluids are slightly below their liquid-vapor
critical point where liquid and vapor densities are close, surface tension is low, and they
exhibit a scaled, universal behavior. With the increase of vibration amplitude, an instability
can develop on the band pattern, leading to the appearance of Faraday waves. Theoretical
and numerical investigations of the Faraday instability onset and development are carried
out taking into account the interaction between the bands. The critical parameters for
the onset of instability are determined. The comparisons between theoretical analysis,
two-dimensional direct numerical simulation, and original experimental data show good
agreement.

DOI: 10.1103/PhysRevFluids.4.064001

I. INTRODUCTION AND BACKGROUND

In the space environment, gravity effects are not present and a number of phenomena, of marginal
effect on earth, can become predominant. This is particularly the case for a number of fluid
instabilities triggered by vibrations when the stabilizing effect of gravity is not present any more.
It is of both industrial and academic interest to investigate such instabilities. The management of
fluids in space is indeed one of the major concerns for engineers, and unveiling new fluid processes
is one of the most exciting finding for scientists.

When subjected to vibration, the shape and stability of the interface between two fluids depend
on the relative direction of the vibration and the interface. It is known that in a gravity field a
quasistationary wave pattern (frozen wave instability [1]) can develop at the interface when the
applied vibration is parallel to the initially horizontal fluid interface. In Ref. [2] this phenomenon
was studied for the case of two superposed infinite horizontal layers of inviscid fluids. The stability
of the base state with a flat interface parallel to the layer boundaries and plane-parallel time-
periodical longitudinal flows in both layers was considered [Fig. 1(a)]. Because of the difference
in densities of the fluids, the base flow velocities in the two layers are different; thus a tangential
velocity jump across the interface appears, leading to a shear-driven Kelvin-Helmholtz (KH)
instability. If the layer thicknesses are not too small, a finite-wavelength instability develops with
the increase of vibration intensity [Fig. 1(b)]. The interface is immobile (“frozen”) in average in the
reference frame of the oscillating boundaries.

The theory developed by Lyubimov and Cherepanov [2] for the description of this phenomenon
assumes that the pulsational flow is irrotational and incompressible. In the “high” frequency limit
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FIG. 1. Interface between two fluids: (a), (b) in a gravity field, and (c)–(f) in zero gravity conditions;
(a), (c), (e) base states, (b), (d), (f) supercritical regimes: (b) frozen waves at aω > (aω)c, (d) band pattern,
(f) Faraday waves on bands at a > ac.

ω � ν/L2 (ω = 2π f is the vibration angular frequency; f is frequency; ν = η/ρ is the kinematic
viscosity of the two fluids, assumed equal; and L is a typical length scale) and small vibration
amplitude a � L, the slow motion of the interface can be decoupled from its fast motion. Using
this decomposition and performing a linear stability analysis the critical conditions for the onset of
instability in an infinitely long horizontal layer with flow closeness condition were predicted in [2]
in the form

(aω)2 � 1

2
(aω)2

c

(
λ

λ0
+ λ0

λ

)
tanh

(
2πh

λ

)
. (1)

Here

(aω)2
c = (ρ1 + ρ2)3

ρ1ρ2(ρ2 − ρ1)

√
σg

ρ2 − ρ1
(2)

is the critical value of the squared vibration velocity amplitude at the instability onset, h is the
thickness of one liquid layer, λ is the perturbation wavelength, and

λ0 = 2π lc (3)

is the critical wavelength, with

lc =
√

σ

g(ρ2 − ρ1)
, (4)

the capillary length (here σ is the surface tension coefficient; g is the acceleration of gravity). When
the vibration velocity amplitude is critical, aω = (aω)c and the wavelength of the quasistationary
profile is equal to λ0 [2].

The expression of the instability condition Eq. (1) is similar to the condition obtained from a
linear stability analysis of the classical Kelvin-Helmholtz instability. Equation (2) predicts that the
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critical vibration velocity amplitude diverges when ρ2/ρ1 is large, leading to a stable interface. That
is why this instability is only observed for fluids of comparable densities [2–4] like liquid and vapor
phases near a critical point [5].

It follows from a weakly nonlinear analysis of the instability near the threshold [2] that the
bifurcation can be subcritical or supercritical depending on the parameters. For a supercritical
bifurcation the expression for the amplitude A of the frozen wave has the form (within the
assumption λ < h, i.e., tanh(2πh/λ) ≈ 1)

A = λ0
2(ρ1 + ρ2)2

πρ2
1

√
−11(ρ2/ρ1)2 + 42ρ2/ρ1 − 11

	(aω)∗, (5)

where

	(aω)∗ =
√

(aω)2 − (aω)2
c

(aω)c

(6)

is the normalized distance to the critical vibration velocity amplitude.
Note that the theoretical results (1)–(4) were obtained for a system of infinite layers. Neverthe-

less, numerical modeling [6] and experiments [7,8] performed in closed containers gave results that
well agree with the stability condition (1).

Under zero g, when the stabilizing effect of gravity is absent, the amplitude of the frozen waves
thus diverges, forming bands oriented perpendicularly to the vibration direction [see Figs. 1(c)
and 1(d)] as observed in CO2 [5,9,10], H2 [11,12], liquid mixtures of FC-40 and silicone oil [13],
and miscible mixtures of water-isopropanol with water [14]. This orienting effect of vibrations was
predicted theoretically in [15]. Although both frozen wave and band instabilities have the same
origin (shear flow at the interface) the band characteristics cannot be simply deduced from a mere
extrapolation at g = 0 of the frozen wave instability, where both amplitude A and wavelength
λ0 ∼ lc diverge. In the case of an infinitely long layer the long-wave perturbations are the most
dangerous and the instability threshold is zero for these perturbations. For any nonzero value of
the vibration velocity amplitude the perturbations with the wave number grow from a certain range
[see the neutral curve B(k) (interrupted curve) in Fig. 2]. The question on the selection of critical
perturbations as realized in experiments therefore arises. As shown in [5] by a linear stability
analysis, in this case the band periodicity is defined by the wave number of the perturbations with
maximal growth rate. An analytical solution describing the dependence of the wave number of
perturbations with maximal growth rate on the vibration velocity amplitude for inviscid fluids has
the form [5]

(aω)2 = (ρ1 + ρ2)3

4ρ1ρ2(ρ2 − ρ1)2 σk

[
3 tanh(kh) + kh

cosh2(kh)

]
. (7)

The dependence of the wave number of perturbations with maximal growth rate on the
dimensionless vibration parameter is plotted in Fig. 2 (full curve). For viscous fluids it is not
possible to obtain analytical expressions similar to Eq. (7). The problem was solved numerically
by the solution of a linearized problem on the evolution of small perturbations of the base state [5].
It was found that the band wave number strongly depends on viscosity.

Thus, according to (1) the critical value of the vibration velocity amplitude tends to zero when
gravity vanishes; i.e., in the case of zero gravity, a KH instability could take place at any values of
aω. However, recent calculations carried out for containers of finite length [13] have demonstrated
the existence of a nonzero-critical vibration intensity. These results are not in contradiction with the
zero-critical vibration as reported in [5], where, for infinite layers, the long wave perturbations are
the most dangerous and the critical value of aω for these perturbations is equal to zero. In a container
of finite length L the perturbation wavelength is limited by L and the minimal possible wave number
is 2π/L, which corresponds to a nonzero value of aω (see Fig. 2). The same conclusions are valid
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FIG. 2. Dependence of the dimensionless vibrational parameter B = (aω)2h(ρ2 − ρ1)/4σ on the dimen-
sionless wave number k for ρ = 1.15 (taken from [5]). Interrupted curve: neutral perturbations with λ = 0 in
an inviscid fluid; full curve: perturbations with maximal growth rate in an inviscid fluid.

for the perturbations with maximal growth rate which, as shown in [5], are responsible for the KH
instability in zero gravity conditions.

When the band pattern is established, the fluid interface becomes perpendicular to the vibration
direction and one naturally expects the development of a Faraday wave instability when the vibration
intensity exceeds a critical value [see Figs. 1(e) and 1(f)]. Faraday instabilities have indeed been
observed at the liquid-vapor interface in H2 near its critical point [12] and at the interface of miscible
water-alcohol mixtures [14].

The goal of the present paper is to analyze these Faraday waves on band patterns, analytically,
numerically, and by processing experimental data obtained for CO2 under microgravity conditions
in the sounding rocket Maxus 7. As mentioned above, the two-phase system used in our experiments
is characterized by a low surface tension. In this case, the values of the dimensionless vibration
parameter B are large and, as can be seen from Fig. 2, the dimensionless wave numbers of
perturbations with maximal growth rate are also large. Thus, the wavelength of the most dangerous
perturbations is small; i.e., formation of thin bands is expected. Therefore, differing from the
previous studies, the interaction between the interfaces should be important, which can substantially
modify the instability characteristics. In the present paper we thus study the excitation of Faraday
waves on the band pattern by taking into account this unique particular situation and compare with
original data obtained under zero gravity conditions.

The paper is organized as follows. The next section is devoted to an experimental section with
methods and observations. Direct numerical simulation and theoretical analysis of the Faraday
waves’ instability onset are afterward reported and their results are compared with the experimental
observations.

II. EXPERIMENTAL OBSERVATION OF FARADAY WAVES IN MICROGRAVITY

A. Fluids near their critical point

The use of fluids in the vicinity of their liquid-vapor critical point is particularly appealing to
carry out such investigations. In addition to its use by the space industry in such near supercritical

064001-4



FARADAY WAVES ON BAND PATTERN UNDER ZERO …

TABLE I. Parameters of CO2 and n-H2 [17].

Tc pc ρc β σ0 η

Fluid (K) (MPa) (kg m−3) (10−2 N m−1) (10−5 Pa s)

CO2 304.14 7.375 467.8 1.60 6.72 4.21
n-H2 33.19 1.315 30.11 1.61 0.542 0.27

conditions, the thermodynamic properties of fluids when expressed under reduced temperature or
density distance from the critical point can be conveyed under universal, scaled functions [16]. Using
such scaling, studying one fluid permits us to study all. In addition, the fact that surface tension σ

and liquid-vapor density difference 	ρ vanish when nearing the critical point enhances the effect of
accelerations and highlights the mechanical instabilities. Experimentally speaking, another interest
of considering the critical point vicinity is the possibility to vary the fluid parameters simply by
changing temperature.

A number of fluid properties can be described in the vicinity of the critical point by scaling laws
[16]. The densities of vapor (ρv ) and liquid (ρl ) phases behave asymptotically (with ρc the critical
density) according to

ρl,v = ρc(1 ± βε0.325). (8)

Here

ε =
∣∣∣∣T − Tc

Tc

∣∣∣∣, (9)

with T as temperature and Tc the critical temperature. The value of parameter β depends on the
considered fluid. The density difference 	ρ = ρl − ρv follows

	ρ = 2βρcε
0.325, (10)

and the mean density (rectilinear diameter with negligible slope) is

ρl + ρv

2
= ρc. (11)

The liquid-vapor interfacial tension obeys

σ = σ0ε
1.26, (12)

where σ0 is a fluid-dependent parameter. The viscosities of both phases are close to each other and
do not appreciably change when nearing the critical point.

B. Experimental setup

Experiments have been performed with CO2 onboard sounding rockets. The physical parameters
of CO2 are listed in Table I together with the critical parameters (pc is the critical pressure, and η is
the dynamic viscosity of the fluid).

Details on the experimental setup can be found in [5,10]. A sketch is given in Fig. 3. The
experimental module is of Texus Experiment Module by Ferrari (TEM-FER) type [10]. The latter
is an Al cylinder in which is inserted the cell made of copper-cobalt-beryllium alloy. It is thermally
regulated by a Peltier element within 0.3 mK accuracy. Temperature can be adjusted within 1
mK steps. As the module has to work under vacuum during the flight, the thermostat remains
pressurized at 1 bar pressure.
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FIG. 3. Experimental arrangement of the CO2 experiment (schematic). The double arrow indicates the
vibration direction. The scale is in centimeters.

In the cell body is drilled a cylinder with radius R = 5.0 mm and thickness e = 2.189 mm,
closed at each end by two parallel sapphire windows. Using CuCoBe alloy ensures good thermal
conduction between the fluid and the thermostat. The sample is illuminated by parallel light
issued from a light-emitting diode (LED) and observed in transmission by two cameras. Coherent
illumination is used to enhance the refractive-index gradients and then the density gradients. The
cell is filled at critical density with a precision of 0.1%, by checking the temperature variation of
the meniscus position according to the method developed in [18].

The sample cell is inserted into one arm of a two-arms symmetric shaker vibrating device. In
order to prevent vibrations of the rocket, another block (hosting experiments with vibrated granular
materials) with the same mass is vibrated in the opposite arm, in phase opposition. The couple of
the motor is also compensated to prevent rocket rotation. The shaker can apply linear harmonic
vibrations in a range of amplitude a = 0.2–2.5 mm and frequency f = 0.5–50.5 Hz; a and f can be
varied independently step by step. A three-axis accelerometer measures the accelerations; a linear
variable-differential transformer measures the amplitude of the alternative motion of the thermostat
in the vibration direction.

Images are taken by a high-resolution, 2048 × 2048 pixels, 5 fps frame rate, 125 μs full-frame
shutter times, fixed gain, digital camera. It is equipped with a long-working-distance microscope.
Images are stored on the rocket module and recovered after the flight. With an imaging factor of
1:1.12, the final spatial resolution is on the order of 1 pixel (7.4 μm × 7.4 μm). Image analysis
is then used to determine the characteristics of the pattern. All other scientific data, including
images with low resolution (782 × 582 pixels) from a 25 Hz charge-coupled device (CCD) camera,
temperature measurements, vibration amplitude and frequency, and acceleration data, are sent by
telemetry to the ground.

Timeline (Table II) is the following. A first set of experiments was dedicated to phase transition
from an initial state at 2 mK above Tc. Equilibration under weightlessness was ensured until t = 75 s
after lift-off (time t = 0 by definition). Then vibration (0.31 mm, 20.2 Hz) is applied. A temperature
quench of 4.4 mK is performed at t = 150 s. The cell is maintained at the same temperature until
the end of the period allocated for the experiment (t = 539 s) where the liquid and vapor phases
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TABLE II. Timeline of the CO2 weightlessness experiment. MET: Mission elapsed time; a and f are
measured quantities.

MET (s) T -Tc (mk) a (mm) f (Hz) Action

–10800 300 1-h equilibration period
–7200 300–2.0 Stepping down in log steps
–1200 2.0 Equilibration
0 2.0 Rocket lift-off
75 2.0 Start of μg period and fluid relaxation
135 2.0 0.305 20.3 Start of vibration (0.31 mm, 20.2 Hz)
150 –2.4 0.48 25.25 Quench-down and relaxation
539 –2.4 1.41 25.25 New input of vibration parameters
567 –2.4 2.5 20.3
593 –2.4 2.5 10.5
624 –2.4 2.5 5.6
659 –2.4 1.0 5.6
679 –2.4 0.20 5.6
711 –2.4 0.70 10.5
730 –2.4 0.70 25.2
761 –2.4 0.20 25.2
786 –2.4 0.20 49.7
818 –2.4 0.71 49.7
843–854 –2.4 0.21 0 End

appear as well organized bands perpendicular to the vibration direction [10]. Then amplitude and
vibration are varied about each 30 s until the end of weightlessness (800 s), thus corresponding to
13 different combinations (a, f ). The time to change (a, f ) is about 2 s.

Concerning high-resolution pictures, which are taken at a 5 fps frame rate (0.2 s time period) and
125 μs full-frame shutter times, the frame rate is lower than the vibration frequency. It corresponds
to taking successive images every 0.2 s at times t0 = 0 and t1 = nT + 1 × 	t = 0.2 s, t2 = nT +
2 × 	t = 0.4 s, etc. tp = nT + (p × 	t = p × 0.2 s), with n and p integer numbers and 	t the time
lag determined by 	t = (0.2/T ) − n. It means that it will need p = T/	t images to describe the
equivalent of one period.

C. Observation

A number of interesting instabilities is then evidenced under vibrations. Typically, the fluid (here
CO2) is subjected to harmonic vibrations and the relative distance to the critical temperature ε =
(Tc − T )/Tc is varied. The liquid-vapor interface is seen to successively exhibit the following five
stages as σ and 	ρ diminish with ε. (i) ε > 3.3 × 10−3: The vapor bubble oscillates, with a number
of modes that increases when ε decreases [19]; (ii) 10−3 < ε < 3.3 × 10−3: The bubble shows a flat
interface perpendicular to vibrations [19,20]; (iii) 3 × 10−4 < ε < 10−3: The Faraday waves (square
pattern) develop on the liquid-vapor interface, whose wavelength decreases when ε decreases [12];
(iv) 7 × 10−5 < ε < 2 × 10−4: The Faraday waves square pattern becomes a two-dimensional (2D)
line pattern due to small wavelength increased dissipation [12,21]; (v) ε < 7 × 10−5: The liquid-
vapor phases order in parallel “bands” perpendicular to the vibration direction [Fig. 1(d)]. These
bands are reminiscent of the earth-bound frozen wave instability where the liquid-vapor interface
deformation is immobile in the reference frame of the oscillating boundaries [5]. The bands can be
seen as frozen wave amplitudes much larger than the sample size [see Figs. 1(b) and 1(d)].

In the band regime (v), Faraday waves can be observed on the band interfaces (which are
perpendicular to the vibration direction) [5]. The Faraday instability corresponds to the Faraday
roll pattern on the single liquid-vapor interface as observed in [12]. There is, however, a noticeable
difference as the band thickness is much smaller than the sample size. Such band pattern has also
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FIG. 4. (a) CO2 sample (10.0 mm diameter and 2.189 mm thickness) under a = 0.7 mm, f = 25.25 Hz
vibrations with direction indicated by a double arrow. The window is enlarged in (b)–(e). The black lines
correspond to the interfaces between the liquid and vapor phases, which order as “bands” perpendicular to the
vibration direction. (b)–(e) Different times in units of vibration period T (see text) showing subharmonicity by
the interface deformation phase as highlighted by the white dotted line). Time origin corresponds to amplitude
maximum on the right. Interface deformation occurs on a half period on one side of the band (b), (d), (e) and
on the other half period on the other side (c).

been noted under weightlessness with miscible liquid mixtures just after they were put into contact,
and the same kind of Faraday waves were also observed [14].

A typical band pattern is reported in Fig. 4 under a = 0.7 mm, f = 25.25 Hz vibrations, near
the instability threshold. Interfaces are seen to exhibit line deformations that correspond to Faraday
waves. As a matter of fact, the subharmonic character of the interface instability can be characterized
by the fact that the phase of the interface deformation is recovered after twice the excitation period
[Figs. 4(b), 4(d), and 4(e)].

Concerning fluids near a critical point, the same phenomenon as noted above in Sec. II C
occurs: As the wavelength of the instability decreases when approaching the critical point, enhanced
dissipation induces a transition from square pattern to line pattern. This transition depends on both
Tc – T (which determines the pattern wavelength λ) and viscous dissipation [η(aω)2/ f λ2], at a
temperature sufficiently away from Tc where the fluid does not yet order into bands (see Sec. II B).
Transition square line occurs typically within about Tc − T ≈ 10 mK in H2 [12].

III. NUMERICAL SIMULATIONS

A. Methology

The numerical simulations were performed for a system of two immiscible fluids filling a
rectangular container of length l and height 2h. A Cartesian coordinate system was chosen with
the axis z directed vertically upwards and axis x directed along the layer. The container is subjected
to vibrations at amplitude a and frequency ω.

The initial state corresponds to the band structures with interfaces perpendicular to the vibration
axis. The period of the structure is made either regular, corresponding to the analysis performed
in [5], or slightly varied. In the latter case, the initial structure was obtained by the additional
calculation of the bands’ formation process from an initially flat fluid interface under tangential
vibrations.

In the reference frame of an oscillating container, the system of equations is written as follows:

ρs

(
∂ �vs

∂t
+ �vs · ∇ �vs

)
= −∇ps + ηs	�vs + ρsaω2 �ex cos ωt, (13)

div�vs = 0, (14)
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where the subscript s = 1, 2 denotes the fluids, �vs is the fluid velocity, ps is the pressure, ρs is the
density, ηs is the dynamic viscosity, and �ez are the basis vectors of the coordinate system. At the
interfaces the usual conditions for normal and tangential stress balance, velocity continuity, and
kinematic condition are imposed:

(p2 − p1)�n = (τ̄ (2) − τ̄ (1) ) · �n + σ �ndiv�n, (15)

�v1 = �v2, (16)

∂ζ

∂t
+ �v1 · ∇ζ = �v1 · �ez. (17)

Here �n is the unit vector normal to the interface and directed toward the less dense fluid, τ̄ s =
τ s

ik = ηs(∂vs,i/∂xk + ∂vs,k/∂xi ) is the viscous stress tensor, and σ is the surface tension coefficient.
The no-slip condition is imposed at the container walls.

The modeling of the interface dynamics under horizontal vibrations is carried out by direct
numerical simulations. The calculations are performed using the volume of fluid (VoF) method
for the description of the dynamics of the interface of immiscible fluids. This method is based on
the introduction of the volume fraction of each phase, ψs, which is constant inside a selected phase
and sharply changes at the interface between two phases. The variables and properties in any point
are defined by the values of volume fractions. Therefore, a multiphase system is treated as a single
medium with the parameters sharply changing at the interfaces, and the Navier-Stokes equations
describing the system can be solved in the same way all over the computational domain with an
additional source term in the momentum equation (13) describing the surface tension. The great
advantage of this approach is that there is no need to deal with the boundary conditions (15)–(17) at
the interface. The VoF method is implemented in the ANSYS FLUENT software, which was used
in [6] to model the frozen wave formation.

Tracking of the interface between the two phases is accomplished by the solution of the
continuity equation for the volume fraction of the phases. For the s phase, this equation has the
following form:

∂ψs

∂t
+ �vs · ∇ψs = 0. (18)

The volume fraction of the primary phase is determined from the condition

ψ1 + ψ2 = 1. (19)

The influence of vibrations is taken into account by introducing a periodically varying volumetric
force. The surface tension can be expressed as the volume force in the momentum equation (13):

Fvol = σ
ρκs∇ψs

ρ̄
, (20)

where ρ̄ is the mean density, ρ̄ = (ρ1 + ρ2)/2; ρ is the density in the computational cell given
by the expression ρ = ψ1ρ1 + ψ2ρ2; κs = ∇ · �ns/| �ns| is the interface curvature defined in terms of
the divergence of the unit vector �ns: The spatial discretization is performed using the third-order
MUSCL scheme (monotone upstream-centered schemes for conservation laws). At each time step
the convergence criterion for the velocity components is used. The absolute scaled residual errors
have to be less than 0.001 (“scaled” means that the residual error is divided by the flow rate through
the domain).

B. Simulation for CO2 experiment

The CO2 parameters (Table I) are used at temperature T − Tc = –2.4 mK (Table II). Most of
the simulations are carried out for a rectangular container of 2h = 1.2 mm height and l = 8 mm
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FIG. 5. Faraday waves for different parameters of vibrations: (a) f = 5 Hz, a = 2.5 mm, band pattern
period = 0.8 mm; (b) f = 25 Hz, a = 1.1 mm, band pattern period = 0.4 mm; (c) f = 20 Hz, a = 1.6 mm,
band pattern period = 0.1 mm.

long. In these simulations the initial state corresponds to the state with a constant band pattern
period [Fig. 1(e)]. The simulations show that the dependence of the Faraday wave characteristics
and instability threshold on the band period is not very strong (see Fig. 5). Significant stabilization
of the system (growth of the critical vibration amplitude) is observed for small values of the band
period, smaller than the Faraday wavelength.

The case where the band pattern period is much smaller than the wavelength of the Faraday
waves gives rise to a mode with synchronous deviations of all fluid interfaces [zero phase shift; see
Fig. 5(c)]. It is very likely that the wall effect is the main reason for its appearance. Therefore, this
mode should be difficult to observe in experiments and we do not discuss it further in this paper.

C. Fourier analysis of Faraday waves

To assess that the instability studied experimentally and numerically in the previous sections is
indeed a Faraday instability, Fourier analyses of the velocity in the central point of the cavity were
performed. As one can see in Fig. 6, the leading frequency (2.5 Hz) of oscillations is twice as small
as the frequency (5 Hz) of external vibrations (note that the peak at 7.5 Hz corresponds to the second
Fourier harmonic and the peak at 12.5 Hz to the third). As a consequence, the waves on the bands
indeed correspond to subharmonic mode of oscillations; i.e., the waves are similar to classic Faraday
waves.

In Fig. 7 the band patterns are shown for different phases of the vibration period. One can notice
that the phase shift of nearby interfaces is 1/4 of the Faraday wave period (or 1/8 of the vibration
period). This phase shift was observed in all calculations except for the case of a very small period
of band patterns when, as is mentioned above, another mode with zero phase shift arises.

IV. THRESHOLD OF FARADAY WAVES ON BANDS

A. Theoretical analysis of Faraday wave instability threshold

The experiments and the theory described above show that, in the weightlessness of the space
environment, a two-layer system under tangential vibrations forms a band pattern with the interfaces
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FIG. 6. Fourier analysis of velocity evolution in the central point of the cavity for frequency f = 5 Hz and
a = 2.5 mm; A (in arbitrary units) is the amplitude of the Fourier component.

perpendicular to the vibration direction. At high enough vibration amplitudes, the Faraday wave
instability develops at the interfaces. In this section we analyze the critical conditions for this
instability using the approach of Kumar and Tuckerman [22], taking into account low viscosity
of fluids.

We consider a band pattern formed in the system of layers of immiscible fluids, in a large
container that corresponds to the structure observed in experiments. Fluid interfaces are perpen-
dicular to the direction of vibrations and the layers are of equal depth (Fig. 8). In this section,
the Cartesian coordinate system with the axis z directed along the vibration axis is used. Near
the stability threshold the solution could be assumed periodic in the direction of the z axis. It is
therefore sufficient to consider the two-layer system with the conditions of periodicity shown by the
interrupted line in Fig. 8.

In the reference frame of an oscillating container, the dynamics of the system is described by
the equations and boundary conditions Eqs. (13)–(17), completed with the condition of periodicity
imposed at z = +h, −h. The solution of the problem that corresponds to the base state with flat
interfaces reads

�v0
s = 0, p0 = ρsaω2cos(ωt )z. (21)

FIG. 7. Band patterns for different phases of Faraday waves period for f = 5 Hz, a = 2.5 mm,
band period = 0.8 mm: (a) ϕ = 0, (b) ϕ = π/8, (c) ϕ = π/4.
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FIG. 8. Scheme of linear stability analysis of Faraday waves on bands.

Linearizing the governing equations and implementing the operation of ∇ × ∇×, we obtain the
equations for the linear stability problem [22],

∂∇2ws

∂t
− νs∇2∇2ws = 0, (22)

where ws is the perturbation of the vertical velocity components. As was mentioned (see also
Table I), the viscosity of the considered fluids is quite small. Based on that, we completely neglect
fluid viscosity in a first step. This assumption reduces the problem to a system of two Mathieu
equations. However, as in [22], viscosity is taken into account in a phenomenological way by
introducing an additional dissipation term in the Mathieu equations. We also neglect surface tension
since it is vanishing in fluids near their critical point [Eq. (5)].

According to the Floquet theorem, the solution could be presented in the following form:

w j =
n=∞∑

n=−∞
w jn(z)einωt . (23)

In the case of inviscid fluids Eq. (22) can be written as

∇2ws = 0, (24)

and the boundary conditions (15)–(17) for perturbations are

w1 = w2, (25)

(ρ2 − ρ1)
∂2

∂t∂z
w = −[(ρ2 − ρ1)a cos(ωt )]k2ζ , (26)

∂ζs

∂t
= ws. (27)

Solutions to Eq. (24) that satisfy the boundary condition (25) at both interfaces and the conditions
of periodicity read

w1 = [ã(t )e−kz + b̃(t )e−k(h−z)]eikx, (28)

w2 = [ã(t )ekz + b̃(t )e−k(h+z)]eikx, (29)
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where ã(t ), b̃(t ) are time-dependent amplitudes. Note that, according to the condition of periodicity
at the second boundary B, B′ (see Fig. 8), it is necessary to use z = h for w1, and z = −h for w2.
Then, from the kinematic condition Eq. (27), one obtains for the first interface (marked A in Fig. 8)

ζ̇A = ã(t ) + b̃(t )e−kh, (30)

and for the second interface (B, B′ in Fig. 8)

ζ̇B = ã(t )e−kh + b̃(t ). (31)

Substituting (28)–(31) in the dynamic boundary condition Eq. (26) we obtain the system of two
Mathieu equations describing the behavior of the interfaces,

ζ̈Acoth(kh) − ζ̈Bcsch(kh) + 2γ ζ̇A + F cos(ωt )ζ̇A = 0, (32)

ζ̈Bcoth(kh) + ζ̈Acsch(kh) + 2γ ζ̇B − F cos(ωt )ζ̇B = 0, (33)

where

F = aω2(ρ2 − ρ1)k

ρ1 + ρ2
, γ = 2k2(η1 + η2)

ρ1 + ρ2
(34)

and coth(x) = cosh(x)/sinh(x) is hyperbolic cotangent; csch(x) = 1/sinh(x) is hyperbolic cosecant.
In order to obtain analytical expressions, we use the simplification suggested in [14] where the

solution was approximated by using only two Fourier components ζ = ζ+eiωt/2 + ζ−e−iωt/2. As is
mentioned in Sec. IV B in numerical computation only the mode with the quarter period shift in
phases of neighboring interface oscillations,

ζ1(t ) = ζ2

(
t + π

4

)
,

was observed, therefore we restrict ourselves by consideration of this mode. Additionally, the
amplitudes of interface deviations (ζ1, ζ2) are assumed to be the same, which also corresponds
to the numerical and experimental observations. Taking into account the above assumptions and the
smallness of the viscosity, we obtain the solution to Eqs. (32) and (33) in the form

(aω)2 = (ω2 + 4γ 2 + 8ωγ e−kh + 6ω2e−2kh)(ρ1 + ρ2)2

(1 − e−2kh)2(ρ2 − ρ1)2k2
. (35)

Minimizing the neutral curve Eq. (35) with respect to the wave number, we obtain

ac = 2
√

2e−2H + √
6e−2H + 1

(ρ2 − ρ1)(1 − e−2H )

√
(ρ2 + ρ1)(η1 + η2)

ω
, (36)

where H = kh is the dimensionless spatial period of the band pattern. In the case of large H , when
interaction of interfaces is negligible, this formula is reduced to the estimate of the critical amplitude
obtained in [14] for a single fluid interface:

ac = 2

ρ2 − ρ1

√
(ρ2 + ρ1)(η1 + η2)

ω
. (37)

B. Comparison of numerical and experimental results

The formula, Eq. (36), for the threshold of the Faraday waves on bands shows that the critical
vibration amplitude is subjected to a sharp growth in the range of a small period of bands. This result
well corresponds qualitatively to the numerical modeling (Fig. 9). When compared to numerical
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FIG. 9. The dependences of critical vibration amplitude on the dimensionless layer depth H for (1) f =
10 Hz, (2) f = 15 Hz, (3) f = 20 Hz according to Eq. (36). The parameters correspond to CO2 experiments, see
Table I. Diamonds correspond to the stability boundary obtained in the numerical simulations for f = 20 Hz.

simulations, the overestimation of the critical amplitude given by Eq. (36) is expected since similar
deviation was found in [14] for Eq. (37) corresponding to a single fluid interface.

Figure 10 shows the comparison of analytical results for the critical vibration amplitude with the
stability curves obtained in the direct numerical simulation of Sec. IV B and experiments. The latter
are in good agreement.

FIG. 10. Stability map for experimental, analytical, and numerical results. Circles are experimental results
(open circles: stable states; filled circles: Faraday instability). The gray line shows numerical data (the linewidth
corresponds to the accuracy of the stability boundary determination). The dashed line corresponds to analytical
stability estimation given by Eq. (36).
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V. CONCLUSIONS

In the experimental studies performed with near critical fluid under zero gravity or liquid
mixtures, it was shown that under vibrations a periodical pattern (bands) can develop in the system
[5,13,14]. Depending on the parameters of the vibrations, an instability can be observed in the bands,
which leads to the development of Faraday waves. In the present study, such Faraday instabilities
in a thin band pattern have been studied taking into account the interaction between the bands. This
is a unique situation as compared with the classical Faraday instability in a two-layer system with
a single interface or in a periodical pattern of thick bands. An analytical solution has been obtained
under assumptions of low viscosity and low surface tension as, e.g., encountered with liquid-vapor
interfaces near a critical point. It is shown that the critical vibration amplitude is subjected to a sharp
growth for small spatial periods of the band pattern.

A 2D numerical modeling of Faraday waves has been performed using the full Navier-Stokes
equations and the volume of fluid (VoF) method for the interface tracking. The influence of
vibrations is taken into account by introducing a periodically varying volumetric force. The
calculations show that at small spatial periods of band patterns the interaction between the interfaces
leads to the significant stabilization of the system. The dynamics of the Faraday waves on the bands
corresponds to subharmonic oscillations, i.e., the waves are similar to classical Faraday waves.

The comparison of analytical results on the critical vibration amplitude with the stability
curves obtained in the direct numerical simulation and experimental data show good agreement.
Nevertheless, a small overestimation of the critical vibration amplitude given by analytical analysis
takes place, which was expected since similar deviation was observed by others [14] for a single
fluid interface.
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