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The behavior of heterogeneous materials (e.g. composite, polycrystalline) is one of the most challenging subjects
for researchers. Imaging techniques based on X-ray tomography permit one to obtain the inner structure of these
materials. To account for such detailed information and understand the material behavior, the use of tomo-
graphic images as an input for numerical simulations is becoming more and more common. The main difficulty is
the computational cost, mesh generation in the context of finite element simulations and the large discontinuities
of the material properties, which can lead to divergence. The subject of this paper is to resolve these problems
and understand the behavior of a material with high heterogeneity. The application of a MultiGrid method
coupled with homogenization technique is proposed. The MultiGrid method is a well known method to increase
convergence speed. The homogenization technique is applied to compute the coarse grid operators of the
MultiGrid process. The combination of the two methods can efficiently deal with large property variations.
Hybrid MPI/OpenMP parallel computing is used to save computational time. The influence of material het-
erogeneity is analyzed as well as the ratio of material properties for the thermal conduction. The effective
thermal conductivity of material is illustrated.

1. Introduction

The use of composite materials in many industrial fields has become
more and more wide spread during the last decade. It is well known
that many composite materials exhibit an excellent mechanical beha-
vior. However, due to the complex structures and variable components
of composite materials, it is not simple to understand their properties,
which limits the application of these materials. Traditional experiments
permit to globally characterize some of their properties. Nevertheless, it
can just reduce this problem but not solve it fully. The characterization
of the thermal properties of a composite material is an example.

Homogenization techniques have been developed to obtain effective
thermal and mechanical properties of heterogeneous materials
[8,26,14]. The limitation of this method is that except for periodic
materials, for which (under periodic boundary conditions) the predic-
tion is robust, only upper and lower bounds of the effective properties
can be obtained. For instance, for materials with high heterogeneity or
with an irregular structure, this method has a poor performance. More
importantly, the manufacturing process can neither ensure a defect-free
material nor an exact geometry of the phases e.g. cast iron. In addition,

many materials, e.g. polycrystalline materials, have an intricate struc-
ture. To sum up, one needs the real inner structure of the material to
understand its behavior.

Fortunately, imaging techniques based on X-ray tomography show
the inner structure of materials [13]. With these details, one can better
understand the material behavior. Motivated by the secret of the ma-
terial behavior, e.g. mechanical and thermal properties, using real to-
mographic images as an input to perform numerical simulations is
under development. Much work has been devoted to this subject. The
work of Lengsfeld et al. [19] and Bessho et al. [2] presented the nu-
merical simulation of bone tomography. They studied mechanical
problems e.g. hip fractures of the human femur, using Finite Element
Methods (FEM). Ferrant et al. [11], Michailidis et al. [20] and
Proudhon et al. [23] also applied FEM simulations to tomographic
images of industrial materials to analyze their properties. As we saw
previously, FEM is widely used for this kind of simulations. Never-
theless, the mesh generation of FEM needs human intervention, which
is time consuming. The work of Gu et al. [15] that introduced a 3D
simulation of the elastic behavior of a laminated composite material,
proposed to use a Finite Difference Method (FDM), to take one voxel per
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grid to avoid heavy human work in the meshing step, and to use the
MultiGrid (MG) method to accelerate the convergence speed. Besides
numerical simulation, for instance, another choice to understand the
material behavior, is to use tomographic techniques during the ex-
periment. e.g. the work of [25] studied the heat conductivity for ma-
terials with complex structures. However, to experimentally measure
the heat conductivity of materials is still difficult, especially, for ma-
terials with a complicated structure. e.g. composite materials. It is still a
challenge due to several kinds of problems e.g. thermal diffusion,
thermal expansion during the experiment, material anisotropy.

Motivated by these practical considerations, the development of a
standard process to obtain the effective thermal conductivity of het-
erogeneous materials received considerable attention. This work takes
the tomographic image as an input to a thermal conduction simulation
to study the material thermal behavior and to obtain its effective con-
ductivity.

The remainder of this paper is organized as follows. Section 2 re-
views the background, equations and some fundamentals of FEM.
Section 3 presents the strategy for an efficient large scale simulation;
Matrix Free FEM, MG method, homogenization techniques and parallel
computing are illustrated in this section. Applications and results of this
work are described in Section 4. A discussion and conclusion section is
provided in Section 5.

2. Problem statement

2.1. Governing equations

Thermal conduction can be treated by a heat equation according to
the first law of thermodynamics (i.e. conservation of energy):

∂
∂ − ∇ ∇ =αρc
T

t
T q·( ) ̇p v (1)

where:

• ρ is mass density of material

• cp is specific heat capacity

• T is temperature

• t is time

• ∇ denotes the gradient operator

• α is the thermal conduction coefficient which is a second order
tensor

• qv̇ is the volumetric heat source.

Since the focus of this work is thermal conductivity, it is considered
that there is no extra source and the thermal field does not depend on
time. The heat Eq. 1 becomes a typical Poisson equation:

∇ ∇ = ∇ =α αT div T·( ) ( ) 0 (2)

The tomographic images used in this study are cubic ∈ RΩ 3. Two
kinds of boundary conditions are applied on ∂Ω as illustrated in Fig. 1:

• Dirichlet boundary condition (i.e. prescribed temperature) on Γ1 and
Γ2

• Neumann boundary condition (i.e. prescribed heat flux) on the other
four surfaces.

which can be written as Eq. 3:

⎧
⎨⎩

=
=

∇ =α

T T

T T

T n 0

on Γ

on Γ

· on the other surfaces

0 1

1 2

(3)

2.2. Finite element discretization

FEM is one of the most common methods to discretize Ω and solve

the governing equations. However, the images representing the inner
structure of the material have a very complex shape. The use of stan-
dard meshes conforming to the phase geometry, requires much human
work, as mentioned before and stated in the work of many researchers,
e.g. Lengsfeld et al. [19], Bessho et al. [2], Ferrant et al. [11], Michai-
lidis et al. [20], Proudhon et al. [23] and Nguyen et al. [21]. The
strategy to use one node per voxel in the image has been chosen to
avoid this difficulty. That means to assign the material property in each
voxel on each elementary node. As the domain Ω is cubic and each
voxel is cubic, 8-node cubic elements are chosen to discretize Ω.

Multiplying Eq. (2) with a test function and integrating over Ω, one
obtains:

∫ − ∇ =αdiv T φ d( ) Ω 0
Ω (4)

where φ is the test function.
Applying integration by parts, the formula reads:

∫ ∫− ∇ → + ∇ ∇ =∂ α αT n φdS T φd· · Ω 0
Ω Ω (5)

where − ∇ →
α T n· is the heat flux in the outward normal direction→n on

the boundary. Eq. 5 can be summarized as:

∫ ∫∇ → = ∇ ∇∂ α αT n φdS T φd· · Ω
Ω Ω (6)

Employing finite element discretization, one gets:

∑→ ≈ → =
=

T T Tφh

i

N

i i

1 (7)

where
→ = …T T T T{ , , , }h n1 2 is an approximate solution of T N, denotes the

number of unknowns and φi is the shape functions of 8-node cubic
elements, which is the same as the test function.

Finally, Eq. (6) can be written as:

∫ ∫∑ ∑∇ ∇ = ∇ →
= = ∂α αT φ φ d T φ n φ dS· Ω ( )·
i

N

i i j

i

N

i i j

1
Ω

1
Ω (8)

After using Gauss integration on the integral above, α used in the
FEM equation becomes the conductivity in each Gauss integration point
αg. It is obtained by the interpolation with shape functions, and, de-
scribed as:

∑=
=

α α φ·g

s

s s g

1

8

,
(9)

where s denotes the shape function assigned with each elementary
node, φs g, the value of shape functions at Gauss integration points and αs
elementary node conductivity.

From Eq. (8), one obtains a system of equations:

→ =→T fL h (10)

where L is a matrix which is often referred to as the stiffness matrix,
→
Th

Fig. 1. Boundary conditions applied on ∂Ω.
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is a vector containing all unknowns (temperature at each node) and
→
f

is the right hand side vector.
The aim is to solve Eq. (10) to obtain the unknowns Ti.

3. Implementation

3.1. Iterative solution

The best known solution algorithms for Eq. (10) are direct solvers
and iterative solvers. For the direct solver, one has to assemble the
stiffness matrix, which requires a large memory. The largest image that
will be computed in this application is an image containing

× ×2049 2049 2049 voxels, which means that the number of elements is
20483 (i.e. more than eight billion elements). Supposing one uses cubic
elements with 8 Gauss integration points, the size of global sparse
matrix is × × × × ≈2049 2049 2049 27 8bytes 1.69TB. It is impossible to
have such a huge memory space available on a normal computer. The
size of the stiffness matrix does not allow one to assemble the whole
matrix. It forces one to use an iterative solver without assembling the
stiffness matrix, which is often called the Matrix Free Finite Element
Method (MF-FEM). The work of Carey and Jiang [7] invented MF-FEM.
For instance, this method is developed and widely used, especially, for
parallel computing (see e.g. Tezduyar et al. [28]). Flaig and Arbenz [12]
also developed a matrix-free MultiGrid solver for tomographic image
simulation. In this work, one proposes to use a MF-FEM with the di-
agonal value of the stiffness matrix to accelerate the convergence rate.

3.2. MultiGrid and homogenization

The iterative single level Jacobi solver applied previously can
quickly decrease the high frequency components of the error, but for
low frequency errors, it does a poor job. The convergence speed di-
minishes rapidly as presented in Fig. 5a.

It is well know that the MG method is one of the most efficient ways
to increase the convergence rate. The idea of MG is to construct several
levels or grids. Then, iterative relaxations are carried out at each level,
high-frequency errors can be eliminated on fine grids and low-fre-
quency errors can be eliminated on coarse grids (e.g. work of [5,6]).
With this method, one can solve the slowness problem of single level
Jacobi relaxation due to the presence of low-frequency errors. The work
of Biboulet et al. [3] shows the efficiency of using a MG method on the
FEM. However, they assembled the stiffness matrix which, is very ex-
pensive for large scale problems.

Nevertheless, a standard MG method is not adapted for problems
with high heterogeneity. It has a very poor convergence performance,
when large variations of the material properties are to be considered, or
rather, high temperature gradients on coarse grids are involved. These
variations make the linear prolongation and restriction operators al-
most ineffective. However, the material property on a coarse grid is
unknown and it is should be chosen to avoid the poor performance of
classical coarse grid and inter-grid operators.

To resolve these problems, one needs new coarse grid operators,
prolongation operators and restriction operators. Several researchers
have investigated this problem, such as the work of Alcouffe et al. [1]
for 2D, Hoekema et al. [17] for 3D, Engquist and Luo [9] and Engquist
and Luo [10]. These researchers proposed several methods to alleviate
the poor convergence of the standard MG method. But the problem is
that the implementation of these ideas is not simple. The computational
time and memory cost are the two other limitations. Based on the work
of Alcouffe et al. [1] and Sviercoski et al. [27], some new operators for
the MG method are proposed in this paper.

Sviercoski et al. [27] proposed to use a Cardwell and Parsons (CP)
bounds type homogenization to get the analytical coarse grid operator.
The idea is to compute the upper and lower CP bounds of the material
property on each coarse grid from the finest grid. After that, the average

of the arithmetic and geometric averages of the CP bounds, is supposed
to be the effective property on each coarse grid. With this strategy, one
can obtain the diagonal components of the material property tensor,
which is already sufficient for isotropic materials. For anisotropic ma-
terials, they proposed a method to calculate the off-diagonal compo-
nents of the property tensor. With the effective material property
tensor, the coarse grid operator on each level can be easily obtained by
the equation below:

∫= ∇ ∇αL ϕ ϕ d¯ ΩH i
H H

j
H

Ω (11)

where, ϕi
H and ϕj

H are test functions on each coarse grid, ᾱH is the
effective material property tensor of coarse grid.

The weak point of Sviercoski et al. [27] is that, the CP bounds on
each coarse gird has to be computed from the finest grid. It requires too
much computational time when using many grids. Therefore, one
proposes to use different homogenization bounds which can be com-
puted level by level.

Among different homogenization methods, the Voigt approximation
is one of the best-known methods. In addition, it can be computed re-
cursively. It is also referred to as the arithmetic mean:

∑
= =

=

α

α

N
xx
HV k

k N

xx
h

h
1

h

(12)

where αxx
HV is the diagonal component of αHV which is the average

obtained by Voigt homogenization on coarse grid −l α1, xx
h is the di-

agonal component of αh which is the material property on the fine grid
l, =x N1, 2, 3, h is the number of nodes on level l, which has the same
volume as one element on level −l 1.

Another approximation often used is the Reuss approximation.
Equally, it can be obtained recursively, It is also known as the harmonic
mean:

∑
=

=

=
−

α
N

α

xx
HR

h

k

k N

xx
h

1

1

h

(13)

where αxx
HR is the diagonal component of αHR which is the average ob-

tained by Reuss homogenization at the grid −l 1.
Instead of the CP bounds, the Voigt-Reuss (VR) bounds are used in

this work. Thus the effective material property tensor can be obtained
recursively. The assumption is that the effective value lies within the
arithmetic and geometric averages of the VR bounds.

Definition: The effective material property tensor ᾱH is the average
of the arithmetic and the geometric average of the VR bounds. Which is
presented as:

= +α α α
1

2
( )xx

H
xx
a

xx
g

(14)

where, αxx
H is the diagonal component of α α¯ ,H

xx
a is the diagonal value of

the arithmetic average of the VR bounds which is defined as:
= +α α α α( ),xx

a
xx
HR

xx
HV

xx
g1

2
is the diagonal value of the geometric average

of the VR bounds which, is defined as: =α α α·xx
g

xx
HR

xx
HV .

The material used in this work is supposed to be isotropic, off-di-
agonal values of ᾱH are zero. The strategy to obtain the off-diagonal
components is therefore not presented in this work.

An analysis of different homogenization methods (e.g. Voigt, Reuss,
Hashin-Shtrikman, Self-Consistent) has been performed, to confirm the
strategy used in this work. The idea is to compute the effective thermal
conductivity for a cubic structure, in which there is a spherical inclu-
sion.

• The conductivity of the sphere is 100W· −m ·1 −K 1, 1W· −m ·1 −K 1 for the
other part of the cube

• The edge length of the cube is 1m
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• The radius of the sphere is between 0m and 0.4m

Fig. 2 illustrates the evaluation of the effective conductivity ob-
tained by different homogenization methods, when the sphere radius
varies. The effective property obtained by the VR bounds lies between
the Hashin–Shtrikman bounds. It confirms that the method used in this
work is robust and efficient.

Besides the coarse grid operators, prolongation and restriction op-
erators also need special treatment. The relation between the restriction
operators (i.e.R) and the prolongation operators (i.e.P) is:

=P RT (15)

The work of Boffy and Venner [4] presents the principle to derive P and
R. The point is to consider the material discontinuities. The prolonga-
tion process will be briefly presented in this paper.

As illustrated in Fig. 3, the big box with solid edges represents one
element on the coarse grid −l 1, and, the eight small boxes with dotted
edges are the eight elements on the fine grid l. The temperature at each
“black” node (e.g.A A1, 2) of coarse grid is known. The goal is to obtain
the temperature at all the 27 nodes of the fine grid. For the temperature
at the eight “black” nodes of the fine grid coinciding with the ones on
the coarse grid, one does an injection, which means:

= −T TA
l

A
l

1 1
1 (16)

For the other nodes, instead of the linear prolongation of the stan-
dard MG method, the nodal material property is taken into account. It

reads as follows.
For the “red” nodes (Fig. 3) located at the center of the link between

two coarse grid nodes (e.g. node B1):

= +
+

− −
T

α T α T

α α
B
l A A

l
A A

l

A A
1

1 1
1

2 2
1

1 2 (17)

For the “blue” nodes which, are located at the center of each face of
the big box (e.g. node C1):

= + + +
+ + +T

α T α T α T α T

α α α α
C
l B B

l
B B

l
B B

l
B B

l

B B B B
1

1 1 2 2 3 3 4 4

1 2 3 4 (18)

For the “yellow” center node of the big box (e.g. node O):

= + + + + +
+ + + + +T

α T α T α T α T α T α T

α α α α α α
O
l C C

l
C C

l
C C

l
C C

l
C C

l
C C

l

C C C C C C

1 1 2 2 3 3 4 4 5 5 6 6

1 2 3 4 5 6 (19)

With this strategy, the material property at each node weighs its
contribution for the prolongation. It is obvious that, if α is constant, it
becomes the linear prolongation of the standard MG method.

Finally, the application of the V-cycles MG method coupled with
homogenization technique can be illustrated by the following steps:

1. Compute Voigt and Reuss approximations on each level, re-
spectively; obtain the effective material properties ᾱH for all le-
vels besides the finest level which, has the real material proper-
ties.

2. Carry out relaxations with the Jacobi solver on level l.
3. Transfer the temperature and restrict the residual to level

−l 1 and perform relaxations on this level.
4. Repeat steps 2, 3, 4 from the finest grid to the coarsest grid

=l 1.
5. Prolong the correction to the level +l 1 and relax on this

level.
6. Repeat step 5 until the finest level.
7. Loop step 2, 3, 4, 5, 6 until obtaining the required residual.
8. Output results.

To have a better performance, instead of using only V-Cycles, the
full MultiGrid (FMG) cycles are used in this work. Comparing to one V-
Cycle, one FMG cycle need more relaxations on coarse grids. However,
the computational cost on coarse grid is negligible compared to fine
grid. Further, FMG cycles provide for a good initialization solution on
the finest level, the number of relaxations on the finest gird is thus
lower than that of V-Cycles. The scheme of FMG cycles for 3 levels is
illustrated in Fig. 4. For all of the applications in this work, one starts
always by a × ×4 4 4 grid on level 1. The size of grids for level +l 1 is
two times smaller than that of level l, e.g. for a problem of 20483 ele-
ments, one has 10 levels. ν0 is the number of relaxations performed on
level 1, ν1 is the number of relaxations performed on each level going
up. ν2 is the number of relaxations performed on each level going down.
For this FMG cycles, one uses ncy V-Cycles on each level. For the initial
solution of each fine level +l 1, one does a bi-linear interpolation of the
solution of level l.

Fig. 2. Different homogenization methods. +VR : VR upper bound, −VR : VR
lower bound, +HS : Hashin-Shtrikman upper bound, −HS : Hashin-Shtrikman
lower bound, SC: Self-Consistent.

Fig. 3. Prolongation scheme. Fig. 4. FMG Cycles.
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The performance of the MG scheme is studied below. One carries
out a simulation of a spherical thermal inclusion with a conductivity of
10W· −m ·1 −K 1 for sphere and 1W· −m ·1 −K 1 for the other part of the cube.
The radius is a quarter of the size of cube. The domain Ω is discretized
with 1283 (more than two million) elements. The boundary conditions
are set according to Eq. 3. The simulation is run on an office computer
equipped with one processor “Intel(R) Core(TM)2 Quad CPU Q9650 @
3.00 GHz”. For the single level iterative relaxation, the Jacobi relaxa-
tion is applied directly on this 1283 grid problem. For the MG scheme,
one has 6 level for this 1283 grid problem, ν ν ν n, , , cy0 1 2 are set to be 10,
1, 2 and 5, respectively. Three different values for the relaxation
coefficient ω, i.e. 0.5, 1.0 and 1.5, are used for both simulations.

Table 1 and Fig. 5 illustrate the performance of the MG scheme and
the single level Jacobi solver. The convergence rate of the single level
Jacobi solver decreased rapidly both for damped Jacobi with =ω 0.5

and normal Jacobi with =ω 1.0. On the other hand, the convergence
rate of the MG scheme remains constant with =ω 0.5 and =ω 1.0. For
the case of over relaxation i.e. =ω 1.5, it diverges with both methods for
this problem. With a =ω 1.0, one has the best convergence perfor-
mance for the MG scheme. After 4139 relaxations, single level Jacobi
relaxation does not yet reach the initial solution of FMG cycles on the
finest level, it confirms that one can have a good initial solution for the
finest level with FMG cycles. If one ignores the computational cost on
coarse grids, the MG scheme costs about 276, i.e.4139

15
, times lower, with

a residual 10 000 times smaller than that of single level Jacobi solver.
Another study is also carried out to compare the convergence per-

formance between classical MG and the proposed method. Compared to
the classical Geometric MultiGrid (GMG), the proposed method has two
differences:

• Instead of the bi-linear prolongation and restriction operators, one
proposes to consider material property for the prolongation and
restriction operators.

• Homogenization technique is used in the proposed method to obtain
the coarse grids material properties, however, in the classical GMG,
a simple average, i.e. Voigt approximation, is often used for the
coarse grids material properties.

According to the difference between a classical GMG and the

proposed MG, one proposes to carry out three simulations for the
spherical case with a material property contrast of 1 000 (detailed in
Section 4.2) and and the composite case (detailed in section 4.4).

• GMG-A: Bi-linear restriction and prolongation operators, Voigt ap-
proximation material property for coarse grids

• GMG-H: Bi-linear restriction and prolongation operators, homo-
genized material property for coarse grids

• Proposed method: Considering material property for restriction
and prolongation operators, homogenized material property for
coarse grids

As illustrated in Fig. 6a and b, these three methods converge for
both spherical and composite case. For spherical case, both the pro-
posed method and GMG-H have the best performance. For the com-
posite case, the proposed method has the best performance. For both
cases, it shows that coarse grid material property has a large influence
on the convergence speed, a representative material property for coarse
grid is highly important to ensure good convergence. The idea to in-
cludes the material property for the prolongation and restriction op-
erators does not always have a large improvement, for some symme-
trical case, e.g. spherical inclusion, it does not have a large
improvement compared to GMG-H. But for the complex case e.g. com-
posite material, it has a good performance. As the aim of the proposed
algorithm is to deal with complex materials with large property varia-
tions, the proposed algorithm is more efficient.

3.3. Parallel computing

As mentioned above, the goal of this work is the simulation of a
domain discretized by more than eight billion elements, with a single
processor, the computational time and memory are a big challenge.

These limitations lead one to consider High Performance Computing
(HPC). The available machine is a supercomputer equipped with 252
nodes with 128 GB RAM for each node. Each node consists of two
processors and each processor has 12 cores. Message Passing Interface
(MPI) and OpenMP are the two most used methods for parallel com-
puting. MPI is mainly for distributed memory machines, whereas,
OpenMP is for machines with a shared memory. Using OpenMP only
can not address our problem, as the memory of one node is not suffi-
cient. MPI only can be a choice, but the difficulty is that, for the coarsest
grid, one has only × ×4 4 4 elements. By consequence, for the coarsest
level, one can uses only 64 MPI, which does not allow a good speedup
(maximum 64). To take advantage of this machine, we uses a hybrid
MPI/OpenMP parallel algorithm.

Table 1

Comparison between single level relaxation and a MG scheme.

Single level MG scheme

Residual achieved × −1.55 10 2 × −7.89 10 6

Number of relaxations on the finest level 4139 15

Fig. 5. Convergence of the Jacobi solver (a) and
MG scheme (b) on a 1293 nodes problem.
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4. Results and applications

4.1. Validation

A multi-layer problem is used to validate the proposed solver. The
domain Ω: × ×1.0 1.0 1.0 cm3 cube, consists of four uniform layers. The
thermal conductivity of each layer is: =α 11 W· −m ·1 =− αK , 41

2 W· −m ·1

−K 1, =α 83 W· −m ·1 −K 1 and =α 44 W· −m ·1 −K 1. The distribution of these
four materials is presented in Fig. 7. Boundary conditions are applied as
mentioned in Eq. 3. =T 01 K and =T 12 K are applied.

The analytical solution of this problem can be described as:

=

⎧

⎨
⎪⎪

⎩
⎪⎪

⩽ <
+ − ⩽ <
+ − ⩽ <
+ − ⩽ ⩽

T z

z z

z z

z z

z z

( )

for 0 0.25cm

( 0.25) for 0.25 cm 0.5 cm

( 0.50) for 0.5 cm 0.75 cm

( 0.75) for 0.75 cm 1.0 cm

32

13

8

13

8

13

10

13

4

13

11

13

8

13 (20)

where z is the coordinate of axis Z.
To validate the numerical solution, the error between the analytical

and the numerical solution is computed. However, the FEM has a dis-
cretization error, the number of elements used to obtain the numerical
solution affects the error between the analytical and the numerical
solution. As a result, on one side, the error between the analytical and
the numerical solution is analyzed; on the other side, the FEM dis-
cretization error is studied.

For the numerical solution, one discretizes Ω into × ×128 128 128

(i.e. more than two million) cubic elements, applies the same boundary
conditions as for the analytical solution and carries out the simulation.
The coarsest level has 4× 4×4 grids, for each finer level, the grids
size is devised by two i.e. 6 levels for a 1283 problem. Fig. 8 shows the
temperature variations of the analytical and the numerical solution,
respectively, along the Z direction. The temperature obtained by the
numerical simulation is almost the same as the one obtained by the
analytical solution. The L2 error norm between the analytical solution
and the numerical solution is 0.0027.

To analyze the influence of the element size, one discretizes Ω with
× ×16 16 16, × ×32 32 32 and × ×64 64 64 elements and computes the

L2 error norm compared to the analytical solution, respectively. Fig. 9
shows the l2 error norm as a function of element size. The L2 norm error
decreases almost linearly in log–log scale with the element size.

The analytical and numerical solution show that the strategy of
using the MG method coupled with homogenization technique can deal
with problems with varying coefficients.

4.2. Spherical inclusion with large variation

The stability of the proposed method is analyzed in this subsection,
when it handles a spherical inclusion problem with large material
property variations. The parallel performance of our program is also
studied for this application.

The domain Ω is a cube, which has two materials, as presented in

Fig. 6. Convergence of MG method with different intergrid operators.

Fig. 7. Boundary conditions and conductivity.
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Fig. 10a. The radius of the inclusion is =R
L

4
, where, L is the size of

cube. The thermal conductivity of the material in the sphere is 1 000W·
−m ·1 −K 1, whereas it is set to 1W· −m ·1 −K 1 in the other part. The contrast

between these two materials is 1 000. One discretizes the cube with
× ×128 128 128 cubic elements. The boundary conditions is presented

in Eq. 3. The coarsest starts always by a 4×4×4 grid. ν ν ν n, , , cy0 1 2

are set to be 100, 4, 8 and 10, respectively.
Fig. 10b shows the temperature gradient in Ω. The large variation of

the conductivity on the interface explains the large variation of the
temperature gradient around the interface.

This application confirms the good stability of this strategy in case
of large variations of material properties.

4.3. Effective conductivity of cast iron

Cast iron is a well-known and widely used material in the industrial
domain. The prediction of the conductivity of cast iron is a significant
difficulty for researchers. Several papers investigate the conductivity,
e.g. Helsing and Grimvall [16] regarded cast iron as a composite ma-
terial and created a model to predict its conductivity. Nevertheless,
since the distribution of carbon grains in cast iron affects its con-
ductivity, the property of cast iron is different for different manu-
facturers. One proposes to use X-ray tomographic techniques to obtain
the carbon grains distribution in an image format. The numerical si-
mulation is then employed on this image to analyze the influence of
carbon granules and to obtain the effective conductivity of cast iron.

The original tomographic image of cast iron is an image with
× ×512 340 340 voxels [24]. The voxel size is 5.06μm. The region of

interest (ROI) in this work is a part of this image. This part has
× ×257 257 257 (more than 16 million) voxels. Each voxel is supposed

to be one elementary node of the FEM discretization. A conductivity is
assigned to each node. Fig. 11a illustrates the conductivity of the two
components in cast iron, where, the black granules in this image are the
carbon grains. The carbon conductivity is 129.0W· −m ·1 −K 1, for the
other part, one takes the conductivity of iron which, is 80.4W· −m ·1 −K 1.

To obtain the effective conductivity of the cast iron, the homo-
genization method is used. As presented in the work of Özdemir et al.
[22], the idea is to consider Ω to be one element, which is also referred
to be a Representative Volume Element (RVE). The theory of RVE
homogenization is briefly presented below.

The well known Fourier’s law is described as:

− ∇ =θ QA· (21)

where, A is the effective thermal conductivity at macroscopic scale, θ is
temperature at macroscopic scale, ∇θ is its gradient and Q is the total
heat flux at macroscopic scale, which can be computed from the local
heat flux:

∫ ∫= = − ∇αQ
V

qdv
V

T dv
1 1

V V (22)

Three simulations are carried out with:
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(23)

Fig. 8. Temperature variation on Z direction of the analytical (Red) and the
numerical (Blue) solution.

Fig. 9. L2 norm error analysis.

Fig. 10. Spherical inclusion.

Fig. 11. Cast iron.

7



respectively, where ∇ ∇θ θ,x y and ∇θz are the temperature gradient in
direction X, Y and Z, respectively. With each boundary condition, one
column of A can be obtained.

For the FMG Cycles, 7 levels of grid are used, ν ν ν n, , , cy0 1 2 are set to
be 10, 2, 1 and 5, respectively. Fig. 11b shows the distribution of the
temperature gradient in the case of ∇ =θ 1z , in which there are many
inclusions. The location of the inclusions coincides with the location of
the carbon grains.

The effective conductivity obtained is:

= ⎧
⎨⎩

−
−

⎫
⎬⎭

− −A
82.4311 0.0020 0.0040
0.0020 82.4223 0.0026
0.0040 0.0026 82.4277

W·m ·K1 1

Up to two significant digits, A can be described as:

= ⎧
⎨⎩

⎫
⎬⎭

− −A
82.43 0.00 0.00
0.00 82.42 0.00
0.00 0.00 82.43

W·m ·K1 1

which means that cast iron of this manufacturer is almost isotropic
regardless of the random carbon distribution.

4.4. Effective conductivity of a layered composite material

Cast iron is almost isotropic, one may measure its conductivity ex-
perimentally. However, for layered composite materials, which are also
widely used in the industrial domain due to its good performance, can
be an anisotropic material. To carry out an experimental measurement,
several external factors have to be observed, which is not simple and
sometimes, not possible. Employing numerical simulations directly on
tomographic images can be good alternative to know the composite
properties.

The image used in this work is the image of a laminate composite
material consisting of unidirectional E-glass fibers and a M9 epoxy
matrix. It is a Glass Fiber Reinforced Polymer (GFRP) manufactured by
the Hexcel Company. Its mechanical properties have been studied by
Lecomte-Grosbras et al. [18]. The details of this image can be found in
the work of Lecomte-Grosbras et al. [18]. In this work, the heat transfer
in this GFRP is studied to obtain its effective conductivity.

The original image of this GFRP is an image consisting of
× ×700 1300 1700 voxels, As mentioned in the work of Lecomte-

Grosbras et al. [18], this material is designed with four layers, the or-
ientation of fibers is+ ° − ° − °15 , 15 , 15 and+ °15 , respectively, for each
layer. The idea is to take a cubic domain from the part which has the
same fiber orientation. One takes × ×129 129 129 voxels from the part
with a fiber orientation of − °15 , as the ROI (see Fig. 12). As presented
in 12, the interface between the E-glass fiber and M9 epoxy matrix is
not extraordinarily sharp. It is difficult to distinguish between these two
phases (matrix and fiber). Instead of applying two discontinuous
phases, one proposes to apply a continuous conductivity between
0.150W· −m ·1 −K 1 (epoxy) and 1.30W· −m ·1 −K 1 (E-glass fiber). One
chooses to smooth the image gray level before it is used to compute the
local material property at each voxel. It can be described as:

= ⎛⎝ − − + ⎞⎠ +
− −( )α e sign GL0.575 1 ( 160.5) 1 0.15
GL| 160.5|

20
(24)

where GL is the original value of each voxel obtain by X-Ray tomo-
graphy, which is an integer between 0 and 255. Except for the problem
of the allocation of the conductivity, another problem is that the dia-
meter of fiber is too small to have enough voxels in it. Sub-sampling i.e.
linear interpolation, is therefore applied to this ROI to have more voxels
in each fiber. The FEM discretization error therefore needs to be ana-
lyzed, to obtain the number of voxels needed for each section. A si-
mulation with∇ =θ 1z W· −m ·1 −K 1,∇ = ∇ =θ θ 0x y and = ∇T θ zz on ∂Ω is
performed. One time sub-sampling (case I) and two times sub-sampling
(case II) are applied to the ROI, respectively. Fig. 13 illustrates the
conductivity of each node in this ROI after one time sub-sampling. For

the FMG Cycles, ν ν ν, ,0 1 2, ncy are set to be 10, 2, 1 and 5, respectively.
The third column of the effective property tensor Ac is computed for

each case.
For case I (7 levels i.e.2573 nodes):

= −A { 0.001559 0.025400 0.744922}c
3

For case II (8 levels i.e.5133 nodes):

= −A { 0.001607 0.026223 0.745158}c
3

It means that about up to three significant digits, the third column of
the effective conductivity tensor is the same, or rather, one can take
three significant digits for the Ac obtained by one time sub-sampling,
which is sufficient for industrial applications. The temperature gradient
is also computed, as presented in Figure 14.

Similar to the previous cast iron application, other two simulations
with boundary conditions of Eq. (23) are performed. The effective

Fig. 12. ROI of the GFRP.

Fig. 13. GFRP conductivity.

8



conductivity of the ROI of the GFRP is:

= ⎧
⎨⎩

−
−

⎫
⎬⎭

A
0.625386 0.002162 0.001559
0.002162 0.628834 0.025400

0.001559 0.025400 0.744922
W/(mK)c

With up to three significant digits, it reads:

= ⎧
⎨⎩

−
−

⎫
⎬⎭

A
0.625 0.002 0.002
0.002 0.629 0.025

0.002 0.025 0.745
W/(mK)c

which confirms that GFRP is an orthotropic material.
The effective property tensor obtained above, is for the fibers with

an orientation of− °15 , for that of the+ °15 orientation, one can derive
it directly.

4.5. Large simulation from a X-ray tomographic image and HPC
performance analysis

The applications introduced above reveal that, the effective con-
ductivity can be obtained by numerical simulation directly from an X-
ray tomographic image, without any human intervention. The current
tomographic images have × ×2048 2048 2048 voxels or more than 8
billion elements. The final application for this work it to carry out the
numerical simulation with such a large image.

The image used in this case is the GFRP image of the previous ap-
plication. One takes a part from the original image, the ROI consists of

× ×513 513 513 voxels. As presented in Fig. 15, it consists of four layers
with different E–glass fiber orientations. One employs a two times sub-
sampling to obtain an image consisting of × ×2048 2048 2048 elements.
The smoothing process on gray level is also applied and the material
property has been assigned to each node as presented in Fig. 15. The
same boundry conditions are applied as for the spherical inclusion case.

For the FMG cycles in this simulation, 10 levels of grids are used, ν0,
ν ν n, , cy1 2 are set to be 10, 2, 1 and 5, respectively. 768 cores (64 MPI,
12 OpenMP/MPI) are used simultaneously. The calculation time is
about 3.16 h. Figure 16 illustrates the residual evolution with the
number of V-Cycles on level 10. Regardless of the size of the problem,
the convergence remains very good. To achieve a residual of −10 6, only
5 V-Cycles on the finest level are needed. It means that the number of
relaxations on the finest level is only 15. It confirms the efficiency of the

strategy used in this work. The temperature gradient is presented in
Fig. 17. Fig. 17 and 18 illustrate the correspondence between con-
ductivity and temperature gradient.

Since the aim of this work is the computation from large tomo-
graphic images, the parallel computing performance is analyzed with a

Fig. 14. Temperature gradient of E-glass fibers in composite.

Fig. 15. E-glass fiber orientation in each layer and conductivity at each ele-
mentary node.
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Fig. 16. Convergence.

Fig. 17. Temperature gradient.
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problem of 10243 elements. A one-time sub-sampling is applied on the
5123 ROI to obtain an image of 10243 elements. The aim is to analyze
the parallel performance, so, instead of doing FMG cycles until final
convergence, one proposes to do only one V-cycle on the finest grid.

For the performance of hybrid programming, there are two para-
meters to investigate: the number of MPI used and the number of
threads per MPI task. As mentioned before, each processor has 12 cores
for the available machine, each node has 2 processors. In order to have
a good efficiency, the number of threads per MPI is limited by 12 to
avoid the use OpenMP between two sockets, since OpenMP suffers from
poor data access patterns when using two sockets. The number of cores
maximum that can be used is 1 000 fixed by the owner.

As presented in Fig. 19, one simulation with 1 core and 1 MPI has
been carried out to have a reference to compute the speedup. The
number of MPI is set to 1,2,4,8,16,32 and 64; 12 threads are used in
each MPI task. This curve illustrates that for a 10243 problem, even
with 768 cores, good speedup is obtained, within this number of cores,
the speedup increases linearly as the number of cores increasing. Fur-
ther, the speedup is close to be optimal, the speedup rate being close to
0.8.

Besides the number of cores that has a big influence on the parallel
performance, the number of MPI and the number of OpenMP (for the
same number of cores) can also have an influence: i.e. for 384 cores, one
has the following configurations: 32 MPI with 12 threads, 48 MPI with

8 threads, 64 MPI with 6 threads, 96 MPI with 4 threads, 128 MPI with
2 threads.

Simulations for three different configurations, i.e. 32 MPI with 12
threads, 48 MPI with 8 threads and 64 MPI with 6 threads, are carried
out for a problem for 10243 elements. As presented in Table 2, with 48
MPI and 8 threads per MPI, one has a poor performance since in one
node, there are 3 MPI which means there is at least one MPI taking
cores from two sockets. With 64 MPI and 6 threads per MPI, one obtains
a better performance than that with 32 MPI and 12 threads for each, but
the difference is only ≈−

3.67%
480 463

463
. It confirms that nevertheless the

current program does not allow to use as more as MPI tasks that we
want, but with 64 MPI and 12 cores, a sufficient performance is ob-
tained. For some large problems likes 20243 grids, using 12 cores for
each of the 64 MPI, i.e. 768 cores in total, one can already finish the
simulation in about 3 h.

5. Discussion and conclusions

The goal of this paper is to show that one can employ numerical
simulations directly on tomographic images. To perform the simula-
tions with such a large number of elements and such large variations of
materials properties requires dedicated algorithms and hardware. The
strategy to use the MG method coupled with a homogenization tech-
nique, permits one to deal with this kind of problems. The applications
and numerical comparison presented above demonstrate the efficiency
of the MG method. The homogenization technique shows its capacity to
increase the convergence performance of the MG scheme, when large
variations of materials properties exits. The Matrix Free FEM demon-
strate its good performance for large problems up to 8 billion of ele-
ments. The strategy to apply one voxel per elementary node avoids
human intervention. The effective material property can be auto-
matically obtained by using the large X-ray tomographic image, as an
input, without complex experimental measurement. The Hybrid MPI/
OpenMP programming shows its good feasibility and performance for
the MG method.

The thermal conductivity is analyzed in this work. In future work,
the mechanical property of materials will be analyzed. The property at
each node is supposed to be isotropic, additional research is needed for
the anisotropic case. For the parallel computing of MG method, the re-
partitioning and load balancing need to be applied for the future work if
necessary to have the best performance.
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