
HAL Id: hal-02150179
https://hal.science/hal-02150179v1

Submitted on 7 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cumulative Types Systems and Levels
François Thiré

To cite this version:
François Thiré. Cumulative Types Systems and Levels. LFMTP 2019 - Logical Frameworks and
Meta-Languages: Theory and Practice, Jun 2019, Vancouver, Canada. �hal-02150179�

https://hal.science/hal-02150179v1
https://hal.archives-ouvertes.fr

Submitted to:
SOS 2007

c© François Thiré
This work is licensed under the
Creative Commons Attribution License.

Cumulative Types Systems and Levels

François Thiré
INRIA Saclay

LSV, CNRS
ENS Paris-Saclay.

Cachan, France
francois.thire@inria.fr

Cumulative Typed Systems (CTS), extend Pure Type Systems with a subtyping relation on
universes. We introduce LCTS, a CTS enriched with a notion of level. LCTS has subject re-
duction (reduction preserves types) but lacks a strong reduction property that levels are also
preserved. We show that this strong subject reduction property implies two famous conjectures
on CTS: Expansion postponement and the equivalence between explicit and implicit conver-
sion. The former is an open conjecture in the general case for PTS/CTS. The latter has been
proved by Siles [5] for PTS only and is still a conjecture for CTS. We rephrase this notion
of level using a well-founded order on derivation trees. We show that the existence of such
well-founded order implies a type system with the strong subject reduction property. Hence,
these two conjectures is a direct consequence of the existence of such well-founded order. Yet,
it is not known if such well-founded order exists in general.

1 Introduction

Cumulative Type Systems (CTS) are an extension of Pure Type Systems (PTS) [2] that were in-
troduced by Bruno Barras [3]. This family of type systems extends PTS with an implicit subtyping
relation on universes. Many systems that we find today can be seen as an extension of CTS: Agda,
Coq, Lean or even systems of the HOL-family. Hence, a lot of properties on real systems can be
derived from CTS.

While working on an explicit version of subtyping in CTS, extending Ali Assaf’s work [1], we
stumbled across a well-foundedness issue. Investigating this issue led to two famous conjectures
already formulated on CTS. (1) Expansion postponement (EP) states that expansion β steps (right
to left steps) can always be postponed at the end of type checking. (2) The equivalence between
explicit and implicit conversion (EIE) states that the premise t≡β t ′ in the conversion rule can be
transformed into a complete judgment with a derivation tree and is not purely a computation. While
the latter implies the correction of our encoding, we discovered that assigning levels to derivation
trees would be a generic solution to solve all these conjectures.

In Section 2, we introduce Layered-CTS (LCTS), an equivalent version of CTS where an
ordered set is introduced to refine the typing relation with levels. Roughly speaking, levels measure
the complexity of a derivation tree. While this system has the subject reduction property, we are
interested in a stronger notion of subject reduction where levels cannot increase through reductions

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Cumulative Types Systems and levels

Sorts s ∈ S
Terms M,N,A,B ∈ T ::= x | s |M N | λx :A.M | (x :A)→ B

Contexts Γ ∈ G ::= ∅ | Γ,x : A

Figure 1: CTS syntax

A≡β B

A�C B
�≡β

(s,s′) ∈ CC
s�C s′

�C
B�C B′

(x :A)→ B�C (x :A)→ B′
�Π

A�C B B�CC

A�CC
�tr

Figure 2: LCTS subtyping relation

(SSR) . We show in Section 3 that this property implies EP and EIE. In Section 4 we give sufficient
conditions to ensure SSR. We show that finding appropriate levels for LCTS to satisfy SSR is the
same as finding a valid order � on derivation trees which remains today an open conjecture in the
general case.

2 Layered-CTS

LCTS are parameterized by a specification that we will denote C . A LCTS specification is a
5-tuple C = (S,A,R,C,O where: 1. S is a set of constants called sorts, 2. A ⊆ S ×S is a
relation called axioms, 3. R ⊆ S ×S ×S is a relation called rules, 4. C ⊆ S ×S is a relation
called cumulativity, 5. O is a well-founded total ordered set. The syntax of LCTS is introduced
in Fig. 1. It is shared for all specifications except for sorts. The typing system is introduced in
Fig. 2 and Fig 3. They use the same rules as the usual CTS but judgments are indexed by a level
o ∈ O. When the level o is omitted, it means we are using the usual system and O is removed
from the specification which is denoted by C−. We use D to refer to the type of derivation trees
for LCTS. The LCTS system has been crafted so that if Γ `o1

C t : A, and A is not a sort, then
we can derive Γ `o2

C A : s with o2 <O o1. The example below will be instantiated for the case
of the Calculus Of Constructions with ? : � and the four usual products on them [2]. We will
instantiate OC with N in our example. At the base layer n = 0, only types without variables can be
derived: `0

C ? : � : or `0
C ?→ ? : �. At level 1, types with free variables can be introduced such as

`1
C (A :?)→ A→ A : ?. At level 2, one can derive the polymorphic identity function for example:
`2

C λA :?.λx :A.x : (A :?)→ A→ A. At level 3, one can derive types using terms derivable at level

François Thiré 3

o ∈ OC

∅ `o
C wf

C wf
∅

Γ `o
C A : s x 6∈ Γ

Γ,x : A `o
C wf

C wf
var

Γ `o1
C wf (x : A) ∈ Γ o1 <O o2

Γ `o2
C x : A

Cvar

Γ `o
C wf (s1,s2) ∈ A

Γ `o
C s1 : s2

Csort

Γ `o1
C A : s1 Γ,x : A `o2

C B : s2 (s1,s2,s3) ∈R o1 ≤O o3∧o2 ≤O o3

Γ `o3
C (x :A)→ B : s3

CΠ

Γ,x : A `o1
C M : B Γ `o2

C (x :A)→ B : s o1 ≤O o3∧o2 <O o3

Γ `o3
C λx :A.M : (x :A)→ B

Cλ

Γ `o1
C M : (x :A)→ B Γ `o2

C N : A o1 ≤O o3∧o2 ≤O o3

Γ `o3
C M N : B{x← N}

Capp

Γ `o1
C M : A Γ `o2

C B : s A�C B o1 ≤O o3∧o2 <O o3

Γ `o3
C M : B

C�

Γ `o1
C M : A A�C s o1 ≤O o2

Γ `o2
C M : s

C s
�

Figure 3: Typing rules for LCTS

4 Cumulative Types Systems and levels

2 but also one can derive terms with types derivable at level 2, and so on... The main purpose of
levels is to handle spurious type derivations as shown below.

Example 1 While there is a trivial derivation of `0
C ? : �, there is another derivation of this fact:

`2
C ? : � `1

C (λx :�.�) ? : � �≡β (λx :�.�) ?

`2
C ? : (λx :�.�) ? (λx :�.�) ?≡β�

`2
C ? : �

One might check that `1
C (λx :�.�) ? : � is indeed derivable if � has a sort. Levels make a

distinction between the two derivations, and at level 0, we can guarantee that there is no such
spurious derivation.

Before going on to the equivalence theorem, we state the following lemma:

Lemma 2.1 (LCTS-sub-ht) If Γ `o1
C t : A, then for all o2 such that o1 ≤O o2 we have Γ `o2

C t : A.

Proof By induction on the derivation of Γ `o1
C t : A.

Theorem 2.2 (CTS and LCTS are equivalent) ∀C−,Γ, t,A,(Γ`C− t : A⇔∃n,Γ`n
C t : A) where

C = (C−,N).

Proof The right-to-left implication is trivial since levels are just a restriction. For the left-to-right
implication. The proof is by induction on the derivation. We give here the proof for the Cλ

Γ,x : A `o1
C M : B Γ `o2

C (x :A)→ B : s o1 ≤O o3∧o2 <O o3

Γ `o3
C λx :A.M : (x :A)→ B

Cλ ↑

case: By
inversion we have Γ,x : A `C− M : B and Γ `C− (x :A)→ B : s. By induction hypothesis, there exists
m1 and m2 such that Γ,x : A `m1

C M : B and Γ `m2
C (x :A)→ B : s. Using Lemma

If Γ `o1
C t : A, then for all o2 such that o1 ≤O o2 we have Γ `o2

C t : A.
2.1 (LCTS-sub-ht)

we have Γ,x : A `max(m1,m2)+1
C M : B and Γ `max(m1,m2)

C (x :A)→ B : s. Hence, one can conclude with
n = max(m1,m2) using the rule Cλ

Γ,x : A `o1
C M : B Γ `o2

C (x :A)→ B : s o1 ≤O o3∧o2 <O o3

Γ `o3
C λx :A.M : (x :A)→ B

Cλ ↑

. All the other cases are similar.

The proof above works also for any total and well-founded ordered which includes natural
numbers:

Corollary 2.3 The existence of a monotonic function from N toOC implies ∀C−,Γ, t,A,(Γ `C− t :
A⇔∃o,Γ `o

C t : A).

This equivalence property gives us all the good properties that we know on CTS, including
subject reduction stated as follows:

Lemma 2.4 (LCTS-subject-reduction) If there exists a monotonic function from N to OC ,
Γ `o1

C t : A and t ↪→β t ′ then there exists o2 such that Γ `o2
C t ′ : A.

However, this theorem does not connect o1 with o2. Instead, we are interested in a stronger
property called strong subject reduction.

Definition 2.1 (Stability) A judgment Γ `o
C t : A is stable if for all t ′ such that t ↪→∗

β
t ′ we have

Γ `o
C t ′ : A.

François Thiré 5

Definition 2.2 (Strong Subject Reduction) Given a derivation Π of the judgment Γ `o
C t : A, we

define SSR(Π) as: Γ `o
C t : A is stable and all its subtrees are also stable. We define SSR as: For

all derivations Π of the judgment Γ `o
C t : A, there exists Π′ a derivation of Γ `o′

C t : A such that
SSR(Π′).

It is not known if SSR is true for LCTS. One can check that levels assigned by Theorem 2.2
do not work because in the context Γ = Nat : ?,Vec : Nat→ ?, l : (x :Nat)→ Vec x and assuming
we have a proof that Γ `3

C 3 : Nat, one can check that Γ `3
C (λx :Nat. l x) 3 : (x :Nat)→ Vec x but

it reduces to Γ `4
C l 3 : Vec 3, and hence the derivation is not stable at level 3.

3 Strong subject reduction

In this section, we detail how the strong subject reduction property (SSR) can be used to derive the
two following conjectures: Expansion postponement (EP) and the equivalence between explicit
and implicit conversion (EIE).

3.1 Expansion postponement

EP is a strong property which states that it suffices to orient ≡β during type checking, using first
only ↪→β and then only←↩β .

Definition 3.1 (Expansion postponement) Given a derivation Π of the judgment Γ `o
C t : A, we

define EP(Π) as: there exists A′ with A ↪→∗
β

A′ such that Γ `o
C r t : A′ where we use the notation

Γ `o
C r t : A to denote the typing system where the rules C�

Γ `o1
C M : A Γ `o2

C B : s A�C B o1 ≤O o3∧o2 <O o3

Γ `o3
C M : B

C� ↑

and C s
�

Γ `o1
C M : A A�C s o1 ≤O o2

Γ `o2
C M : s

C s
� ↑

are restricted to ↪→∗
β

instead of
≡β . We define EP as: For all derivations Π of the judgment Γ `o

C t : A, there exists Π′ a derivation
of Γ `o′

C t : A such that EP(Π′).

Lemma 3.1 For all Π then SSR(Π) implies EP(Π).

Proof The proof of this theorem can be done in LCTS using SSR as hypothesis and is done by
induction on the level. The case where o is a minimal element is trivial since there is no variable
in play. Assuming expansion postponement at level o′, o′ <O o, one may prove expansion post-
ponement at level o. This is done by induction on the derivation. We detail the proof for Cλ

Γ,x : A `o1
C M : B Γ `o2

C (x :A)→ B : s o1 ≤O o3∧o2 <O o3

Γ `o3
C λx :A.M : (x :A)→ B

Cλ ↑

.
By induction hypothesis, we have Γ,x : A `o1

C r M : B′ with o1 ≤O o and B ↪→∗
β

B′. By induction
hypothesis, we also have Γ `o2

C r (x :A)→ B : s with o2 <O o. By equivalence (at level o2), we have
Γ `o2

C (x :A)→ B : s. By SSR we have Γ `o2
C (x :A)→ B′ : s. Using expansion postponement at

level o2 we get Γ `o2
C r (x :A)→ B′ : s which allows us to conclude that Γ `o

C λx :A. t : (x :A)→ B′

with Cλ

Γ,x : A `o1
C M : B Γ `o2

C (x :A)→ B : s o1 ≤O o3∧o2 <O o3

Γ `o3
C λx :A.M : (x :A)→ B

Cλ ↑

since (x :A)→ B ↪→∗
β
(x :A)→ B′. The other cases are trivial.

Theorem 3.2 SSR implies EP

Proof By definition of SSR, applying Lemma 3.1.

6 Cumulative Types Systems and levels

3.2 Explicit conversion

In the classical setting, β conversion is purely computational. But one can wonder if this system
is equivalent to a typed version which uses a judgment Γ `o

Ce
A≡β B : s meaning that A and B are

convertible, both of type s. Rules defining Γ `o
Ce

A≡β B : s and Γ `o
Ce

t : A are not written here. We
refer to Siles PhD Thesis [5] for a detailed definition for PTS. His rules extend easily for CTS.
Definition 3.2 (Equivalence between explicit and implicit version) Given a derivation Π of the
judgment Γ `o

C t : A, we define EIE(Π) as: Γ `o
C t : A if and only if Γ `o

Ce
t : A. The equivalence

between the explicit and implicit version (EIE) is defined as: For all derivations Π of the judgment
Γ `o

C t : A, there exists Π′ a derivation of Γ `o′
C t : A such that EIE(Π′).

At first, it seems trivial via subject reduction that this system is equivalent to the classical setting.
But the devil is in the details... As mentioned by Siles in [5], the difficult case to prove is the
conversion rule C�

Γ `o1
C M : A Γ `o2

C B : s A�C B o1 ≤O o3∧o2 <O o3

Γ `o3
C M : B

C� ↑

restricted here with only β conversion for simplicity:

Γ `o1
C M : A Γ `o2

C B : s A≡β B o1 ≤O o3∧2 <O o3

Γ `o3
C M : B

C�

To conclude the equivalence, we need subject reduction for the explicit version. However,
proving subject reduction in this version is difficult, especially because the injectivity of products
is not free anymore since now β is typed. To overcome this issue, we can process as we did for EP
and prove the equivalence by induction on the level. In the following, let L(Π) denotes the level of
the derivation Π and Io the proposition: ∀Π′,L(Π′)< o⇒ SSR(Π′)⇒ EIE(Π′).
Lemma 3.3 If Π is a derivation of Γ `o

C t : A such that SSR(Π) and IL(Π), then for all t ′ such that
t ↪→β t ′ we have Γ `o

Ce
t≡β t ′ : A.

Proof By induction on t ↪→β t ′. The proof is almost the same as a proof of subject reduction
for CTS or LCTS except for injectivity of products. Proving subject reduction at level o needs
injectivity of products for types at level o′ <O o for the explicit system. We can use our equivalence
hypothesis to get back to the implicit system. Then we use SSR to derive injectivity of products at
level o′. We reuse our equivalence to derive injectivity of product in the explicit system.

Lemma 3.4 For all Π then SSR(Π) and IL(Π) implies EIE(Π).

Proof The right to left implication is easy to prove since we simply remove all the convertibility
trees. The left to right implication is proved by induction on the derivation Π. The interesting case
is C�

Γ `o1
C M : A Γ `o2

C B : s A�C B o1 ≤O o3∧o2 <O o3

Γ `o3
C M : B

C� ↑

. We would like to derive the judgment Γ `max(o1,o2)
Ce

A≡β B : s from A≡β B where Γ `o1
C A : s

and Γ `o2
C B : s. We use Lemma 3.3 and conclude thanks to the transitivity of ≡. The case C s

�

Γ `o1
C M : A A�C s o1 ≤O o2

Γ `o2
C M : s

C s
� ↑

is
similar and all the other cases are proved using the induction hypothesis.

Lemma 3.5 For all Π then SSR(Π) implies EIE(Π).

Proof This proof is done by induction on the L(Π). The base case is trivial, the induction case is
handled by Lemma 3.4.

Theorem 3.6 SSR implies EIE

Proof By definition of SSR, applying Lemma 3.5.

François Thiré 7

4 Sufficient conditions to ensure Strong subject reduction

As we saw in Section 2, we were unable to prove the strong subject reduction property (SSR). The
purpose of this section is to settle the problem differently by introducing an order � on derivation
trees. As shown in example 1, this order cannot work directly on judgments, and instead has to
be formulated on trees. This implies to have a constructive proof of subject reduction which maps
derivation trees to derivation trees. The same applies for the well-sorted property which states that
every type is well-sorted.

Definition 4.1 Let be SR : D →T →D a function such that:

SR

Π

Γ `C− t : A
, t ′

=

Π
′

Γ `C− t ′ : A
if t ↪→β t ′

We denote by ΠSR the tree computed by SR.

Definition 4.2 Let be WS : D →D a partial function such that

WS

Π

Γ `C− t : A

=

Π
′

Γ `C− A : s

We denote by ΠWS the tree computed by WS. Notice that this function is total if all sorts have a
type.

Notation 1 Π.Π′ denotes the fact that Π′ is a subtree of Π.

With these definitions, we can now give a proper definition for validity conditions of �.

Definition 4.3 A well-founded order� on derivation trees and two functions SR and WS are valid
if the following properties are satisfied:

1. For all Π and Π′ such that Π.Π′ then

Π

Γ `C− t : A
�

Π
′

Γ
′ `C− u : B

2. For all Π and if t ↪→β t ′ then

Π

Γ `C− t : A
�

ΠSR

Γ `C− t ′ : A

8 Cumulative Types Systems and levels

3. For all Π then either A = s or

Π

Γ `C− t : A
�

Πws

Γ `C− A : s

In practice, the usual subject reduction lemma, and the well-sorted lemma give us two functions
that can be used for �, but of course, other functions that could fit in this picture.

Theorem 4.1 Given a specification C− and a valid order �, there exists a well-founded total
ordered set O such that C = (C−,O) which satisfies SSR.

Proof The idea is to use� to give concretes levels to LCTS. The proof is by induction on the tree.
We sketch the Cλ

Γ,x : A `o1
C M : B Γ `o2

C (x :A)→ B : s o1 ≤O o3∧o2 <O o3

Γ `o3
C λx :A.M : (x :A)→ B

Cλ ↑

case here. By induction hypothesis, there exists o1,o2 such that Γ,x : A `o1
C t : B

and Γ `o2
C (x :A)→ B : s. The level we use for λx :A. t can be o1 using the first condition. And

hence, we have Γ `o1
C λx :A. t : (x :A)→ B. By validity of � using the third condition, we have

o1 > o2. SSR is a direct consequence of the second property.

This proof tells us that finding appropriate level for LCTS which ensure SSR can be reduced
to find a valid order � which we recall at that time is still an open conjecture for the general case.

However, we can wonder if such valid order exists at all. So far, we were able to apply these
results for some specifications without dependent types. This is the case for example for the system
Fω with cumulativity ((?,�) ∈ CFω

) for which we can prove SSR. The reason why it works for
Fω is because we can assign a level to a type which cannot grow through reductions since types
are not dependent. Also, we have checked that in the Girard’s system U −, the non-terminating
provided by Hurkens paradox does not terminate, its level (with OU − = N) is stable at level 3.

5 Conclusion

In this paper, we have introduced a notion of level which aims to classify terms. We have first
introduced a new type system LCTS which is equivalent to CTS. We defined the strong subject
reduction property SSR and proved how this property implies EP and EIE for LCTS and hence for
CTS too. Then, we have introduced sufficient conditions an order� should satisfy to ensure SSR.

It is not clear at all if such valid order could exist for all CTS specifications. But we have
found some CTS specifications such as Fω with cumulativity for which such order exists. Further
investigations on loop combinators or fixed-point combinators [4] could be done on LCTS to see
whether the level of these terms increases infinitely often. Finally, one can also wonder about the
converse implications which today are still conjectures:

• Does EP implies SSR for LCTS?

• Does EIE implies SSR for LCTS?

François Thiré 9

References
[1] Ali Assaf (2015): A framework for defining computational higher-order logics. (Un cadre de définition

de logiques calculatoires d’ordre supérieur). Ph.D. thesis, École Polytechnique, Palaiseau, France.
Available at https://tel.archives-ouvertes.fr/tel-01235303.

[2] H. P. Barendregt (1992): Handbook of Logic in Computer Science (Vol. 2). Oxford University Press,
Inc., New York, NY, USA. Available at http://dl.acm.org/citation.cfm?id=162552.162561.

[3] B. Barras (1999): Auto-validation d’un système de preuves avec familles inductives. Thèse de doctorat,
Université Paris 7.

[4] Thierry Coquand & Hugo Herbelin (1994): A - Translation and Looping Combinators in Pure Type
Systems. J. Funct. Program. 4(1), pp. 77–88, doi:10.1017/S0956796800000952. Available at https:
//doi.org/10.1017/S0956796800000952.

[5] Vincent Siles (2010): Investigation on the typing of equality in type systems. (Etude sur le typage de
l’égalité dans les systèmes de types). Ph.D. thesis, École Polytechnique, Palaiseau, France. Available at
https://tel.archives-ouvertes.fr/pastel-00556578.

https://tel.archives-ouvertes.fr/tel-01235303
http://dl.acm.org/citation.cfm?id=162552.162561
http://dx.doi.org/10.1017/S0956796800000952
https://doi.org/10.1017/S0956796800000952
https://doi.org/10.1017/S0956796800000952
https://tel.archives-ouvertes.fr/pastel-00556578

	Introduction
	Layered-CTS
	Strong subject reduction
	Expansion postponement
	Explicit conversion

	Sufficient conditions to ensure Strong subject reduction
	Conclusion

