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A Privacy-preserving Disaggregation Algorithm

for Non-intrusive Management of Flexible Energy

Paulin Jacquot, Olivier Beaude, Pascal Benchimol, Stéphane Gaubert, Nadia Oudjane

Abstract— We consider a resource allocation problem involv-
ing a large number of agents with individual constraints subject
to privacy, and a central operator whose objective is to optimize
a global, possibly non-convex, cost while satisfying the agents’
constraints. We focus on the practical case of the management
of energy consumption flexibilities by the operator of a mi-
crogrid. This paper provides a privacy-preserving algorithm
that does compute the optimal allocation of resources, avoiding
each agent to reveal her private information (constraints and
individual solution profile) neither to the central operator
nor to a third party. Our method relies on an aggregation
procedure: we maintain a global allocation of resources, and
gradually disaggregate this allocation to enforce the satisfaction
of private constraints, by a protocol involving the generation
of polyhedral cuts and secure multiparty computations (SMC).
To obtain these cuts, we use an alternate projections method à
la Von Neumann, which is implemented locally by each agent,
preserving her privacy needs. Our theoretical and numerical
results show that the method scales well as the number of agents
gets large, and thus can be used to solve the allocation problem
in high dimension, while addressing privacy issues.

I. INTRODUCTION

Motivation. Consider an operator of an electricity mi-

crogrid optimizing the joint production schedules of renew-

able and thermal power plants in order to satisfy, at each

time period, the consumption constraints of its consumers.

To optimize the costs and the renewables integration, this

operator relies on demand response techniques, that is, taking

advantage of the flexibilities of some of the consumers

electric appliances—those which can be controlled without

impacting the consumer’s comfort, as electric vehicles or

water heaters [1]. However, for privacy reasons, consumers

are not willing to provide neither their consumption con-

straints nor their consumption profiles to a central operator

or any third party, as this information could be used to induce

private information such as their presence at home.

The global problem of the operator is to find an allocation

of power (aggregate consumption) p = (pt)t at each time

period (resource) t ∈ T , such that p ∈ P (feasibility

constraints of power allocation, induced by the power plants

constraints). Besides, this aggregate allocation has to match

an individual consumption profile xn = (xn,t)t∈T for each

of the consumer (agent) n ∈ N considered. The problem can
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be written as follows:

min
x∈RN×T, p∈P

f(p) (1a)

xn ∈ Xn, ∀n ∈ N (1b)
∑

n∈N xn,t = pt, ∀t ∈ T , (1c)

The (aggregate) allocation p can be made public, that is,

revealed to all agents. However, the individual constraint set

Xn and individual profiles xn constitute private information

of agent n, and should not be revealed to the operator or any

third party. It will be helpful to think of Problem (1) as the

combination of two interdependent subproblems:

i) given an aggregate allocation p, the disaggregation

problem consists in finding, for each agent n, an individual

profile xn satisfying her individual constraint (1b), so that

constraint (1c) is satisfied; when this is possible, we say that

a disaggregation exists for p;

ii) each subset Q ⊂ P determines an optimal resource

allocation problem, or master problem, minp∈Q f(p).

When Q is precisely the set of aggregate allocations for

which a disaggregation exists, the optimal solutions of the

master problem correspond to the optimal solutions of (1).

Aside from the example above, resource allocation prob-

lems (optimizing common resources shared by multiple

agents) find many applications in energy [1, 2], logistics

[3], distributed computing [4], health care [5] and telecom-

munications [6]. In these applications, several entities or

agents (e.g. consumers, stores, tasks) share a common re-

source (energy, products, CPU time, broadband) which has

a global cost for the system. For large systems composed

of multiple agents, the dimension of the overall problem

can be prohibitive and one can rely on decomposition and

distributed approaches [7–9] to answer to this issue. Besides,

agents’ individual constraints are often subject to privacy

issues [10]. These considerations have paved the way to the

development of privacy-preserving, or non-intrusive methods

and algorithms, e.g. [11, 12].

In this work, we consider that each agent has a global

demand constraint (e.g. energy demand or product quantity),

which confers to the disaggregation problem the particular

structure of a transportation polytope [13]: the sum over the

agents is fixed by the aggregate solution p, while the sum

over the T resources are fixed by the agent global demand

constraint. Besides, individual constraints can also include

minimal and maximal levels on each resource, as for instance

electricity consumers require, through their appliances, a

minimal and maximal power at each time period.



Main Results. The main contribution of the paper is to

provide a non-intrusive and distributed algorithm (Algo. 4)

that computes an aggregated resource allocation p, optimal

solution of the—possibly nonconvex—optimization problem

(1), along with feasible individual profiles x for agents,

without revealing the individual constraints of each agent

to a third party, either another agent or a central operator.

The algorithm solves iteratively instances of master problems

minp∈P(s) f(p) by constructing successive approximations

P(s) ⊂ P of the aggregate feasible set of (1) for which a

disaggregation exists, by adding a new constraint on p to

P(s), before solving the next master problem.

To identify whether or not disaggregation is feasible and

to add a new constraint in the latter case, our algorithm

relies on the alternating projections method (APM) [14, 15]

for finding a point in the intersection of convex sets. Here,

we consider the two following sets: on the one hand, the

affine space defined by the aggregation to a given resource

profile, and on the other hand, the set defined by all agents

individual constraints (demands and bounds). As the latter

is defined as a Cartesian product of each agent’s feasibility

set, APM can operate in a distributed fashion. The sequence

constructed by the APM converges to a single point if the

intersection of the convex sets is nonempty, and it converges

to a periodic orbit of length 2 otherwise. Our key result

is the following: if the APM converges to a periodic orbit,

meaning that the disaggregation is not feasible, we construct

from this orbit a polyhedral cut, i.e. a linear inequality

satisfied by all feasible solutions p of the global problem (1),

but violated from the current resource allocation (Thm. 4).

Adding this cut to the master problem, we can recompute

a new resource allocation and repeat this procedure until

disaggregation is possible. Another main result stated in this

paper is the explicit upper bound on the convergence speed

of APM in our framework (Thm. 2), which is obtained by

spectral graph theory methods, exploiting also geometric

properties of transportation polytopes. This explicit speed

shows a linear impact of the number of agents, which is a

strong argument for the applicability of the method in large

distributed systems.

Related Work. A standard approach to solve resource

allocation problems in a distributed way is to use a La-

grangian (dual) decomposition technique [8, 16, 17]. Those

techniques are generally used to decompose a large problems

into several subproblems of small dimension. However, La-

grangian decomposition methods are based on strong duality

property, requiring global convexity hypothesis which are

not satisfied in many practical problems (e.g. MILP, see

Sec. V). On the contrary, our method can be used when

the master allocation problem is not convex. In [2], the

authors study a disaggregation problem similar to the one

considered in this paper. Their results concern zonotopic sets,

which is different from the structure we described in Sec. II.

The APM has been the subject of several works in itself

[15, 18, 19]. The authors of [20] provide general results

on the convergence rate of APM for semi-algebraic sets.

They show that the convergence is geometric for polyhedra.

However, it is generally hard to compute explicitly the

geometric convergence rate of APM, as this requires to

bound the singular values of certain matrices arising from

the polyhedral constraints. In [21], the authors provide an

explicit convergence rate for APM on a class of polyhedra

arising in submodular optimization. The sets they consider

differ from the present transportation polytopes.

Structure. In Sec. II, we describe the master resource

allocation problem and formulate the associated disaggre-

gation problem. In Sec. III, we focus on the APM and

state our main results. In Sec. IV, we apply these results

to describe a non-intrusive version of APM (NI-APM) that

is used to describe our non-intrusive algorithm for computing

an optimal resource allocation. Finally, in Sec. V, we provide

a concrete numerical example based on a MILP to model the

management of a local electricity system (microgrid), and

study numerically the influence of the number of agents on

the time needed for convergence of our algorithm.

Notation. Vectors and matrices are denoted by bold fonts,

v⊤ denotes the transpose of v, 1K denotes the vector

(1 . . . 1)⊤ of size K , U([a, b]) stands for the uniform dis-

tribution on [a, b]. We use ‖x‖2 to denote the Frobenius

norm ‖x‖2 =
∑

n,t x
2
n,t, and PC(.) to denote the Euclidean

projection on a convex set C.

II. MASTER PROBLEM AND DISAGGREGATION

In this work, we suppose an operator wishes to determine

an allocation of resources, represented by a T -dimensional

vector p, in order to minimize a global cost function f ,

for instance, an electricity power economic dispatch (or the

allocation of different types of merchandise in warehouses in

logistics applications) subject to a set of constraints described

by a feasibility set P . This problem can be nonconvex either

because of nonconvex costs f or because of a nonconvex

feasible set P (see Sec. V). In the proposed method, the

operator will consider master problems of the form:

min
p∈P(s)

f(p) (2)

where the set P(s) ⊂ P is an aggregate approximation of

disaggregation constraints. Indeed, the resource allocation p

has to be shared between N agents (e.g. consumers). Each

agent has a global demand (total energy needed) En and

some lower and upper bounds on each of the resource t ∈ T .

The admissible set of profiles of agent n is therefore:

Xn
def
= {xn∈R

T | x⊤n1T =En and ∀t, xn,t≤xn,t≤xn,t}. (3)

The disaggregation problem consists in finding individual

profiles x = (xn,t)n,t ∈ R
NT of a given aggregated

allocation p such that xn is feasible for each agent n:

FIND x ∈ Yp ∩ X (4)

where Yp
def
= {y ∈RNT |y⊤1N = p} andX

def
=

∏

n∈N Xn .

Following (4), the disaggregated profile refers to x, while

the aggregated profile refers to the allocation p.



Problem (4) may not always be feasible. Immediate nec-

essary conditions for a solution to exist are obtained by

aggregating the individual constraints on N as:

p⊤1T = E⊤
1N and x⊤1N ≤ p ≤ x⊤1N . (5)

However, (5) are not sufficient conditions, as shown in Fig. 1

where the problem (4) is represented as a flow or circulation

problem from source nodes t ∈ T to sink nodes n ∈ N .

Indeed, with this circulation representation of the disaggre-

gation problem (4), an immediate consequence of Hoffmann

theorem [22, Thm. 3.18][23] is the following characterization

of the disaggregation feasibility, which involves an exponen-

tial number of inequalities:

Theorem 1. The disaggregation problem (4) is feasible (i.e.

X ∩ Yp 6= ∅) iff for any Tin ⊂ T ,Nin ⊂ N :
∑

t/∈Tin

pt ≤
∑

t/∈Tin,n∈Nin

xn,t −
∑

t∈Tin,n/∈Nin

xn,t +
∑

n/∈Nin

En. (6)

The inequality (6) has a simple interpretation: the residual

demand (the left hand side composed of demand and exports

minus production) in Tin ∪ Nin cannot exceed the import

capacity (right hand side of the inequality). One can see that,

in the example of Fig. 1, inequality (6) does not hold when

using the cut composed of the dashed nodes p1 and E1.

1p1 = 0

2p2 = 3

1 E1 = 2

2 E2 = 0.5

3 E3 = 0.5
T

N

Fig. 1. Example of disaggregation structure (T = 2, N = 3), with
x = 0 and x := 1. Although the aggregate constraints (5) are satisfied,

the disaggregation (4) of p is not feasible in this example (see Thm. 1).

There are two main reasons for which solving (1) is harder

than solving (II) and (4) separately:

i) the dimension of (1) can be huge, as the number of

agents N can be really important, for instance in the example

of individual consumers;

ii) also, and this is the main motivation of this work, the

information related to (xn)n, (xn)n and (En)n might not be

available to the centralized operator in charge of optimizing

resources p, as this information may be confidential and kept

by each agent n, not willing to reveal it to any third party.

In the next sections, we provide a method that addresses

those two issues, by considering subproblems (II) and (4)

independently and iteratively, and exploiting the decompos-

able structure of problem (4).

III. ALTERNATE PROJECTION METHOD (APM)

A. Convergence of APM on Transportation Polytopes

In this section, we consider a fixed aggregated profile p

and present the Von Neumann Alternate Projections Method

(APM) [14] which solves the problem Eq. (4) of finding a

point in the intersection X ∩ Yp. In the remaining, we will

often omit p and just write Y to denote Yp. The key idea

of the method proposed in this paper is to use results of

APM to generate a cut in the form of (6) and to add it as

a new constraint in the master problem (II) to “improve”

the aggregated profile p for the next iteration. As described

in Algo. 1, APM can be used to decompose (4) and only

involves local operations.

Algorithm 1 Alternate Projections Method (APM)

Require: Start with y(0), k = 0 , εcvg, a norm ‖.‖ on R
NT

1: repeat

2: x(k+1) ← PX (y(k))
3: y(k+1) ← PY(x(k+1))
4: k ← k + 1
5: until

∥

∥y(k) − y(k−1)
∥

∥ < εcvg

The convergence of Algo. 1 is proved by Thm. 2:

Theorem 2 ([15]). Let X and Y be two convex sets with

X bounded, and let (x(k))k and (y(k))k be the two infinite

sequences generated by Algo. 1 with εcvg = 0. Then there

exists x∞ ∈ X and y∞ ∈ Y such that:

x(k) −→
k→∞

x∞ , y(k) −→
k→∞

y∞; (7a)

‖x∞ − y∞‖2 = min
x∈X ,y∈Y

‖x− y‖2 . (7b)

In particular, if X ∩ Y 6= ∅, then (x(k))k and (y(k))k
converge to a same point x∞ ∈ X ∩ Y .

If disaggregation is not feasible, Thm. 2 states that APM

will “converge” to an orbit (x∞,y∞) of period 2.

The convergence rate of APM has been the subject of

several works [18, 20], and it strongly depends on the

structure of the sets on which the projections are done: for

instance, if the sets are polyhedral, [20, Prop. 4.2] shows that

the convergence is geometric. However, there are very few

cases in which an explicit upper bound on the convergence

rate has been proved. In our case, we are able to obtain such

a bound, as shown in the following theorem:

Theorem 3. For the sets X and Y defined in (3-4), the

two subsequences of alternate projections converge at a

geometric rate to x∞ ∈ X , y∞ ∈ Y , with:

‖x(k)− x∞‖2≤2‖x
(0)− x∞‖2 × ρkNT

where ρNT
def
= 1− 1

4

(

N(T + 1)2(T − 1)
)

< 1 ,

Same inequalities hold for the convergence of y(k) to y∞.

Proof. Appendix II provides a sketch of the proof.

Thm. 3 shows that the APM is efficient in our case of

bounded transport polytopes. It shows that the number of

iterations for a given accuracy grows linearly in the number

of agents N .

As stated in (4), the set X is a Cartesian product
∏

n Xn,

so that the projection PX (.) can be computed by N pro-

jections on (Xn)n, which can be executed in parallel. Now,

instead of solving the quadratic program by standard interior

point methods and due to its particular structure, we can use



the algorithm of Brucker [25], which has a complexity in

O(T ). On the other hand, PY(.) is a projection on an affine

space, and the solution can be obtained explicitly as:

∀n, t,yn,t = xn,t + νt and ν = 1
N (p− x⊤1N ) . (8)

B. Generation of a cut from APM iterates

Our key result is the following: in the case where APM

converges to a periodic orbit (x∞,y∞) with x∞ 6= y∞ (see

Thm. 2), we obtain from (x∞,y∞) an inequality (6) that is

violated by p:

Theorem 4. For the sets X and Y defined in (3-4) and if

X ∩ Y = ∅ , the following sets given by the limit orbit

(x∞,y∞) defined in Thm. 2:

T0
def
= {t|pt >

∑

n∈N x∞
n,t} (9a)

N0
def
= {n |En −

∑

t/∈T0
xn,t −

∑

t∈T0
xn,t < 0} (9b)

define a Hoffman cut of form (6) violated by p, that is:
∑

n∈N0

En−
∑

t∈T0

pt+
∑

t∈T0,n/∈N0

xn,t−
∑

t/∈T0,n∈N0

xn,t < 0 . (10)

This cut can be reformulated in terms of 1⊤Nx∞ as:

AT0<
∑

t∈T0

pt with AT0

def
=

∑

t∈T0

∑

n∈N
x∞
n,t. (11)

Proof. Appendix I gives the sketch of the proof of Thm. 4.

The complete proofs will be given elsewhere.

Remark 1. More sophisticated projections methods such as

Dykstra’s APM [26], EPPM [27], or any method returning

outputs x∞, y∞ satisfying the same conditions as APM

given in Thm. 2, could be used here instead of Algo. 1.

One can see that, intuitively, N0 is the subset associated

to T0 that minimizes the right hand side of (6). Note that

Thm. 4 gives an alternative constructive proof of Hoffman

circulation’s theorem (Thm. 1) in the case of a bipartite

graph of the form of Fig. 1. Moreover, in the case where the

disaggregation problem (4) is not feasible, the negation of

equation (11) provides a new valid constraint as a condition

for the existence of a disaggregated profile of p. This con-

straint can be used in the master problem (II) to update the

vector of resources p for the next iteration. This constraint

only involves the aggregate information 1
⊤
Nx∞ on the users

profile. To make the process fully non-intrusive, we explain

in Sec. IV-A how the operator can compute this constraint

without making the agents reveal their profiles (x∞
n )n∈N .

IV. NON-INTRUSIVE PROJECTIONS AND COMPUTATION

OF DISAGGREGATED OPTIMAL RESOURCES

A. Non-Intrusive Alternate Projections Method (NI-APM)

Because of the particular structure of the problem, the pro-

jections in APM can be computed separately by the operator

and the agents. The projection PY is made by the operator,

which only requires to know p and the aggregate profile

x⊤1N according to (8). The projection PX on X =
∏

n Xn

is executed in parallel by each agent: n computes PXn
which

only needs her private information En and xn,xn. However,

in the way APM is described in Algo. 1, the operator and

the agents still need to exchange the iterates x(k),y(k) at

each step. To avoid the transmission of agents’ profiles to

the operator, we use a secure multiparty computation (SMC)

technique (see [28]) which enables the operator to obtain the

aggregate profile S(k) := 1
⊤
Nx(k) in a non-intrusive manner,

as described in Algo. 2.

The main idea of SMC is that, instead of sending her

profile xn, agent n splits xn,t for each t into N random

parts (sn,t,m)m, according to an uniform distribution and

summing to xn,t (Lines 2-3). Thus, each part sn,t,m taken

individually does not reveal any information on xn nor on

Xn, and can be sent to agent m. Once all exchanges of

parts are completed (Line 5), and n has herself received the

parts from other agents, agent n computes a new aggregate

quantity σn (Line 7), which does not contain either any

information about any of the agents, and sends it to the

operator (Line 8). The operator can finally compute the

quantity S = x⊤1N = σ⊤1N .

Algorithm 2 SMC of Aggregate (SMCA)
∑

n∈N xn

Require: Each agent has a profile (xn)n∈N
1: for each agent n ∈ N do

2: Draw ∀t, (sn,t,m)N−1
m=1∈U([0, A]

N−1)

3: and set ∀t, sn,t,N
def
= xn,t −

∑N−1
m=1 sn,t,m

4: Send (sn,t,m)t∈T to agent m ∈ N
5: done

6: for each agent n ∈ N do

7: Compute ∀t, σn,t =
∑

m∈N sm,t,n

8: Send (σn,t)t∈T to operator

9: done

10: Operator computes S =
∑

n∈N σn

Remark 2. As σn, and sn are random by construction, an

eavesdropper aiming to learn the profile xn of n has no

choice but to intercept all the communications of n to all

other agents (to learn (sn,t,m)m 6=n and (sm,t,n)m 6=n) and to

the operator (to learn σn). To increase the confidentiality of

the procedure, one could use any encryption scheme (such

as RSA [29]) for all communications involved in Algo. 2.

We can use this non-intrusive computation of aggregate

S in APM to obtain a non-intrusive algorithm NI-APM

(Algo. 3) in which agents do not reveal neither their profiles

nor their constraints to the operator.

One can see that x and y computed in Lines 3 and 8

in Algo. 3 correspond to the projections computed in the

original APM Algo. 1. In Algo. 3, the operator obtains the

aggregate profile S(k) (Line 5), computes and sends the

corrections ν(k) to all agents (Line 6). Then, each agent can

compute locally the projection y
(k)
n = PY(x

(k)
n ) by applying

the correction ν(k) (Line 8).

Using (8), we get ν(k) → ν∞ def
= 1

N (p−1
⊤
Nx∞). Thm. 4

uses this limit value through T0
∞ def

= {t ∈ T |0 < ν∞t }.
Yet, from APM, one can only access to ν(k) and thus to



Algorithm 3 Non-intrusive APM (NI-APM)

Require: Start with y(0), k=0, εcvg, εdis, norm ‖.‖ on R
NT

1: repeat

2: for each agent n ∈ N do

3: x
(k)
n ← PXn

(y
(k−1)
n )

4: done

5: Operator obtains S(k) ←SMCA(x(k)) (cf Algo.2)

6: and sends ν(k) := 1
N (p− S(k)) ∈ R

T to agents N
7: for each agent n ∈ N do

8: Compute y
(k)
n ← x

(k)
n + ν(k)

9: done

10: k ← k + 1
11: until

∥

∥x(k) − x(k−1)
∥

∥ < εcvg

12: if
∥

∥x(k) − y(k)
∥

∥ ≤ εdis then

⊲ found a εdis-solution of the disaggregation problem

13: Each agent adopts profile x
(k)
n

14: return DISAG ← TRUE

15: else ⊲ have to find a valid constraint violated by p

16: Operator computes T0 ← {t ∈ T |
3
2Bεcvg < ν

(k)
t }

17: Operator computes AT0 ←SMCA((x
(k)
t )t∈T0 )

18: if AT0 −
∑

t∈T0
pt < 0 then

19: return DISAG ← FALSE, AT0

20: else ⊲ need to run APM with higher precision

21: Return to Line 1 with εcvg ← εcvg/2
22: end

23: end

the approximation T0, computed on Line 16), where B is a

pre-defined constant. However, we show that for εcvg small

enough and a well-chosen value of B, we obtain T0 = T ∞
0 ,

so that we get the termination result:

Proposition 1. For B > (1 − ρNT )
−1, Algo. 3 terminates

in finite time.

The termination of the loop Lines 1-11 is ensured by

Thm. 3. In the case where
∥

∥x(k) − y(k)
∥

∥ ≤ εdis, Algo. 3

terminates. Otherwise, if ‖x∞ − y∞‖ > εdis, then Algo. 3

terminates (i.e. Line 18 is True and a new cut is found)

as soon as Bεcvg < min
{

‖x∞−y∞‖1

2
√
N

, 2
5ν

}

, where ν
def
=

min{|ν∞t | > 0} and with ‖.‖ = ‖.‖2. The complete proof is

omitted here.

In practice, we can start with a large εcvg to obtain the first

constraints while avoiding useless computation, and then half

εcvg if needed (Line 21) until the termination condition holds.

Remark 3. Lagrangian decomposition is another promising

technique to develop privacy-preserving algorithms. How-

ever, Lagrangian decomposition requires convexity assump-

tions, whereas in the present approach, combining polyhe-

dral cuts and alternate projection methods, the optimization

problem can be nonconvex (we shall actually solve such a

nonconvex example in Sec. V).

B. Non-intrusive Disaggregation of Optimal Allocation

In this section, we describe a method to compute a solution

of the global problem (1), that is, an optimal resource

allocation p for which a disaggregation exists, along with

an associated disaggregated profile xn for each agent n.

This computation is done in a non-intrusive manner: the

operator in charge of p does not have access neither to the

bounding constraints x and x of the agents nor to the agents

disaggregated profile x, as detailed in Algo. 4 below.

Algorithm 4 Non-intrusive Optimal Disaggregation

Require: s = 0 , P(0) = P ; DISAG = FALSE

1: while Not DISAG do

2: Compute p(s) = argmin
p∈P(s)

cs
f(p)

3: DISAG ← NI-APM(p(s))

4: if DISAG then

5: Operator adopts p(s)

6: else

7: Obtain T
(s)
0 ,A

(s)
T0

from NI-APM(p(s))

8: P(s+1) ← P(s) ∩ {p|
∑

t∈T (s)
0

pt ≤ A
(s)
T0
}

9: end

10: s← s+ 1
11: done

Algo. 4 iteratively calls NI-APM (Algo. 3) and in case

disaggregation is not possible (Line 6), a new constraint

is added (Line 8), obtained from the quantity AT0 defined

in (11), to the resource problem (II). This constraint is

an inequality on p and thus does not reveal significant

individual information to the operator. The algorithm stops

when disaggregation is possible (Line 4). The termination of

Algo. 4 is ensured by the following property and the form

of the constraints added (10):

Proposition 2. Algo. 4 stops after a finite number of iter-

ations, as at most 2T constraints (Line 8) can be added to

the master problem (Line 2).

Although there exist some instances with an exponential

number of independent constraints, this does not jeopardize

the proposed method: in practice, the algorithm stops after a

very small number of constraints added (see the example of

Sec. V). Intuitively, we will only add constraints “support-

ing” the optimal allocation p.

Remark 4. Algo. 4 solves problem (1) in a privacy-preserving

manner for agents. For this, we use both the results of Thm. 4

and SMC to securely transmit the aggregate profile to the

operator. For the latter point, other techniques could be used

such as the consensus-based aggregation algorithm in [30].

A comparison of the different possible techniques, relying

on quantitative privacy indicators, would be interesting, and

is an avenue for further work.

V. APPLICATION TO MANAGEMENT OF A MICROGRID

We apply the proposed method to solve a nonconvex

distributed problem in the energy field. We consider a micro-

grid [31] composed of N electricity consumers with flexible

appliances (such as electric vehicles or water heaters), a

photovoltaic (PV) power plant and a conventional generator.


