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FAST APPROXIMATION AND EXACT COMPUTATION OF NEGATIVE

CURVATURE PARAMETERS OF GRAPHS∗

JÉRÉMIE CHALOPIN, VICTOR CHEPOI, FEODOR F. DRAGAN, GUILLAUME DUCOFFE,

ABDULHAKEEM MOHAMMED, AND YANN VAXÈS

Abstract. In this paper, we study Gromov hyperbolicity and related parameters, that repre-
sent how close (locally) a metric space is to a tree from a metric point of view. The study of
Gromov hyperbolicity for geodesic metric spaces can be reduced to the study of graph hyper-
bolicity. The main contribution of this paper is a new characterization of the hyperbolicity of
graphs, via a new parameter which we call rooted insize. This characterization has algorithmic
implications in the field of large-scale network analysis. A sharp estimate of graph hyperbolicity
is useful, e.g., in embedding an undirected graph into hyperbolic space with minimum distortion
[Verbeek and Suri, SoCG’14]. The hyperbolicity of a graph can be computed in polynomial-
time, however it is unlikely that it can be done in subcubic time. This makes this parameter
difficult to compute or to approximate on large graphs. Using our new characterization of
graph hyperbolicity, we provide a simple factor 8 approximation algorithm (with an additive
constant 1) for computing the hyperbolicity of an n-vertex graph G = (V,E) in optimal time
O(n2) (assuming that the input is the distance matrix of the graph). This algorithm leads to
constant factor approximations of other graph-parameters related to hyperbolicity (thinness,
slimness, and insize). We also present the first efficient algorithms for exact computation of
these parameters. All of our algorithms can be used to approximate the hyperbolicity of a
geodesic metric space.

We also show that a similar characterization of hyperbolicity holds for all geodesic metric
spaces endowed with a geodesic spanning tree. Along the way, we prove that any complete
geodesic metric space (X, d) has such a geodesic spanning tree.

1. Introduction

Understanding the geometric properties of complex networks is a key issue in network analysis
and geometric graph theory. One important such property is negative curvature [27], causing
the traffic between the vertices to pass through a relatively small core of the network – as
if the shortest paths between them were curved inwards. It has been empirically observed,
then formally proved [12], that such a phenomenon is related to the value of the Gromov
hyperbolicity of the graph. In this paper, we propose exact and approximation algorithms to
compute hyperbolicity of a graph and its relatives (the approximation algorithms can be applied
to geodesic metric spaces as well).

A metric space (X, d) is δ-hyperbolic [3, 7, 24] if for any four points w, v, x, y of X, the two
largest of the distance sums d(w, v) + d(x, y), d(w, x) + d(v, y), d(w, y) + d(v, x) differ by at
most 2δ ≥ 0. A graph G = (V,E) endowed with its standard graph-distance dG is δ-hyperbolic
if the metric space (V, dG) is δ-hyperbolic. In case of geodesic metric spaces and graphs, δ-
hyperbolicity can be defined in other equivalent ways, e.g., via the thinness, slimness, or insize
of geodesic triangles. The hyperbolicity δ(X) of a metric space X is the smallest δ ≥ 0 such that
X is δ-hyperbolic. It can be viewed as a local measure of how close X is to a tree: the smaller
the hyperbolicity is, the closer the metrics of its 4-point subspaces are close to tree-metrics.

The study of hyperbolicity of graphs is motivated by the fact that many real-world graphs
are tree-like from a metric point of view [1, 2, 4] or have small hyperbolicity [26, 27, 31]. This is
due to the fact that many of these graphs (including Internet application networks, web net-
works, collaboration networks, social networks, biological networks, and others) possess certain
geometric and topological characteristics. Hence, for many applications, including the design of

∗An extended abstract [8] of this paper has appeared in the proceedings of SoCG 2018.
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efficient algorithms (cf., e.g., [4,9–13,17,20,33]), it is useful to know an accurate approximation
of the hyperbolicity δ(G) of a graph G.

Related work. For an n-vertex graph G, the definition of hyperbolicity directly implies a sim-
ple brute-force O(n4) algorithm to compute δ(G). This running time is too slow for computing
the hyperbolicity of large graphs that occur in applications [1,4,5,22]. On the theoretical side,
it was shown that relying on matrix multiplication results, one can improve the upper bound on
time-complexity toO(n3.69) [22]. Moreover, roughly quadratic lower bounds are known [5,15,22].
In practice, however, the best known algorithm still has an O(n4)-time worst-case bound but
uses several clever tricks when compared to the brute-force algorithm [4]. Based on empirical
studies, an O(mn) running time is claimed, where m is the number of edges in the graph. Fur-
thermore, there are heuristics for computing the hyperbolicity of a given graph [14], and there
are investigations of whether one can compute hyperbolicity in linear time when some graph
parameters take small values [16,21].

Perhaps it is interesting to notice that the first algorithms for computing the Gromov hyper-
bolicity were designed for Cayley graphs of finitely generated groups (these are infinite vertex-
transitive graphs of uniformly bounded degrees). Gromov gave an algorithm to recognize Cayley
graphs of hyperbolic groups and estimate the hyperbolicity constant δ. His algorithm is based
on the theorem that in Cayley graphs, the hyperbolicity “propagates”, i.e., if balls of an appro-
priate fixed radius induce a δ-hyperbolic space, then the whole space is δ′-hyperbolic for some
δ′ > δ (see [24], 6.6.F and [18]). Therefore, in order to compute the hyperbolicity of a Cayley
graph, it is enough to verify the hyperbolicity of a sufficiently big ball (all balls of a given radius
in a Cayley graph are isomorphic to each other). For other algorithms deciding if the Cayley
graph of a finitely generated group is hyperbolic, see [6, 29]. However, similar methods do not
help when dealing with arbitrary graphs.

By a result of Gromov [24], if the four-point condition in the definition of hyperbolicity holds
for a fixed basepoint w and any triplet x, y, v of X, then the metric space (X, d) is 2δ-hyperbolic.
This provides a factor 2 approximation of hyperbolicity of a metric space on n points running
in cubic O(n3) time. Using fast algorithms for computing (max,min)-matrix products, it was
noticed in [22] that this 2-approximation of hyperbolicity can be implemented in O(n2.69) time.
In the same paper, it was shown that any algorithm computing the hyperbolicity for a fixed
basepoint in time O(n2.05) would provide an algorithm for (max,min)-matrix multiplication
faster than the existing ones. In [19], approximation algorithms are given to compute a (1 + ε)-
approximation in O(ε−1n3.38) time and a (2+ε)-approximation in O(ε−1n2.38) time. As a direct
application of the characterization of hyperbolicity of graphs via a cop and robber game and
dismantlability, [9] presents a simple constant factor approximation algorithm for hyperbolicity
of G running in optimal O(n2) time. Its approximation ratio is huge (1569), however it is
believed that its theoretical performance is much better and the factor of 1569 is mainly due to
the use in the proof of the definition of hyperbolicity via linear isoperimetric inequality. This
shows that the question of designing fast and (theoretically certified) accurate algorithms for
approximating graph hyperbolicity is still an important and open question.

Our contribution. In this paper, we tackle this open question and propose a very simple
(and thus practical) factor 8 algorithm for approximating the hyperbolicity δ(G) of an n-vertex
graph G running in optimal O(n2) time. As in several previous algorithms, we assume that the
input is the distance matrix D of the graph G. Our algorithm picks a basepoint w, a Breadth-
First-Search tree T rooted at w, and considers only geodesic triangles of G with one vertex at
w and two sides on T . For all such sides in T , it computes the maximum over all distances
between the two preimages of the centers of the respective tripods (see Section 2 for definitions).
This maximum ρw,T (G) (called rooted insize) can be easily computed in O(n2) time and, as
we demonstrate, provides an 8-approximation (with an additive constant 1) for δ(G). If the
graph G is given by its adjacency list, then we show that ρw,T (G) can be computed in O(nm)
time and linear O(n+m) space. For geodesic spaces (X, d) endowed with a geodesic spanning
tree we show that we can also define the rooted insize ρw,T (X) and that the same relationships
between ρw,T (X) and the hyperbolicity δ(X) hold, thus providing a new characterization of
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hyperbolicity. En passant, we show that any complete geodesic space (X, d) always has such a
geodesic spanning tree (this result is not trivial, see the proof of Theorem 4.1 and Remark 4.4).
We hope that this fundamental result can be useful in other contexts.

Perhaps it is surprising that hyperbolicity that is originally defined via quadruplets and can be
2-approximated via triplets (i.e., via pointed hyperbolicity), can be finally defined and approxi-
mated only via pairs (and an arbitrary fixed BFS-tree). Indeed, summarizing our contributions,
we proved the existence of some property Pw,T (x, y : δ), defined w.r.t. a fixed basepoint w and
a fixed BFS tree T , such that: (i) for any δ-hyperbolic graph the property holds for any pair
x, y of vertices; and conversely (ii) if the property holds for every pair x, y then the graph
is 8δ-hyperbolic. See Theorem 5.2 for more details. We hope that this new characterization
can be useful in establishing that graphs and simplicial complexes occurring in geometry and
in network analysis are hyperbolic.

The way the rooted insize ρw,T (G) is computed is closely related to how hyperbolicity is
defined via slimness, thinness, and insize of its geodesic triangles. Similarly to the hyperbolicity
δ(G), one can define slimness ς(G), thinness τ(G), and insize ι(G) of a graph G. As a direct
consequence of our algorithm for approximating δ(G) and the relationships between δ(G) and
ς(G), τ(G), ι(G), we obtain constant factor O(n2) time algorithms for approximating these pa-
rameters. On the other hand, an exact computation, in polynomial time, of these geometric
parameters has never been provided. In Theorem 6.1, we show that the thinness τ(G) and the
insize ι(G) of a graph G can be computed in O(n2m) time and the slimness ς(G) of G can

be computed in Ô(n2m+ n4/ log3 n) time1 combinatorially and in O(n3.273) time using matrix
multiplication. However, we show that the minimum value of ρw,T (G) over all basepoints w and
all BFS-trees T cannot be approximated in polynomial time with a factor strictly better than
2 unless P = NP.

The new notion of rooted insize, as well as the classical notions of thinness, slimness, and
insize can be defined only for unweighted graphs and geodesic metric spaces. Therefore, the
approximation of hyperbolicity via the rooted insize (and the corresponding algorithms) do not
hold for arbitrary metric spaces (such as weighted graphs for example).

2. Gromov hyperbolicity and its relatives

2.1. Gromov hyperbolicity. Let (X, d) be a metric space and w ∈ X. The Gromov product2

of y, z ∈ X with respect to w is (y|z)w = 1
2(d(y, w)+d(z, w)−d(y, z)). A metric space (X, d) is δ-

hyperbolic [24] for δ ≥ 0 if (x|y)w ≥ min{(x|z)w, (y|z)w} − δ for all w, x, y, z ∈ X. Equivalently,
(X, d) is δ-hyperbolic if for any u, v, x, y ∈ X, the two largest of the sums d(u, v) + d(x, y),
d(u, x) + d(v, y), d(u, y) + d(v, x) differ by at most 2δ ≥ 0. A metric space (X, d) is said to be
δ-hyperbolic with respect to a basepoint w if (x|y)w ≥ min{(x|z)w, (y|z)w}− δ for all x, y, z ∈ X.

Proposition 2.1. [3, 7, 23, 24] If (X, d) is δ-hyperbolic with respect to some basepoint, then
(X, d) is 2δ-hyperbolic.

Let (X, d) be a metric space. An (x, y)-geodesic is a (continuous) map γ : [0, d(x, y)] → X
from the segment [0, d(x, y)] of R1 to X such that γ(0) = x, γ(d(x, y)) = y, and d(γ(s), γ(t)) =
|s − t| for all s, t ∈ [0, d(x, y)]. A geodesic segment with endpoints x and y is the image of the
map γ (when it is clear from the context, by a geodesic we mean a geodesic segment and we
denote it by [x, y]). A metric space (X, d) is geodesic if every pair of points in X can be joined
by a geodesic. A real tree (or an R-tree) [7, p.186] is a geodesic metric space (T, d) such that

(1) there is a unique geodesic [x, y] joining each pair of points x, y ∈ T ;
(2) if [y, x] ∩ [x, z] = {x}, then [y, x] ∪ [x, z] = [y, z].

Let (X, d) be a geodesic metric space. A geodesic triangle ∆(x, y, z) with x, y, z ∈ X is the
union [x, y]∪[x, z]∪[y, z] of three geodesics connecting these points. A geodesic triangle ∆(x, y, z)
is called δ-slim if for any point u on the side [x, y] the distance from u to [x, z]∪ [z, y] is at most
δ. Let mx be the point of [y, z] located at distance αy := (x|z)y from y. Then, mx is located at

1The Ô(·) notation hides polyloglog factors.
2Informally, (y|z)w can be viewed as half the detour you make, when going over w to get from y to z.
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Figure 1. Insize and thinness in geodesic spaces and graphs.

distance αz := (y|x)z from z because αy+αz = d(y, z). Analogously, define the pointsmy ∈ [x, z]
and mz ∈ [x, y] both located at distance αx := (y|z)x from x; see Fig. 1 for an illustration. We
define a tripod T (x, y, z) consisting of three solid segments [x,m], [y,m], and [z,m] of lengths
αx, αy, and αz, respectively. The function mapping the vertices x, y, z of ∆(x, y, z) to the
respective leaves of T (x, y, z) extends uniquely to a function ϕ : ∆(x, y, z) → T (x, y, z) such
that the restriction of ϕ on each side of ∆(x, y, z) is an isometry. This function maps the points
mx,my, and mz to the center m of T (x, y, z). Any other point of T (x, y, z) is the image of
at most two points of ∆(x, y, z). A geodesic triangle ∆(x, y, z) is called δ-thin if for all points
u, v ∈ ∆(x, y, z), ϕ(u) = ϕ(v) implies d(u, v) ≤ δ. The insize of ∆(x, y, z) is the diameter of
the preimage {mx,my,mz} of the center m of the tripod T (x, y, z). Below, we remind that the
hyperbolicity of a geodesic space can be approximated by the maximum thinness and slimness
of its geodesic triangles.

For a geodesic metric space (X, d), one can define the following parameters:

• hyperbolicity δ(X) = min{δ : X is δ-hyperbolic},
• pointed hyperbolicity δw(X) = min{δ : X is δ-hyperbolic with respect to a basepoint w},
• slimness ς(X) = min{δ : any geodesic triangle of X is δ-slim},
• thinness τ(X) = min{δ : any geodesic triangle of X is δ-thin},
• insize ι(X) = min{δ : the insize of any geodesic triangle of X is at most δ}.

Proposition 2.2. [3, 7, 23, 24, 32] For a geodesic metric space (X, d), δ(X) ≤ ι(X) = τ(X) ≤
4δ(X), ς(X) ≤ τ(X) ≤ 4ς(X), and δ(X) ≤ 2ς(X) ≤ 6δ(X).

Due to Propositions 2.1 and 2.2, a geodesic metric space (X, d) is called hyperbolic if one of
the numbers δ(X), δw(X), ς(X), τ(X), ι(X) (and thus all) is finite. Notice also that a geodesic
metric space (X, d) is 0-hyperbolic if and only if (X, d) is a real tree [7, p.399] (and in this case,
ς(X) = τ(X) = ι(X) = δ(X) = 0).

2.2. Hyperbolicity of graphs. All graphs G = (V,E) occurring in this paper are undirected
and connected, but not necessarily finite (in algorithmic results they will be supposed to be
finite). For a vertex v ∈ V , we denote by NG(v) the open neighborhood of v, by NG[v] the
closed neighborhood of v, and by degG(v) the degree of v (when G is clear from the context, the
subscripts will be omitted). For any two vertices x, y ∈ V, the distance d(x, y) is the minimum
number of edges in a path between x and y. Let [x, y] denote a shortest path connecting
vertices x and y in G; we call [x, y] a geodesic between x and y. The interval I(u, v) =
{x ∈ V : d(u, x) + d(x, v) = d(u, v)} consists of all vertices on (u, v)-geodesics. There is a
strong analogy between the metric properties of graphs and geodesic metric spaces, due to their
uniform local structure. Any graph G = (V,E) gives rise to a geodesic space (XG, d) (into
which G isometrically embeds) obtained by replacing each edge xy of G by a segment isometric
to [0, 1] with ends at x and y. XG is called a metric graph. Conversely, by [7, Proposition
8.45], any geodesic metric space (X, d) is (3,1)-quasi-isometric to a graph G = (V,E). This
graph G is constructed in the following way: let V be an open maximal 1

3 -packing of X, i.e.,

d(x, y) > 1
3 for any x, y ∈ V (that exists by Zorn’s lemma). Then two points x, y ∈ V are

adjacent in G if and only if d(x, y) ≤ 1. Since hyperbolicity is preserved (up to a constant
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factor) by quasi-isometries, this reduces the computation of hyperbolicity for geodesic spaces to
the case of graphs.

The notions of geodesic triangles, insize, δ-slim and δ-thin triangles can also be defined in case
of graphs with the single difference that for graphs, the center of the tripod is not necessarily
the image of any vertex on the sides of ∆(x, y, z). For graphs, we “discretize” the notion of
δ-thin triangles in the following way. We say that a geodesic triangle ∆(x, y, z) of a graph G is
δ-thin if for any v ∈ {x, y, z} and vertices a ∈ [v, u] and b ∈ [v, w] (u,w ∈ {x, y, z}, and u, v, w
are distinct), d(v, a) = d(v, b) ≤ (u|w)v implies d(a, b) ≤ δ. A graph G is δ-thin, if all geodesic
triangles in G are δ-thin. Given a geodesic triangle ∆(x, y, z) := [x, y]∪ [x, z]∪ [y, z] in G, let xy
and yx be the vertices of [z, x] and [z, y], respectively, both at distance b(x|y)zc from z. Similarly,
one can define vertices xz, zx and vertices yz, zy; see Fig. 1. The insize of ∆(x, y, z) is defined
as max{d(yz, zy), d(xy, yx), d(xz, zx)}. An interval I(x, y) is said to be κ-thin if d(a, b) ≤ κ for
all a, b ∈ I(x, y) with d(x, a) = d(x, b). The smallest κ for which all intervals of G are κ-thin is
called the interval thinness of G and denoted by κ(G). Denote also by δ(G), δw(G), ς(G), τ(G),
and ι(G) respectively the hyperbolicity, the pointed hyperbolicity with respect to a basepoint
w, the slimness, the thinness, and the insize of a graph G.

3. Auxiliary results

We will need the following inequalities between ς(G), τ(G), ι(G), and δ(G). They are known
to be true for all geodesic spaces (see [3,7,23,24,32]). We present graph-theoretic proofs in case
of graphs for completeness (and due to slight modifications in their definitions for graphs).

Proposition 3.1. δ(G) − 1
2 ≤ ι(G) = τ(G) ≤ 4δ(G), ς(G) ≤ τ(G) ≤ 4ς(G), δ(G) − 1

2 ≤
2ς(G) ≤ 6δ(G) + 1, and κ(G) ≤ min{τ(G), 2δ(G), 2ς(G)}.

The fact that δ(G) ≤ 2ς(G)+ 1
2 is a result of Soto [32, Proposition II.20]. For our convenience,

we reformulate and prove the other results in four lemmas, plus one auxiliary lemma.

Lemma 3.2. ς(G) ≤ ι(G) = τ(G) ≤ 4ς(G).

Proof. By the definitions of ς(G), τ(G), and ι(G), we only need to show that τ(G) ≤ ι(G) ≤
4ς(G).

Let ι := ι(G). Pick an arbitrary geodesic triangle ∆(x, y, z) of G formed by shortest paths
[x, y], [x, z], and [y, z]. By induction on k := d(x, y) + d(x, z), we show that d(a, b) ≤ ι holds
for every pair of vertices a ∈ [x, y], b ∈ [x, z] with d(x, a) = d(x, b) ≤ (y|z)x. Let y′ be the
neighbor of y on [x, y]. Consider a geodesic triangle ∆(x, y′, z) formed by shortest paths [x, y′] :=
[x, y]\{y}, [x, z] and [y′, z], where [y′, z] is an arbitrary shortest path connecting y′ with z. Since
d(y, z)− 1 ≤ d(y′, z) ≤ d(y, z) + 1, we have (y′|z)x = (y|z)x − α, where α ∈ {0, 1

2 , 1}. Now, for
every pair of vertices a ∈ [x, y′], b ∈ [x, z] with d(x, a) = d(x, b) ≤ (y′|z)x, d(a, b) ≤ ι holds by
induction. If a pair a ∈ [x, y], b ∈ [x, z] exists such that (y′|z)x < d(x, a) = d(x, b) ≤ (y|z)x,
then d(x, a) = d(x, b) = b(y|z)xc and, therefore, d(a, b) ≤ ι holds since the insize of ∆(x, y, z) is
at most ι. Thus, we conclude that τ(G) ≤ ι(G).

Let ς := ς(G). Pick any geodesic triangle ∆(x, y, z) of G formed by shortest paths [x, y],
[x, z], and [y, z]. Consider the vertices xy, yx, yz, zy, xz, zx as defined in Subsection 2.2. It
suffices to show that d(yz, zy) ≤ 4ς. Since ς(G) = ς, there is a vertex a ∈ [x, z] ∪ [y, z] such
that d(a, yz) ≤ ς. Assume a ∈ [x, z]. We claim that d(yz, zy) ≤ 2ς. Indeed, if d(x, a) ≤ d(x, zy),
then d(x, yz) = d(x, zy) = d(x, a) + d(a, zy) and d(x, yz) ≤ d(x, a) + d(a, yz) ≤ d(x, a) + ς imply
d(a, zy) ≤ ς and hence d(yz, zy) ≤ 2ς. If d(x, a) ≥ d(x, zy), then d(x, zy) + d(zy, a) = d(x, a) ≤
d(x, yz) + d(zy, a) ≤ d(x, yz) + ς implies d(zy, a) ≤ ς and hence d(yz, zy) ≤ 2ς.

So, we may assume that a belongs to [y, z]. If a ∈ [yx, z] ⊆ [y, z], then d(x, yz) + d(z, zx) =
d(x, zy) + d(z, zy) = d(x, z) ≤ d(x, yz) + d(yz, a) + d(a, z) = d(x, yz) + d(yz, a) + d(z, zx) −
d(a, zx). It implies that d(a, zx) ≤ d(yz, a) ≤ ς, yielding d(yz, yx) ≤ 2ς and d(yz, zx) ≤ 2ς. If
a ∈ [y, zx] ⊆ [z, y], then d(y, a) + d(a, yx) = d(y, yx) = d(y, yz) ≤ d(yz, a) + d(y, a), implying
d(a, yx) ≤ d(yz, a) ≤ ς. Hence, d(yz, yx) ≤ 2ς and d(yz, zx) ≤ 2ς.

By symmetry, also for vertex zy, we can get d(zy, yz) ≤ 2ς or d(zy, yx) ≤ 2ς. Therefore, if
d(zy, yz) > 2ς, then d(zy, yz) ≤ d(zy, yx) + d(yz, yx) ≤ 4ς must hold. Thus, ι(G) ≤ 4ς(G). �
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Lemma 3.3. Let G be a graph with δ(G) = δ and x, y, w be arbitrary vertices of G. Then, for
every shortest path [x, y] connecting x with y, d(w, [x, y]) ≤ (x|y)w + 2δ + 1

2 holds.

Proof. Consider in G a geodesic triangle ∆(x, y, w) formed by [x, y] and two arbitrary shortest
paths [x,w] and [y, w]. Let c be a vertex on [x, y] at distance b(y|w)xc from x. We have
(x|y)w ≥ min{(x|c)w, (y|c)w} − δ.

If (x|c)w ≤ (y|c)w, then (x|c)w − (x|y)w ≤ δ. Therefore, (x|w)c = d(x, c)− (c|w)x ≤ (y|w)x −
(c|w)x = (x|c)w−(x|y)w ≤ δ. As d(w, c) = (x|c)w+(x|w)c ≤ (x|y)w+δ+δ, we get d(w, [x, y]) ≤
d(w, c) ≤ (x|y)w + 2δ.

If (x|c)w ≥ (y|c)w, then (y|c)w − (x|y)w ≤ δ. Therefore, (y|w)c = d(y, c)− (c|w)y ≤ (x|w)y +
1
2 − (c|w)y = (y|c)w − (x|y)w + 1

2 ≤ δ + 1
2 . As d(w, c) = (y|c)w + (y|w)c ≤ (x|y)w + δ + δ + 1

2 ,

we get d(w, [x, y]) ≤ d(w, c) ≤ (x|y)w + 2δ + 1
2 . �

Lemma 3.4. τ(G) = ι(G) ≤ 4δ(G) and ς(G) ≤ 3δ(G) + 1
2 .

Proof. Let δ := δ(G). Pick a geodesic triangle ∆(x, y, z) of G formed by shortest paths
[x, y], [x, z], and [y, z]. Pick also the vertices yz ∈ [x, y] and zy ∈ [x, z]. Evidently, (yz|y)x =
d(x, yz) = b(y|z)xc = d(x, zy) = (zy|z)x. We also have (yz|zy)x ≥ min{(yz|y)x, (y|zy)x} − δ ≥
min{(yz|y)x, (y|z)x, (z|zy)x} − 2δ. It implies that (yz|zy)x ≥ b(y|z)xc − 2δ. Consequently,
d(x, yz) + d(x, zy)− d(yz, zy) ≥ 2b(y|z)xc − 4δ holds, implying d(yz, zy) ≤ 4δ.

To prove ς(G) ≤ 3δ + 1
2 , consider a geodesic triangle ∆(x, y, z) formed by shortest paths

[x, y], [x, z], and [y, z] and let w be an arbitrary vertex from [x, y]. Without loss of generality,
suppose that (x|z)w ≤ (y|z)w. Since w is on a shortest path between x and y, we have 0 =
(x|y)w ≥ min{(x|z)w, (y|z)w} − δ = (x|z)w − δ, i.e., (x|z)w ≤ δ. By Lemma 3.3, d(w, [x, z]) ≤
(x|z)w + 2δ + 1

2 ≤ 3δ + 1
2 . �

Lemma 3.5. δ(G) ≤ τ(G) + 1
2 .

Proof. Let τ := τ(G). Consider four vertices w, x, y, z and assume without loss of generality that
d(w, y) + d(x, z) ≥ max{d(w, x) + d(y, z), d(w, z) + d(x, y)}. Pick a geodesic triangle ∆(w, x, y)
of G formed by three arbitrary shortest paths [w, x], [w, y], and [x, y]. Pick a geodesic triangle
∆(w, y, z) of G formed by the shortest path [w, y] and two arbitrary shortest paths [w, z], [y, z].

Without loss of generality, assume that (x|y)w ≤ (y|z)w. Let xy and yx be respectively the
vertices of [w, x] and [w, y] at distance b(x|y)wc from w. Let z′ be the vertex of [w, z] at distance
b(x|y)wc ≤ b(y|z)wc from w. Since d(xy, yx) ≤ τ and d(yx, z

′) ≤ τ , by the triangle inequality,
we have:

d(w, y) + d(x, z) ≤ (d(w, yx) + d(yx, y)) + (d(x, xy) + 2τ + d(z′, z))

= d(w, yx) + d(z′, z) + d(y, yx) + d(x, xy) + 2τ

≤ d(w, z′) + d(z′, z) + d(x, y) + 1 + 2τ

= d(w, z) + d(x, y) + 2τ + 1.

This establishes the four-point condition for w, x, y, z, and consequently δ(G) ≤ τ + 1
2 . �

Lemma 3.6. κ(G) ≤ min{τ(G), 2δ(G), 2ς(G)}.

Proof. Let u, v be two arbitrary vertices of G and let x, y ∈ I(u, v) such that d(u, x) = d(u, y).
Since d(u, x) + d(y, v) = d(u, y) + d(x, v) = d(u, v), we have d(u, v) + d(x, y) ≤ d(u, v) + 2δ(G)
and consequently, d(x, y) ≤ 2δ(G). Thus κ(G) ≤ 2δ(G). Let [u, v] be any shortest (u, v)-path
passing through y and [u, x], [x, v] be two arbitrary shortest (u, x)- and (x, v)-paths. Consider
the geodesic triangle ∆(x, u, v) := [u, x] ∪ [x, v] ∪ [v, u]. We have (x|v)u = (d(x, u) + d(u, v) −
d(x, v))/2 = d(x, u) = d(y, u). Hence, if ∆(x, u, v) is τ -thin, then d(x, y) ≤ τ . That is,
κ(G) ≤ τ(G). If ∆(x, u, v) is ς-slim, then there is a vertex z ∈ [u, x] ∪ [x, v] = [u, v] such that
d(y, z) ≤ ς. Necessarily, d(x, z) ≤ ς as well, implying d(x, y) ≤ 2ς. Thus, κ(G) ≤ 2ς(G). �

Remark 3.7. In general, the converse of the inequality κ(G) ≤ 2δ(G) from Proposition 3.1
does not hold: for odd cycles C2k+1, κ(C2k+1) = 0 while δ(C2k+1) increases with k. However,
the following result holds. If G is a graph, denote by G′ the graph obtained by subdividing all
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edges of G once. Papasoglu [28] showed that if G′ has κ-thin intervals, then G is f(κ)-hyperbolic
for some function f (which may be exponential).

4. Geodesic spanning trees

In this section, we prove that any complete geodesic metric space (X, d) has a geodesic
spanning tree rooted at any basepoint w. We hope that this general result will be useful in
other contexts. For finite graphs this is well-known and simple, and such trees can be constructed
in various ways, for example via Breadth-First-Search. The existence of BFS-trees in infinite
graphs has been established by Polat [30, Lemma 3.6]. However for geodesic spaces this result
seems to be new (and not completely trivial) and we consider it as one of the main results of
the paper. A geodesic spanning tree rooted at a point w (a GS-tree for short) of a geodesic space
(X, d) is a union of geodesics Γw :=

⋃
x∈X γw,x with one end at w such that y ∈ γw,x implies

that γw,y ⊆ γw,x. Then X is the union of the images [w, x] of the geodesics of γw,x ∈ Γw and one
can show that there exists a real tree T = (X, dT ) such that any γw,x ∈ Γw is the (w, x)-geodesic
of T . Finally recall that a metric space (X, d) is called complete if every Cauchy sequence of X
has a limit in X.

Theorem 4.1. For any complete geodesic metric space (X, d) and for any basepoint w one can
define a geodesic spanning tree Γw =

⋃
x∈X γw,x rooted at w and a real tree T = (X, dT ) such

that any γw,x ∈ Γw is the unique (w, x)-geodesic of T .

The existence of a geodesic spanning tree Γw =
⋃
x∈X γw,x rooted at w follows from the

following proposition:

Proposition 4.2. For any complete geodesic metric space (X, d), for any pair of points x, y ∈ X
one can define an (x, y)-geodesic γx,y such that for all x, y ∈ X and for all u, v ∈ γx,y, we have
γu,v ⊆ γx,y.

Proof. Let � be a well-order on X. For any x, y ∈ X we define inductively two sets P≺vx,y and
P vx,y for any v ∈ X:

P≺vx,y = {x, y} ∪
⋃
u≺v

P ux,y,

P vx,y =

{
P≺vx,y ∪ {v} if there is an (x, y)-geodesic γ with P≺vx,y ∪ {v} ⊆ γ,
P≺vx,y otherwise.

We set Px,y :=
⋃
u∈X P

u
x,y.

Claim 1. For all x, y ∈ X and for any v ∈ X,

(1) there exists an (x, y)-geodesic γ≺vx,y such that P≺vx,y ⊆ γ≺vx,y,
(2) there exists an (x, y)-geodesic γvx,y such that P vx,y ⊆ γvx,y,
(3) there exists an (x, y)-geodesic γx,y such that Px,y ⊆ γx,y.

Proof. We prove the claim by transfinite induction on the well-order �.

To (1): Assume that for any u ≺ v, there exists an (x, y)-geodesic γux,y such that P ux,y ⊆ γux,y.
If P≺vx,y = {x, y} (this happens in particular if v is the least element of X for �), then let γ≺vx,y
be any (x, y)-geodesic. If there exists u ≺ v such that P ux,y = P≺vx,y , then let γ≺vx,y = γux,y.

Suppose now that P≺vx,y 6= {x, y} and that for any u ≺ v, P ux,y ( P≺vx,y . Note that for u ∈
P≺vx,y \ {x, y}, we have u ∈ P ux,y, and for any u � w ≺ v, γwx,y(d(x, u)) = u.

Let D := {t ∈ [0, d(x, y)] : ∀ε > 0, ∃u ∈ P≺vx,y such that |d(x, u) − t| ≤ ε}. Note that D is a

closed subset of [0, d(x, y)] and that for any u ∈ P≺vx,y , d(x, u) ∈ D. We define γ = γ≺vx,y in two
steps: we first define γ on D and then we extend it to the whole segment [0, d(x, y)].

For any t ∈ D, there exists a sequence (ui)i∈N such that for every i, ui ∈ P≺vx,y , |d(ui, x) −
t| ≤ 1/i. Set ti := d(x, ui). For any i < j ∈ N, let u∗ := max≺(ui, uj) and note that

d(ui, uj) = d(γu
∗
x,y(ti), γ

u∗
x,y(tj)) = |ti − tj | ≤ |ti − t|+ |t− tj | ≤ 1/i+ 1/j ≤ 1/2i. Consequently,

(ui)i∈N is a Cauchy sequence in (X, d) and thus (ui)i∈N converges to a point u ∈ X since (X, d)
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is complete. Note that u is independent of the choice of the sequence (ui)i∈N, and let γ(t) = u.
For any u ∈ P≺vx,y , d(x, u) ∈ D and it is easy to see that γ(d(x, u)) = u (i.e., γ contains P≺vx,y ).
Moreover, note that by triangle inequality |d(ui, u) − d(uj , u)| ≤ d(ui, uj) ≤ 1/i + 1/j for any
i, j, and consequently, d(ui, u) ≤ 1/i.

For any t, t′ ∈ D, we claim that d(γ(t), γ(t′)) = |t − t′|. Consider two sequences (ui)i∈N and
(u′i)i∈N such that for every i, |d(ui, x)− t| ≤ 1/i and |d(u′i, x)− t′| ≤ 1/i. Set ti := d(x, ui) and
t′i := d(x, u′i). Consider the respective limits u = γ(t) and u′ = γ(t′) of (ui)i∈N and (u′i)i∈N. For
every i, let u∗ = max≺(ui, u

′
i) and note that d(ui, u

′
i) = d(γu

∗
x,y(ti), γ

u∗
x,y(t

′
i)) = |ti − t′i|. By the

continuity of the distance function d(·, ·), we thus have d(u, u′) = d(γ(t), γ(t′)) = |t− t′|.
Suppose now that γ is defined on D. For every interval [t0, t1] ⊆ [0, d(x, y)] such that

[t0, t1]∩D = {t0, t1}, let γt0,t1 : [0, t1 − t0]→ X be an arbitrary (γ(t0), γ(t1))-geodesic (it exists
since d(γ(t0), γ(t1)) = t1− t0 and (X, d) is geodesic). For any t ∈ [t0, t1], let γ(t) = γt0,t1(t− t0).

For any 0 ≤ t < t′ ≤ d(x, y), we claim that d(γ(t), γ(t′)) ≤ t′ − t. Let t0 := sup(D ∩ [0, t]),
t1 := inf(D ∩ [t, d(x, y)]), t′0 := sup(D ∩ [0, t′]), t′1 := inf(D ∩ [t′, d(x, y)]). If t′0 < t1, then
t0 = t′0 ≤ t < t′ ≤ t′1 = t1 and d(γ(t), γ(t′)) = d(γt0,t1(t− t0), γt0,t1(t′ − t0)) = t′ − t. Otherwise,
we have t0 ≤ t ≤ t1 ≤ t′0 ≤ t′ ≤ t′1. If t = t1, then d(γ(t), γ(t1)) = t1 − t = 0. Otherwise, since
t ∈ [t0, t1] and [t0, t1] ∩ D = {t0, t1}, d(γ(t), γ(t1)) = d(γt0,t1(t − t0), γt0,t1(t1 − t0)) = t1 − t.
Similarly, d(γ(t′0), γ(t′)) = t′−t′0. Since t1, t

′
0 ∈ D, we already know that d(γ(t1), γ(t′0)) = t′0−t1.

Consequently,

t′− t = t′− t′0 + t′0− t1 + t1− t = d(γ(t′), γ(t′0)) + d(γ(t′0), γ(t1)) + d(γ(t1), γ(t)) ≥ d(γ(t′), γ(t)).

Suppose now that there exists 0 ≤ t < t′ ≤ d(x, y) such that d(γ(t), γ(t′)) < t′ − t. Then
d(x, y) ≤ d(γ(0), γ(t)) +d(γ(t), γ(t′)) +d(γ(t′), γ(d(x, y))) < t−0 + t′− t+d(x, y)− t′ = d(x, y),
a contradiction. Consequently, for any 0 ≤ t < t′ ≤ d(x, y), we have d(γ(t), γ(t′)) = t′ − t and
thus γ is an (x, y)-geodesic containing P≺vx,y .

To (2): If P vx,y = P≺vx,y , the property holds by the previous statement of the claim. Otherwise,

P vx,y = P≺vx,y ∪ {v}, and the property holds by the definition of P vx,y.

To (3): If there exists v ∈ X such that X coincides with {u ∈ X : u � v}, then we are
done by the previous statement of the claim. Otherwise, the proof is identical to the proof of
statement (1) of the claim. �

Claim 2. Px,y is an (x, y)-geodesic.

Proof. By Claim 1, there exists an (x, y)-geodesic γx,y such that Px,y ⊆ γx,y. Conversely, for
any v ∈ γx,y, since P≺vx,y ⊆ Px,y, γx,y is an (x, y)-geodesic containing P≺vx,y ∪ {v}. Therefore, by
the definition of P vx,y, v ∈ P vx,y ⊆ Px,y. �

Let B(x, r) denotes the closed ball of radius r centered at a point x of (X, d).

Claim 3. For all x, y ∈ X and for any u ∈ Px,y, Px,u = Px,y ∩B(x, d(x, u)).

Proof. Let γ1 := Px,y ∩ B(x, d(u, x)) and γ2 := Px,y ∩ B(y, d(u, y)). Note that Px,y = γ1 ∪ γ2,
that γ1 is an (x, u)-geodesic, and that γ2 is a (u, y)-geodesic. Let γ3 := Px,u ∪ γ2, and note that
γ3 is an (x, y)-geodesic.

We prove the claim by induction on �. Note that if for any w ≺ v, Pwx,u = Pwx,y∩B(x, d(x, u)),

then P≺vx,u =
⋃
w≺v P

w
x,u =

⋃
w≺v

(
Pwx,y ∩B(x, d(x, u))

)
= P≺vx,y ∩ B(x, d(x, u)). If v ∈ P vx,y ∩

B(x, d(x, u)) ⊆ γ1, then γ1 is an (x, u)-geodesic containing P≺vx,u ∪ {v}, and by the definition of
P vx,u, we have v ∈ P vx,u ⊆ Px,u. Conversely, suppose that v ∈ P vx,u ⊆ Px,u ⊆ Px,u ∪ γ2 = γ3.

Since {v} ∪ (P≺vx,y ∩ B(x, d(u, x))) ⊆ Px,u and P≺vx,y ∩ B(y, d(u, y)) ⊆ γ2, γ3 is an (x, y)-geodesic

containing P≺vx,y ∪ {v}. By the definition of P vx,y, we have v ∈ P vx,y ⊆ Px,y �

By Claim 2, we can consider the set of geodesics {Px,y : x, y ∈ X}. For all x, y ∈ X and for
any u, v ∈ Px,y such that d(v, x) < d(u, x), by Claim 3, Pu,v ⊆ Px,u ⊆ Px,y. This finishes the
proof of Proposition 4.2. �
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Consequently, Γw =
⋃
x∈X γw,x is a geodesic spanning tree of (X, d) rooted at w. For any

x ∈ X, denote by [w, x] the geodesic segment between x and w which is the image of the
geodesic γx,w. From the definition of Γw, if x′ ∈ [x,w], then [x′, w] ⊆ [x,w]. From the continuity
of geodesic maps and the definition of Γw it follows that for any two geodesics γw,x, γw,y ∈ Γw
the intersection [w, x] ∩ [w, y] is the image [z, w] of some geodesic γw,z ∈ Γw. Call z the lowest
common ancestor of x and y (with respect to the root w) and denote it by lca(x, y). Define dT
by setting dT (w, x) := d(w, x) and dT (x, y) := d(w, x) + d(w, y) − 2d(w, z) = d(x, z) + d(z, y)
for any two points x, y ∈ X.

The existence of a real tree T = (X, dT ) such that any γw,x ∈ Γw is the unique (w, x)-geodesic
of T immediately follows from the following proposition:

Proposition 4.3. T = (X, dT ) is a real tree and any γw,x ∈ Γw is the unique (w, x)-geodesic
of T .

Proof. From the definition, dT (w, x) = d(w, x) and dT (x, y) ≥ d(x, y) for any x, y ∈ X. For a
pair of points x, y ∈ X, set z := lca(x, y). Denote by [x, z] the portion of the geodesic segment
[x,w] between x and z and by [y, z] the portion of the geodesic segment [y, w] between y and
z. Then [x, z] and [y, z] are geodesic segments of (X, d), and thus they are geodesic segments
of T . Let [x, y] := [x, z] ∪ [z, y]. We assert that [x, y] is a geodesic segment of T . Suppose
that [x, z] and [z, y] are the images of the geodesics γT,x,z and γT,y,z of (X, d), respectively.
Let γT,x,y denotes the continuous map from [0, dT (x, y)] to X such that γT,x,y(t) = γT,x,z(t) if
0 ≤ t ≤ d(x, z) and γT,x,y(t) = γT,z,y(t − d(x, z)) if d(x, z) ≤ t ≤ d(x, z) + d(z, y). Clearly,
[x, y] is the image of γT,x,y and z = γT,x,y(d(x, z)). Let 0 ≤ t < t′ ≤ d(x, z) + d(z, y) and let
u := γT,x,y(t) and v := γT,x,y(t

′). If t, t′ ≤ d(x, z), then u, v ∈ [x, z] and one can easily see
that dT (u, v) = d(u, v) = t′ − t. Analogously if t, t′ ≥ d(x, z), then dT (u, v) = d(u, v) = t′ − t.
Now, let t ≤ d(x, z) ≤ t′. Then one can easily see that lca(u, v) = lca(x, y) = z. Consequently,
dT (u, v) = d(u, z)+d(z, v) = (d(x, z)− t)+(t′−d(x, z)) = t′− t and therefore [x, y] is a geodesic
segment of T and γT,x,y is a geodesic map.

Let x, y, u be any triplet of points of X and set z := lca(x, y), z′ := lca(x, u), and z′′ :=
lca(u, y). Suppose without loss of generality that d(u, z′) ≤ d(u, z′′). Since z′, z′′ belong to
[u,w] and [z′, w] ∪ [z′′, w] ⊆ [u,w], necessarily z′′ ∈ [z′, w]. Since z′ ∈ [x,w], we conclude that
z′′ ∈ [x,w]. Since we also have z′′ ∈ [y, w], from the definition of z we deduce that z′′ ∈ [z, w].
If z 6= z′′, from the definition of z′′ we conclude that z /∈ [z′, z′′], i.e., z ∈ [x, z′]. In this
case, z′ ∈ [z, w] ⊆ [y, w], yielding z′′ = z′. This show that either (1) z = z′′ ∈ [z′, w] or (2)
z′ = z′′ ∈ [z, w]. We will use this conclusion to prove that T is a real tree.

First we show that T is uniquely geodesic, i.e., that for any points x, y, u such that dT (x, y) =
dT (x, u) + dT (u, y), u belongs to [x, y]. Since z′′ ∈ [z′, w], dT (x, u) + dT (u, y) = d(x, z′) +
2d(z′, u)+d(z′, z′′)+d(z′′, y). Since dT (x, y) = d(x, z)+d(z, y) and dT (x, y) = dT (x, u)+dT (u, y),
we obtain that d(x, z) +d(z, y) = d(x, z′) + 2d(z′, u) +d(z′, z′′) +d(z′′, y). If z′ = z′′ ∈ [z, w] this
equality is possible only if z = z′ = z′′ and d(z′, u) = 0. Therefore, in this case u = z′ = z ∈
[x, y]. If z = z′′ ∈ [z′, w], then again the previous equality is possible only if u = z′ ∈ [x, z] ⊆
[x, y]. Thus [x, y] is the unique geodesic segment connecting x and y in T .

Now suppose that [x, u] ∩ [u, y] = {u} and we assert that [x, u] ∪ [u, y] = [x, y]. Obviously, it
suffices to show that u ∈ [x, y]. Note that by the definitions of z′ and z′′ and since z′ ∈ [u, z′′],
we have [u, z′] ⊆ [u, x] ∩ [u, y]. Since [x, u] ∩ [u, y] = {u}, necessarily u = z′. Observe also that
if z′ /∈ [x, z], then z 6= z′, z′ = z′′, z ∈ [x, z′], and [z, u] = [z, z′] = [z, z′′] ∈ [x, z′] ∩ [y, z′′] =
[x, u] ∩ [y, u], a contradiction. Consequently u = z′ ∈ [x, z] ⊆ [x, y]. This finishes the proofs of
Proposition 4.3 and Theorem 4.1. �

Remark 4.4. The proof of Theorem 4.1 of the existence of GS-trees is completely different
from the proof of Polat [30] of the existence of BFS-trees in arbitrary graphs. The proof of [30],
as the usual BFS-tree construction in finite graphs, constructs an increasing sequence of trees
that span vertices at larger and larger distances from the root. In other words, from an arbitrary
well-ordering of the set V of vertices of G, Polat [30] constructs a well-ordering of V that is
consistent with the distances to the root.
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When considering arbitrary geodesic metric spaces, a well-ordering consistent with the dis-
tances to the basepoint w does not always exist; consider for example the segment [0, 1] with
w = 0.

5. Fast approximation

In this section, we introduce a new parameter of a graph G (or of a geodesic space X), the
rooted insize. This parameter depends on an arbitrary fixed BFS-tree of G (or a GS-tree of
X). It can be computed efficiently and it provides constant-factor approximations for δ(G),
ς(G), and τ(G). In particular, we obtain a very simple factor 8 approximation algorithm (with
an additive constant 1) for the hyperbolicity δ(G) of an n-vertex graph G running in optimal
O(n2) time (assuming that the input is the distance matrix of G).3

5.1. Fast approximation of hyperbolicity. Consider a graph G = (V,E) and an arbitrary
BFS-tree T of G rooted at some vertex w. Denote by xy the vertex of [w, x]T at distance
b(x|y)wc from w and by yx the vertex of [w, y]T at distance b(x|y)wc from w. Let ρw,T (G) :=
max{d(xy, yx) : x, y ∈ V }. In some sense, ρw,T (G) can be seen as the insize of G with respect
to w and T . For this reason, we call ρw,T (G) the rooted insize of G with respect to w and
T . The differences between ρw,T (G) and ι(G) are that we consider only geodesic triangles
∆(w, x, y) containing w where the geodesics [w, x] and [w, y] belong to T , and we consider only
d(xy, yx), instead of max{d(xy, yx), d(xw, wx), d(yw, wy)}. Using T , we can also define the rooted
thinness of G with respect to w and T : let µw,T (G) = max

{
d(x′, y′) : ∃x, y ∈ V such that x′ ∈

[w, x]T , y
′ ∈ [w, y]T and d(w, x′) = d(w, y′) ≤ (x|y)w

}
.

Similarly, for a geodesic space (X, d) and an arbitrary GS-tree T rooted at some point w (see
Section 4), denote by xy the point of [w, x]T at distance (x|y)w from w and by yx the point of
[w, y]T at distance (x|y)w from w. Analogously, we define the rooted insize of (X, d) with respect
to w and T as ρw,T (X) := sup{d(xy, yx) : x, y ∈ X}. We also define the rooted thinness of (X, d)
with respect to w and T as µw,T (X) = sup

{
d(x′, y′) : ∃x, y ∈ X such that x′ ∈ [w, x]T , y

′ ∈
[w, y]T and d(w, x′) = d(w, y′) ≤ (x|y)w

}
.

Using the same ideas as in the proofs of Propositions 2.2 and 3.1 establishing that ι(X) =
τ(X) and ι(G) = τ(G), we can show that these two definitions give rise to the same value.

Proposition 5.1. For any geodesic space X and any GS-tree T rooted at a point w, ρw,T (X) =
µw,T (X). Analogously, for any graph G and any BFS-tree T rooted at w, ρw,T (G) = µw,T (G).

In the following, when G (or X), w and T are clear from the context, we denote ρw,T (G)
(or ρw,T (X)) by ρ. The next theorem is the main result of this paper. It establishes that 2ρ
provides an 8-approximation of the hyperbolicity of δ(G) or δ(X), and that in the case of a
finite graph G, ρ can be computed in O(n2) time when the distance matrix D of G is given.

Theorem 5.2. Given a graph G (respectively, a geodesic space X) and a BFS-tree T (respec-
tively, a GS-tree T ) rooted at w,

(1) δ(G) ≤ 2ρw,T (G) + 1 ≤ 8δ(G) + 1 (respectively, δ(X) ≤ 2ρw,T (X) ≤ 8δ(X)).
(2) If G has n vertices, given the distance matrix D of G, the rooted insize ρw,T (G) can be

computed in O(n2) time. Consequently, an 8-approximation (with an additive constant 1)
of the hyperbolicity δ(G) of G can be found in O(n2) time.

Proof. We prove the first assertion of the theorem for graphs (for geodesic spaces, the proof is
similar). Let ρ := ρw,T (G), δ := δ(G), and δw := δw(G). By Gromov’s Proposition 2.1, δ ≤ 2δw.
We proceed in two steps. In the first step, we show that ρ ≤ 4δ. In the second step, we prove
that δw ≤ ρ+ 1

2 . Hence, combining both steps we obtain δ ≤ 2δw ≤ 2ρ+ 1 ≤ 8δ + 1.
The first step follows from Proposition 3.1 and from the inequality ρ ≤ ι(G) = τ(G). To

prove that δw ≤ ρ + 1/2, for any quadruplet x, y, z, w containing w, we show the four-point
condition d(x, z) + d(y, w) ≤ max{d(x, y) + d(z, w), d(y, z) + d(x,w)} + (2ρ + 1). Assume
without loss of generality that d(x, z) + d(y, w) ≥ max{d(x, y) + d(z, w), d(y, z) + d(x,w)}

3In all algorithmic results, we assume the word-RAM model.
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and that d(w, xy) = d(w, yx) ≤ d(w, yz) = d(w, zy). Since yx, yz belong to the shortest path
[w, y] of T (that is also a shortest path of G), we have d(yx, yz) = d(y, yx)− d(y, yz). From the
definition of ρ, we also have d(xy, yx) ≤ ρ and d(yz, zy) ≤ ρ. Consequently, by the definition of
xy, yx, yz, zy and by the triangle inequality, we get

d(y, w) + d(x, z) ≤ d(y, w) + d(x, xy) + d(xy, yx) + d(yx, yz) + d(yz, zy) + d(zy, z)

≤ (d(y, yz) + d(yz, w)) + d(x, xy) + ρ+ d(yx, yz) + ρ+ d(zy, z)

= d(y, yz) + d(w, zy) + d(x, xy) + d(yx, yz) + d(zy, z) + 2ρ

= d(y, yz) + d(x, xy) + (d(y, yx)− d(y, yz)) + (d(w, zy) + d(zy, z)) + 2ρ

= d(y, yz) + d(x, xy) + d(y, yx)− d(y, yz) + d(w, z) + 2ρ

≤ d(x, y) + 1 + d(w, z) + 2ρ,

the last inequality following from the definition of xy and yx in graphs (in the case of geodesic
metric spaces, we have d(x, xy) + d(y, yx) = d(x, y)). This establishes the four-point condition
for w, x, y, z and proves that δw ≤ ρ+ 1/2.

We present now a simple self-contained algorithm for computing the rooted insize ρ in O(n2)
time when G = (V,E) is a graph with n vertices. For any non-negative integer r, let x(r) be the
unique vertex of [w, x]T at distance r from w if r < d(w, x) and the vertex x if r ≥ d(w, x). First,
we compute in O(n2) time a table M with rows indexed by V , columns indexed by {1, . . . , n},
and such that M(x, r) is the identifier of the vertex x(r) of [w, x]T located at distance r from w.
To compute this table, we explore the tree T starting from w. Let x be the current vertex and r its
distance to the root w. For every vertex y in the subtree of T rooted at x, we set M(y, r) := x.
Assuming that the table M and the distance matrix D := (d(u, v) : u, v ∈ X) between the
vertices of G are available, we can compute xy = M(x, b(x|y)wc), yx = M(y, b(x|y)wc) and
d(xy, yx) in constant time for each pair of vertices x, y, and thus ρ = max{d(xy, yx) : x, y ∈ V }
can be computed in O(n2) time. �

Theorem 5.2 provides a new characterization of infinite hyperbolic graphs.

Corollary 5.3. Consider an infinite graph G and an arbitrary BFS-tree T rooted at a vertex
w. The graph G is hyperbolic if and only if its rooted insize ρw,T (G) is finite.

When the graph G is given by its adjacency list, one can compute its distance-matrix in
O(min(mn, n2.38)) time and then use the algorithm described in the proof of Theorem 5.2.
However, we explain in the next proposition how to obtain an 8-approximation of δ(G) in
O(mn) time using only linear space.

Proposition 5.4. For any graph G with n vertices and m edges that is given by its adjacency
list, one can compute an 8-approximation (with an additive constant 1) of the hyperbolicity δ(G)
of G in O(mn) time and in linear O(n+m) space.

Proof. Fix a vertex w and compute a BFS-tree T of G rooted at w. Note that at the same time,
we can compute the value d(w, x) for each x ∈ V .

For each vertex x, consider the map Px : {0, . . . , d(w, x)} → V such that for each 0 ≤ i ≤
d(w, x), Px(i) is the unique vertex on the path from w to x in T at distance i from w. For every
vertex x, consider the map Qx : V → N ∪ {∞} such that for each y ∈ V , Qx(y) = d(y, Px(i)) if
i = d(w, y) ≤ d(w, x) and Qx(y) =∞ otherwise.

We perform a depth first traversal of T starting at w and consider every vertex x in this
order. Initially, Px = Pw can be trivially computed in constant time and Qx = Qw can be
initialized in O(n) time. During the depth first traversal of T , each time we go up or down, Px
can be updated in constant time. Assume now that a vertex x is fixed. In O(n+m) time and
space, we compute d(x, y) for every y ∈ V by performing a BFS of G from x. Moreover, each
time we modify x, for each y, we can update Qx(y) in constant time by setting Qx(y) := ∞ if
d(w, y) > d(w, x), setting Qx(y) := d(x, y) if d(w, y) = d(w, x), and keeping the previous value
if d(w, y) < d(w, x).
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We perform a depth first traversal of T from w and consider every vertex y in this order. As
for Px, we can update Py in constant time at each step. Since d(w, x), d(w, y), and d(x, y) are
available, one can compute (x|y)w in constant time. Therefore, in constant time, we can find
yx = Py(b(x|y)wc) using Py and compute d(xy, yx) = Qx(yx) using Qx.

Consequently, for each x, we compute max{d(xy, yx) : y ∈ V } in O(m) time and therefore,
we compute ρw,T (G) in O(mn) time. At each step, we only need to store the distances from all
vertices to w and to the current vertex x, as well as arrays representing the maps Px, Qx, and
Py. This can be done in linear space. �

Remark 5.5. If we are given the distance-matrix D of G, we can use the algorithm described
in the proof of Proposition 5.4 to avoid using the O(n2) space occupied by table M in the proof
of Theorem 5.2. In this case, since the distance-matrix D of G is available, we do not need to
perform a BFS for each vertex x and the algorithm computes ρw,T (G) in O(n2) time.

The following result shows that the bounds in Theorem 5.2 are optimal.

Proposition 5.6. For any positive integer k, there exists a graph Hk, a vertex w, and a BFS-
tree T rooted at w such that δ(Hk) = k and ρw,T (Hk) = 4k.

For any positive integer k, there exists a graph Gk, a vertex w, and a BFS-tree T rooted at
w such that ρw,T (Gk) ≤ 2k and δ(Gk) = 4k.

Proof. The graph Hk is the 2k × 2k square grid from which we removed the vertices of the
rightmost and downmost (k − 1)× (k − 1) square (see Fig. 2, left). The graph Hk is a median
graph and therefore its hyperbolicity is the size of a largest isometrically embedded square
subgrid [10,25]. The largest square subgrid of Hk has size k, thus δ(Hk) = k.

Let w be the leftmost upmost vertex of Hk. Let x be the downmost rightmost vertex of Hk

and y be the rightmost downmost vertex of Hk. Then d(x, y) = 2k and d(x,w) = d(y, w) = 3k.
Let P ′ and P ′′ be the shortest paths between w and x and w and y, respectively, running on the
boundary of Hk. Let T be any BFS-tree rooted at w and containing the shortest paths P ′ and
P ′′. The vertices xy ∈ P ′ and yx ∈ P ′′ are located at distance (x|y)w = 1

2(d(w, x) + d(w, y) −
d(x, y)) = 2k from w. Thus xy is the leftmost downmost vertex and yx is the rightmost upmost
vertex. Hence ρw,T (Hk) ≥ d(xy, yx) = 4k. Since the diameter of Hk is 4k, we conclude that
ρw,T (Hk) = 4k = 4δ(Hk).

Let Gk be the 4k× 4k square grid and note that δ(Gk) = 4k. Let w be the center of Gk. We
suppose that Gk is isometrically embedded in the `1-plane in such a way that w is mapped to the
origin of coordinates (0, 0) and the four corners of Gk are mapped to the points with coordinates
(2k, 2k), (−2k, 2k), (−2k,−2k), (2k,−2k), We build the BFS-tree T of Gk as follows. First we
connect w to each of the corners of Gk by a shortest zigzagging path (see Fig. 3). For each i ≤ k,
we add a vertical path from (i, i) to (i, 2k), from (i,−i) to (i,−2k), from (−i, i) to (−i, 2k), and
from (−i,−i) to (−i,−2k). Similarly, for each i ≤ k, we add a horizontal path from (i, i) to
(2k, i), from (i,−i) to (2k,−i), from (−i, i) to (−2k, i), and from (−i,−i) to (−2k,−i). For any
vertex v = (i, j), the shortest path of Gk connecting w to v in T has the following structure:
it consists of a subpath of one of the zigzagging paths until this path arrives to the vertical or
horizontal line containing v and then it continues along this line until v.

We divide the grid in four quadrants Q1 = {(i, j) : 0 ≤ i, j ≤ 2k}, Q2 = {(i, j) : −2k ≤ i ≤
0, 0 ≤ j ≤ 2k}, Q3 = {(i, j) : −2k ≤ i, j ≤ 0} and Q4 = {(i, j) : 0 ≤ i ≤ 2k,−2k ≤ j ≤ 0}.
Pick any two vertices x = (i, j) and y = (i′, j′). If x and y belong to opposite quadrants of
Gk, then w ∈ I(x, y) and xy = yx = w. So, we can suppose that either x and y belong to the
same quadrant or to two incident quadrants of Gk. Denote by m = m(x, y, w) the median of
the triplet x, y, w, i.e., the unique vertex in the intersection I(x, y)∩ I(x,w)∩ I(y, w) (m is the
vertex having the median element of the list {i, 0, i′} as the first coordinate and the median
element of the list {j, 0, j′} as the second coordinate). Notice that m has the same distance
r := (x|y)w to w as xy and yx ((x|y)w is integer because Gk is bipartite).

Case 1. x = (i, j) and y = (i′, j′) belong to the same quadrant of Gk.
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Figure 2. Since ρw,T (Hk) = d(xy, yx) = 4k = 4δ(Hk), the inequality ρw,T (G) ≤
4δ is tight in the proof of Theorem 5.2. Since ρw∗,T (H∗k) ≥ 4k−2 = 4δ(H∗k)−O(1)
for any w∗, T , we have ρ−(H∗k) ≥ 4δ(H∗k)−O(1).

2k

2k 2k

2k

w

Figure 3. Since ρw,T (Gk) ≤ 2k = 1
2δ(Gk), the inequality δ ≤ 2ρw,T (G) + 1 is

tight (up to an additive factor of 1) in the proof of Theorem 5.2.
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Figure 4. To the proof of the second statement of Proposition 5.6.

Suppose that x and y belong to the first quadrant (alias 2k × 2k square) Q1 of Gk, i.e.,
i, j, i′, j′ ≥ 0. We divide Q1 into four k× k squares Q11 = {(i, j) : k ≤ i, j ≤ 2k}, Q12 = {(i, j) :
0 ≤ i ≤ k, k ≤ j ≤ 2k}, Q13 = {(i, j) : 0 ≤ i, j ≤ k} and Q14 = {(i, j) : k ≤ i ≤ 2k, 0 ≤ j ≤ k}.

Since the vertices xy, yx, and m have the same distance r to w and belong to Q1, they all
belong to the same side L of the sphere Sr(w) of the `1-plane of radius r and centered at w. Let
L0 := [xy, yx] be the subsegment of L between xy and yx. Notice first that if L0 is completely
contained in one or two incident k × k squares (say in Q12 and Q13), then d(xy, yx) ≤ 2k.
Indeed, in this case L0 can be extended to a segment L′0 having its ends on two vertical sides of
the rectangle Q12 ∪Q13. Therefore, L′0 is the diagonal of a k × k square included in Q12 ∪Q13,
thus the `1-length of L′0 (and thus of L0) is at most 2k. Thus we can suppose that the vertices
xy and yx are located in two non incident k × k squares. This is possible only if one of these
vertices belongs to Q12 and another belongs to Q14, say xy ∈ Q12 and yx ∈ Q14. This implies
that x ∈ Q11 ∪Q12 and y ∈ Q11 ∪Q14. Notice that neither x nor y may belong to Q11. Indeed,
if x ∈ Q11, then the center (k, k) of Q1 belongs to the path of T from w to x. Consequently,
this path is completely contained in Q11∪Q13, contrary to the assumption that xy ∈ Q12. Thus
x ∈ Q12 and y ∈ Q14, i.e., 0 ≤ i ≤ k, k ≤ j ≤ 2k, k ≤ i′ ≤ 2k, and 0 ≤ j′ ≤ k. This means
that the median m of the triplet x, y, w has coordinates (i, j′) and belongs to Q13. The path of
T from w to x = (i, j) is zigzagging until (i, i) and then is going vertically. Analogously, the
path of T from w to y = (i′, j′) is zigzagging until (j′, j′) and then is going horizontally. If we
suppose, without loss of generality, that i ≤ j′, then m = (i, j′) belongs to the (w, x)-path of
T and therefore xy = m. This contradicts our assumption that xy and yx do not belong to a
common or incident k × k squares. This concludes the proof of Case 1.

Case 2. x = (i, j) and y = (i′, j′) belong to incident quadrants of Gk.

Suppose that x ∈ Q1 and y ∈ Q2, i.e., i, j, j′ ≥ 0 and i′ ≤ 0. The points xy and yx belong
to different but incident sides L,L′ of the sphere Sr(w) of the `1-plane, xy ∈ L and yx ∈ L′.
The median point m also belongs to these sides. Since i′ ≤ 0 ≤ i, we conclude that m has 0
as the first coordinate. Thus m belongs to both segments L and L′. Suppose without loss of
generality that j ≤ j′, i.e., the second coordinate of m is j. Consequently, r = j. If i ≥ b j2c,
then the vertex (b j2c, b

j
2c) belongs simultaneously to L and to the path of T connecting w and

x; thus in this case xy is either (b j2c, d
j
2e) or (d j2e, b

j
2c). If i < b j2c, then one can easily see that

the intersection of L with the path of T from w to x is the vertex xy = (i, j − i). In both cases,

d(xy, c) ≤ d j2e where c = (0, b j2c). Analogously, we can show that d(yx, c) ≤ d j2e. Consequently,

d(xy, yx) ≤ d(xy, c) + d(c, yx) = 2d j2e ≤ 2k as j ≤ 2k. This finishes the analysis of Case 2.
Consequently, ρ = ρw,T (Gk) ≤ 2k, concluding the proof of the proposition. �

The definition of ρw,T (G) depends on the choice of the basepoint w and of the BFS-tree T
rooted at w. We show below that the best choices of w and T do not improve the bounds in The-
orem 5.2. For a graph G, let ρ−(G) = min{ρw,T (G) : w ∈ V and T is a BFS-tree rooted at w}
and call ρ−(G) the minsize of G. On the other hand, the maxsize ρ+(G) = max{ρw,T (G) : w ∈
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V and T is a BFS-tree rooted at w} of G coincides with its insize ι(G). Indeed, from the defi-
nition, ρ+(G) ≤ ι(G). Conversely, consider a geodesic triangle ∆(x, y, w) maximizing the insize
and suppose, without loss of generality, that d(xy, yx) = ι(G), where xy and yx are chosen on the
sides of ∆(x, y, w). Then, if we choose a BFS-tree rooted at w, and such that xy is an ancestor
of x and yx is an ancestor of y, then one obtains that ρ+(G) ≥ ι(G). We show in Section 6 that
ρ+(G) (= ι(G) = τ(G)) can be computed in polynomial time, and by Proposition 3.1, it gives
a 4-approximation of δ(G).

On the other hand, the next proposition shows that one cannot get better than a factor 8
approximation of hyperbolicity if instead of computing ρw,T (G) for an arbitrary BFS-tree T
rooted at some arbitrary vertex w, we compute the minsize ρ−(G). Furthermore, we show in
Section 6 that we cannot approximate ρ−(G) with a factor strictly better than 2 unless P =
NP.

Proposition 5.7. For any positive integer k, there exists a graph H∗k with δ(H∗k) = k + O(1)
and ρ+(H∗k) ≥ ρ−(H∗k) ≥ 4k − 2 and a graph G∗k with δ(G∗k) = 4k and ρ−(G∗k) ≤ 2k.

Proof. The graph G∗k is just the graph Gk from Proposition 5.6. By this proposition and the
definition of ρ−(G∗k), we have δ(G∗k) = 4k and ρ−(G∗k) ≤ ρw,T (G∗k) ≤ 2k. Let H ′k be the graph
Hk from Proposition 5.6 in which we cut-off the vertices xy and yx: namely, we removed these
two vertices and made adjacent their neighbors in Hk. This way, in H ′k the vertices x, y are
pairwise connected to w by unique shortest paths, that are the boundary paths P ′ and P ′′ of
Hk shortcut by removing xy and yx and making their neighbors adjacent. Since δ(Hk) = k,
from the definition of H ′k it follows that δ(H ′k) may differ from k by a small constant. Let H∗k be
the graph obtained by gluing two copies of H ′k along the leftmost upmost vertex w (see Fig. 2,
right). Consequently, the vertex w becomes the unique articulation point of H∗k which has two
blocks, each of them isomorphic to H ′k. Pick any basepoint w∗ and any BFS-tree T ∗ of H∗k
rooted at w∗. We assert that ρw∗,T ∗(H

∗
k) ≥ 4k − 2. Indeed, pick the vertices x and y in the

same copy of H ′k that do not contain w∗ (if w∗ 6= w). Then both paths of T ∗ connecting w∗ to
x and y pass through the vertex w. Since w is connected to x and y by unique shortest paths
P ′ and P ′′, the paths P ′ and P ′′ belong to T ∗. The vertices x∗y and y∗x in the tree T ∗ are the
vertices of P ′ and P ′′, respectively, which are the neighbors of xy and yx located at distance
b(x|y)wc from w. One can easily see that d(x∗y, y

∗
x) = 4k − 2, i.e., ρw∗,T ∗(H

∗
k) ≥ 4k − 2. �

If instead of knowing the distance-matrix D, we only know the distances between the vertices
of G up to an additive error k, then we can define a parameter ρ̂w,T (G) in a similar way as the
rooted insize ρw,T (G) is defined and show that 2ρ̂w,T (G) + k+ 1 is an 8-approximation of δ(G)
with an additive error of 3k + 1.

Proposition 5.8. Given a graph G with n vertices, a BFS-tree T rooted at a vertex w, and

a matrix D̂ such that d(x, y) ≤ D̂(x, y) ≤ d(x, y) + k, we can compute in time O(n2) a value
ρ̂w,T (G) such that δ(G) ≤ 2ρ̂w,T (G) + k + 1 ≤ 8δ(G) + 3k + 1.

Proof. Consider a graph G = (V,E) with n vertices, a vertex w ∈ V , and a BFS-tree of G rooted
at w. We can assume that the exact distance d(x,w) in G from w to every vertex x ∈ V is
known. For any vertex x ∈ V , let [w, x]T be the path connecting w to x in T . Denote by xy the

point of [w, x]T at distance b(x̂|y)wc from w and by yx the point of [w, y]T at distance b(x̂|y)wc
from w, where (x̂|y)w := 1

2(d(x,w) + d(y, w) − D̂(x, y)). Let ρ̂ := ρ̂w,T (G) := max{D̂(xy, yx) :

x, y ∈ V }. Using the same arguments as in the proof of Theorem 5.2, if D̂(x, y) is known for
each x, y ∈ V , the value of ρ̂ can be computed in O(n2) time. In what follows, we show that
δ(G) ≤ 2ρ̂+ k + 1 ≤ 8δ(G) + 3k + 1.

Let δ := δ(G), δw := δw(G), and τ := τ(G). By Proposition 2.1, δ ≤ 2δw, and by Proposition
3.1, τ ≤ 4δ. We proceed in two steps: in the first step, we show that ρ̂ ≤ τ + k ≤ 4δ + k,
in the second step, we prove that δw ≤ ρ̂ + k+1

2 . Hence, combining both steps we obtain
δ ≤ 2δw ≤ 2ρ̂+ k + 1 ≤ 8δ + 3k + 1.
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The first assertion follows from the fact that for any x, y ∈ V , b(x̂|y)wc ≤ (x̂|y)w ≤ (x|y)w (as

d(x, y) ≤ D̂(x, y)). Consequently, we have d(xy, yx) ≤ τ and therefore D̂(xy, yx) ≤ d(xy, yx) +
k ≤ τ + k ≤ 4δ + k.

To prove that δw ≤ ρ̂+ k+1
2 , for any quadruplet x, y, z, w containing w, we show the four-point

condition d(x, z) + d(y, w) ≤ max{d(x, y) + d(z, w), d(y, z) + d(x,w)} + (2ρ̂ + k + 1). Assume
without loss of generality that d(x, z) + d(y, w) ≥ max{d(x, y) + d(z, w), d(y, z) + d(x,w)} and
that d(w, xy) = d(w, yx) ≤ d(w, yz) = d(w, zy). The remaining part of the proof closely follows
the proof of Theorem 5.2.

From the definition of ρ̂, d(xy, yx) ≤ ρ̂ and d(yz, zy) ≤ ρ̂. Consequently, by the definition of
xy, yx, yz, zy and by the triangle inequality, we get

d(y, w) + d(x, z) ≤ d(y, w) + d(x, xy) + d(xy, yx) + d(yx, yz) + d(yz, zy) + d(zy, z)

≤ (d(y, yz) + d(yz, w)) + d(x, xy) + ρ̂+ d(yx, yz) + ρ̂+ d(zy, z)

= d(y, yz) + d(w, zy) + d(x, xy) + d(yx, yz) + d(zy, z) + 2ρ̂

= d(y, yz) + d(x, xy) + (d(y, yx)− d(y, yz)) + d(w, z) + 2ρ̂

= d(x, xy) + d(y, yx) + d(z, w) + 2ρ̂

≤ d(x, y) + d(z, w) + k + 1 + 2ρ̂.

The last line inequality follows from

d(x, xy) + d(y, yx) = d(x,w)− b(x̂|y)wc+ d(y, w)− b(x̂|y)wc

≤ d(x,w) + d(y, w)− 2(x̂|y)w + 1

= d(x,w) + d(y, w)− (d(x,w) + d(y, w)− D̂(x, y)) + 1

≤ d(x, y) + k + 1.

This establishes the four point condition for w, x, y, z and proves that δw ≤ ρ̂+ k+1
2 . �

Remark 5.9. A consequence of Proposition 5.8 (suggested by one of the referees) is that for
any two graphs G,H on the same set of vertices V , if max{|dG(x, y)−dH(x, y)| : x, y ∈ V } ≤ k,
then δ(G) can be bounded linearly by a function of δ(H) and k. This property can be viewed
as a specific instance of the fact that hyperbolicity is a quasi-isometry invariant [7].

Interestingly, the rooted insize ρw,T (X) can also be defined in terms of a distance approx-
imation parameter. Consider a geodesic space X and a GS-tree T rooted at some point w,
and let ρ := ρw,T (X). For a point x ∈ X and r ∈ R+, denote by x(r) the unique point of
[w, x]T at distance r from w if r < d(w, x) and the point x if r ≥ d(w, x). For any x, y and
ε ∈ R+, let rxy(ε) := sup{r : d(x(r′), y(r′)) ≤ ε for any 0 ≤ r′ ≤ r}. This supremum is a maxi-
mum because the function r′ 7→ d(x(r′), y(r′)) is continuous. Observe that by Proposition 5.1,
ρ = inf{ε : rxy(ε) ≥ (x|y)w for all x, y}.

Denote by xy(ε) (respectively, yx(ε)) the point of [x,w]T (respectively, of [w, y]T ) at distance

rxy(ε) from w. Let d̂ε(x, y) := d(x, xy(ε)) + ε+ d(yx(ε), y). By the triangle inequality, d(x, y) ≤
d(x, xy(ε)) + d(xy(ε), yx(ε)) + d(yx(ε), y) ≤ d̂ε(x, y). Observe that for any ε and for any x, y, we
have rxy(ε) ≥ (x|y)w if and only if d(x, xy(ε)) +d(yx(ε), y) ≤ d(x, y), i.e., if and only if d(x, y) ≤
d̂ε(x, y) ≤ d(x, y) + ε. Consequently, ρ = inf{ε : d(x, y) ≤ d̂ε(x, y) ≤ d(x, y) + ε for all x, y}.

When we consider a graph G with a BFS-tree T rooted at some vertex w, we have similar
results for ρ := ρw,T (G). For a vertex x, we define x(r) as before when r is an integer and for
vertices x, y, we define rxy(ε) := max{r ∈ N : d(x(r′), y(r′)) ≤ ε for any 0 ≤ r′ ≤ r}. Since

ρ = inf{ε : rxy(ε) ≥ b(x|y)wc for all x, y}, we get that d(x, y) ≤ d̂ρ(x, y) + 1 ≤ d(x, y) + ρ+ 1.

The kth power Gk of a graph G has the same vertex set as G and two vertices u, v are
adjacent in Gk if d(u, v) ≤ k. With Gk at hand, for a fixed vertex x ∈ V the values of rxy(k)

and d̂k(x, y), for every y ∈ V , can be computed in linear time using a simple traversal of the
BFS-tree T . Consequently, we obtain the following result.
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Proposition 5.10. If the distance matrix D of a graph G is unknown but the kth power graph
Gk of G is given for k ≥ ρw,T (G), then one can approximate the distance matrix D of G in
optimal O(n2) time with an additive term depending only on k.

5.2. Fast approximation of thinness, slimness, and insize. Using Proposition 3.1, The-
orem 5.2, and Proposition 5.4, we get the following corollary.

Corollary 5.11. For a graph G and a BFS-tree T rooted at a vertex w, τ(G) ≤ 8ρw,T (G)+4 ≤
8τ(G) + 4 and ς(G) ≤ 6ρw,T (G) + 3 ≤ 24ς(G) + 3. Consequently, an 8-approximation (with
additive surplus 4) of the thinness τ(G) and a 24-approximation (with additive surplus 3) of the
slimness ς(G) can be found in O(n2) time (respectively, in O(mn) time) for any graph G given
by its distance matrix (respectively, its adjacency list).

Proof. Indeed, τ(G) = ι(G) ≤ 4δ(G) ≤ 8ρw,T (G) + 4 ≤ 8ι(G) + 4 = 8τ(G) + 4. Since ς(G) ≤
3δ(G) + 1/2, δ(G) ≤ 2ρw,T (G) + 1 and ς(G) is an integer, we get ς(G) ≤ 6ρw,T (G) + 3. Hence,
ς(G) ≤ 6ρw,T (G) + 3 ≤ 6ι(G) + 3 ≤ 24ς(G) + 3. �

In fact, with ρw,T (G) at hand we can compute a 7-approximation of the thinness τ(G) of G.

Theorem 5.12. Given a graph G (respectively a geodesic metric space X) and a BFS-tree
T (respectively, a GS-tree T ) rooted at w, τ(G) ≤ 7ρw,T (G) + 4 ≤ 7τ(G) + 4 (respectively,
τ(X) ≤ 7ρw,T (X) ≤ 7τ(X)). Consequently, a 7-approximation (with an additive constant 4) of
the thinness τ(G) of G can be computed in O(n2) time (respectively, in O(mn) time) for any
graph G given by its distance matrix (respectively, by its adjacency list).

The second statement of the theorem is a corollary of the first statement, of Theorem 5.2,
and of Proposition 5.4. To prove the first statement, we first need the following simple lemma.

Lemma 5.13. Given a graph G (respectively, a geodesic metric space X) and a BFS-tree T
(respectively, a GS-tree T ) rooted at w, for any three vertices x, y, z such that z ∈ I(x, y), if
d(y, z) ≤ (w|x)y then (w|y)z = (w|x)z − (w|x)y + d(y, z) ≤ ρw,T (G) + 1

2 (respectively, (w|y)z =
(w|x)z − (w|x)y + d(y, z) ≤ ρw,T (X)).

Proof. Let ρ := ρw,T (G) and let [w, x], [w, y], [w, z] be the three shortest paths from w to
respectively x, y, and z in T . Let [x, y] be any geodesic going through z, and let [z, x] and [z, y]
be the geodesics from z to respectively x and y that are contained in [x, y]. Since d(x, y) =
d(x, z) + d(z, y), we have (w|x)z − (w|x)y + d(y, z) = (w|y)z.

Pick the vertices xz ∈ [w, x], zx ∈ [w, z] at distance b(x|z)wc from w and yz ∈ [w, y], zy ∈ [w, z]
at distance b(y|z)wc from w. Notice that (w|x)z − (w|y)z = (w|x)y − d(y, z) ≥ 0. Consequently,
zy ∈ I(z, zx). Since d(x, y) = (w|z)x + (w|x)z + (w|y)z + (w|z)y and d(w|z)ye − d(w|y)ze =
(w|z)y − (w|y)z, we have

(w|z)x + (w|x)z + (w|y)z + (w|z)y = d(x, y)

≤ d(x, xz) + d(xz, zx) + d(zx, zy) + d(zy, yz) + d(yz, y)

≤ d(w|z)xe+ ρ+ d(w|x)ze − d(w|y)ze+ ρ+ d(w|z)ye

≤ (w|z)x +
1

2
+ ρ+ (w|x)z +

1

2
− (w|y)z + ρ+ (w|z)y.

Consequently, (w|y)z ≤ ρ+ 1
2 .

In a geodesic metric space, since d(x, xz) = (w|z)x, we obtain a similar result without the
additive constant. �

By definition, ρw,T (G) ≤ τ(G), thus the first statement of Theorem 5.12 follows from the fact
that ι(G) = τ(G) and the following proposition.

Proposition 5.14. In a graph G (respectively, a geodesic metric space X), for any BFS-tree T
(respectively, any GS-tree T ) rooted at some vertex w, ι(G) = τ(G) ≤ 7ρw,T (G)+4 (respectively,
ι(X) = τ(X) ≤ 7ρw,T (X)).
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Figure 5. To the proof of Proposition 5.14.

Proof. We prove the proposition for graphs (for geodesic spaces, the proof is similar but simpler).
Let ρ := ρw,T (G). Consider a geodesic triangle ∆(x, y, z) = [x, y] ∪ [y, z] ∪ [z, x] and assume
without loss of generality that (x|y)w ≤ (y|z)w ≤ (x|z)w. Let a := (x|y)w, b := (y|z)w − a, and
c := (x|z)w−a− b. Let e := (w|z)x, f := (w|x)z and d := d(y, w)− (x|z)w = d(y, w)−a− b− c.
See Fig. 5 for an illustration (in this example, a is very small and not represented in the figure).
Observe that d may be negative but that a, b, c, e, f ≥ 0. Note that b ≤ δw ≤ ρ+ 1

2 as explained
in the proof of Theorem 5.2. Observe that d(w, x) = a + b + c + e, d(w, y) = a + b + c + d,
d(w, z) = a+ b+ c+ f , d(x, z) = e+ f , d(y, z) = d+ f + 2c, and d(x, y) = e+ d+ 2b+ 2c.

Let v and u be the vertices of [x, y] and [x, z] at distance b(y|z)xc from x, let u′ and t′ be the
vertices of [z, x] and [z, y] at distance b(x|y)zc from z, and let v′′ and t′′ be the vertices of [y, x]
and [y, z] at distance b(x|z)yc from y. In order to prove the proposition, we need to show that
d(u, v), d(u′, t′), d(v′′, t′′) ≤ 7ρ+ 4.

We first show that d(u′, t′) ≤ 4ρ + 2. Let u′z and zu′ be the vertices of [w, u′] and [w, z] at
distance b(u′|z)wc from w. Let t′z and zt′ be the vertices of [w, t′] and [w, z] at distance b(t′|z)wc
from w. Note that

d(u′, t′) ≤ d(u′, u′z) + d(u′z, zu′) + d(zu′ , zt′) + d(zt′ , t
′
z) + d(t′z, t

′)

≤ d(w|z)u′e+ ρ+ d(zu′ , zt′) + ρ+ d(w|z)t′e.

Observe also that d(z, zt′) = d(z, t′)− b(w|z)t′c = b(x|y)zc − b(w|z)t′c and similarly, d(z, zu′) =
b(x|y)zc − b(w|z)u′c. Consequently, d(zu′ , zt′) = |b(w|z)u′c − b(w|z)t′c|. Therefore, we have

d(u′, t′) ≤ 2ρ+ 2 max((w|z)u′ , (w|z)t′) + 1.
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Notice that d(z, u′) = d(z, t′) ≤ (x|y)z = f − b ≤ f + c = (w|y)z. By Lemma 5.13,
(w|z)u′ , (w|z)t′ ≤ ρ+ 1

2 , and consequently, d(u′, t′) ≤ 4ρ+ 2.
We now show that d(u, v) ≤ 6ρ + 3. Note that if b = 0, then we are in the same case as for

the pair u′, t′, and thus we can assume that b > 0. Let ux and xu be the vertices of [w, u] and
[w, x] at distance b(u|x)wc from w. Let vx and xv be the vertices of [w, v] and [w, x] at distance
b(v|x)wc from w. Observe that

d(u, v) ≤ d(u, ux) + d(ux, xu) + d(xu, xv) + d(xv, vx) + d(vx, v)

≤ d(w|x)ue+ ρ+ d(xu, xv) + ρ+ d(w|x)ve.

Observe also that d(x, xu) = d(x, u)− b(w|x)uc = b(y|z)xc − b(w|x)uc and similarly, d(x, xv) =
b(y|z)xc − b(w|x)vc. Consequently, d(xu, xv) = |b(w|x)uc − b(w|x)vc|. Therefore, we have

d(u, v) ≤ 2ρ+ 2 max((w|x)u, (w|x)v) + 1.

Notice that d(x, v) ≤ (y|z)x = e + b ≤ e + b + c = (y|w)x and that d(x, u) = be + bc =
b(z|w)x + bc ≥ (z|w)x (since b > 0). By Lemma 5.13, (w|x)v ≤ ρ + 1

2 , and (w|x)u = (w|z)u +

(w|x)z − d(u, z) ≤ (w|x)z − d(u, z) + ρ+ 1
2 . Since (w|x)z = f and d(u, z) = d(x|y)ze = df − be,

we have (w|x)u ≤ b+ ρ+ 1
2 ≤ 2ρ+ 1, and consequently, d(u, v) ≤ 6ρ+ 3.

We finally show that d(v′′, t′′) ≤ 7ρ+ 4. Note that if c = 0, then we are in the same case as
for the pair u, v, and we can thus assume that c > 0. Let v′′x and xv′′ be the vertices of [w, v′′]
and [w, x] at distance b(v′′|x)wc from w. Let t′′z and zt′′ be the vertices of [w, t′′] and [w, z] at
distance b(t′′|z)wc from w. Let xz and zx be the vertices of [w, x] and [w, z] at distance b(x|z)wc
from w.

Observe that

d(t′′, v′′) ≤ d(t′′, t′′z) + d(t′′z , zt′′) + d(zt′′ , zx) + d(zx, xz) + d(xz, xv′′) + d(xv′′ , v
′′
x) + d(v′′x, v

′′)

≤ d(w|z)t′′e+ ρ+ d(zt′′ , zx) + ρ+ d(xz, xv′′) + ρ+ d(w|x)v′′e.

Notice that d(z, zt′′) = d(z, t′′) − b(w|z)t′′c = d(x|y)ze − b(w|z)t′′c = df − be − b(w|z)t′′c.
Moreover, note that d(z, zx) = d(x|w)ze = dfe. Consequently, d(zx, zt′′) ≤ dbe+ b(w|z)t′′c.

Observe also that d(x, xv′′) = d(x, v′′)−b(x|w)v′′c = d(y|z)xe−b(x|w)v′′c = de+be−b(x|w)v′′c.
Moreover, note that d(x, xz) = d(z|w)xe = dee. Consequently, d(xz, xv′′) = |de+be−b(x|w)v′′c−
dee| ≤ max(dbe − b(x|w)v′′c, b(x|w)v′′c − bbc). Therefore, we have

d(t′′, v′′) ≤ 3ρ+ d(w|z)t′′e+ dbe+ b(w|z)t′′c+ d(xz, xv′′) + d(w|x)v′′e
≤ 3ρ+ 2(w|z)t′′ + dbe+ max(dbe − b(x|w)v′′c, b(x|w)v′′c − bbc) + d(w|x)v′′e
≤ 3ρ+ 2(w|z)t′′ + 2 max(dbe, (w|x)v′′) + 1.

Notice that d(x, v′′) = d(y|z)xe = de + be ≤ e + b + c = (y|w)x (since c > 0) and d(z, t′′) =
d(x|y)ze = df − be ≤ f + c (since c > 0). Recall that f + c = (y|w)z. Consequently, by
Lemma 5.13, (w|x)v′′ , (w|z)t′′ ≤ ρ+ 1

2 . Since b ≤ ρ+ 1
2 , we get that d(t′′, v′′) ≤ 7ρ+ 4. �

Consider a collection T = (Tw)w∈V of trees where for each w, Tw is an arbitrary BFS-tree
rooted at w, and let ρT (G) := maxw∈V ρw,Tw(G). Since for each w, ρw,Tw(G) can be computed
in O(n2) time, ρT (G) can be computed in O(n3) time. We stress that for any fixed w ∈ V ,
δw(G) can be also computed naively in O(n3) time and in O(n2.69) time using (max,min)
matrix product [22]. Furthermore, by Proposition 2.1, δw(G) gives a 2-approximation of the
hyperbolicity δ(G) of G. In what follows, we present approximation algorithms with similar
running times for ς(G) and τ(G).

To get a better bound for ς(G), we need to involve one more parameter. Let u and v be
arbitrary vertices of G and Tu ∈ T be the BFS-tree rooted at u. Let also (u = u0, u1, . . . , u` = v)
be the path of Tu joining u with v. Define κTu(u, v) := max{d(a, ui) : a ∈ I(u, v), d(a, u) = i}
and κT (G) := max{κTu(u, v) : u, v ∈ V }. Note that κT (G) ≤ κ(G) and that κT (G) can be
computed in O(n3) time and O(n2) space. Observe also that for any u, v, κTu(u, v) ≤ ρu,Tu(G)
and thus κT (G) ≤ ρT (G).
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Proposition 5.15. For a graph G and a collection of BFS-trees T = (Tw)w∈V , ι(G) = τ(G) ≤
ρT (G) + 2κT (G) ≤ 3ρT (G) ≤ 3τ(G) and ς(G) ≤ ρT (G) + 2κT (G) ≤ 8ς(G). Consequently, a
3-approximation of the thinness τ(G) and an 8-approximation of the slimness ς(G) can be found
in O(n3) time and O(n2) space.

Proof. Pick any geodesic triangle ∆(x, y, w) with sides [x, y], [x,w] and [y, w]. Let [x,w]T
and [y, w]T be the corresponding geodesics of the BFS-tree T for vertex w. Consider the
vertices xy ∈ [x,w]T , yx ∈ [w, y]T and vertices a ∈ [x,w], b ∈ [y, w] with d(w, xy) = d(w, yx) =
d(w, a) = d(w, b) = b(x|y)wc. We know that d(xy, yx) ≤ ρT (G). Since (x|a)w = d(a,w) and
(y|b)w = d(b, w), d(a, xy) ≤ κTw(w, x) ≤ κT (G) and d(b, yx) ≤ κTw(w, y) ≤ κT (G). Hence,
d(a, b) ≤ ρT (G) + 2κT (G). Repeating this argument for vertices x and y and their BFS-trees,
we get that the insize of ∆(x, y, w) is at most ρT (G) + 2κT (G). So τ(G) ≤ ρT (G) + 2κT (G)
and by Proposition 3.1, ς(G) ≤ τ(G) ≤ ρT (G) + 2κT (G) ≤ τ(G) + 2κ(G) ≤ 8ς(G). �

6. Exact computation

In this section, we provide exact algorithms for computing the slimness ς(G), the thinness
τ(G), and the insize ι(G) of a given graph G. The algorithm computing τ(G) = ι(G) runs in

O(n2m) time and the algorithm computing ς(G) runs in Ô(n2m+n4/ log3 n) time (as we already

noticed above, the Ô(·) notation hides polyloglog factors); both algorithms are combinatorial
and use O(n2) space. When the graph is dense (i.e., m = Ω(n2)), that stays of the same order
of magnitude as the best-known algorithms for computing δ(G) in practice (see [4]), but when
the graph is not so dense (i.e., m = o(n2)), our algorithms run in o(n4) time. In contrast to this
result, the existing algorithms for computing δ(G) exactly are not sensitive to the density of the
input. We also show that the minsize ρ−(G) of a given graph G cannot be approximated with
a factor strictly better than 2 unless P = NP. The main result of this section is the following
theorem:

Theorem 6.1. For a graph G = (V,E) with n vertices and m edges, the following holds:

(1) the thinness τ(G) and the insize ι(G) of G can be computed in O(n2m) time;

(2) the slimness ς(G) of G can be computed in Ô(n2m + n4/ log3 n) time combinatorially and
in O(n3.273) time using matrix multiplication;

(3) deciding whether the minsize ρ−(G) of G is at most 1 is NP-complete.

One of the difficulties of computing ς(G), τ(G), and ι(G) exactly is that these parameters
are defined as minima of some functions over all geodesic triangles of the graph, and that there
may be exponentially many such triangles. However, even in the case where there are unique
shortest paths between all pairs of vertices, our algorithms have a better complexity than the
naive algorithms following from the definitions of these parameters.

6.1. Exact computation of thinness and insize. In this subsection, we prove the following
result (Theorem 6.1(1)):

Proposition 6.2. τ(G) and ι(G) can be computed in O(n2m) time.

To prove Proposition 6.2, we introduce the “pointed thinness” τx(G) of a given vertex x.
For a fixed vertex x, let τx(G) = max

{
d(y′, z′) : ∃y, z ∈ V such that y′ ∈ I(x, y), z′ ∈

I(x, z), and d(x, y′) = d(x, z′) ≤ (y|z)x
}

. Observe that for any BFS-tree T rooted at x, we
have ρx,T (G) ≤ τx(G) ≤ τ(G), and thus by Corollary 5.11, τx(G) is an 8-approximation (with
additive surplus 4) of τ(G). Since τ(G) = maxx∈V τx(G), given an algorithm for computing
τx(G) in O(T (n,m)) time, we can compute τ(G) in O(nT (n,m)) time, by calling n times this
algorithm. Next, we describe such an algorithm that runs in O(nm) time for every x. By the
remark above, the latter will prove Theorem 6.1(1).

Let τx,y(G) := max
{
d(y′, z′) : y′ ∈ I(x, y) and ∃z ∈ V such that z′ ∈ I(x, z) and d(x, y′) =

d(x, z′) ≤ (y|z)x
}

and observe that τx(G) = maxy∈V τx,y(G).

For every ordered pair x, y and every vertex w, let gw(x, y) = max
{
d(y′, w) : y′ ∈

I(x, y) and d(x, y′) = d(x,w)
}

and let hx,y(w) = max
{

(y|z)x : w ∈ I(x, z)
}

. The following
lemma is the cornerstone of our algorithm.
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Lemma 6.3. For any x, y ∈ V , τx,y(G) = max
{
gw(x, y) : d(x,w) ≤ hx,y(w)

}
.

Proof. Let βx,y := max
{
gw(x, y) : d(x,w) ≤ hx,y(w)

}
and consider w such that βx,y = gw(x, y)

and d(x,w) ≤ hx,y(w). Consider a vertex y′ ∈ I(x, y) such that d(x, y′) = d(x,w) and d(y′, w) =
gw(x, y). Consider a vertex z such that w ∈ I(x, z) and hx,y(w) = (y|z)x. Since d(x, y′) =
d(x,w) ≤ hx,y(w) = (y|z)x, βx,y = gw(x, y) = d(y′, w) ≤ τx,y(G).

Conversely, consider y′, z′, z such that y′ ∈ I(x, y), z′ ∈ I(x, z), d(x, y′) = d(x, z′) ≤ (y|z)x,
and τx,y(G) = d(y′, z′). Observe that d(y′, z′) ≤ gz′(x, y) and that d(x, z′) ≤ (y|z)x ≤ hx,y(z

′).
Consequently, τx,y(G) = d(y′, z′) ≤ gz′(x, y) ≤ βx,y. �

The algorithm for computing τx(G) works as follows. First, we compute the distance matrix
of G in O(mn) time. Next, we compute gw(x, y) and hx,y(w) for all y, w in time O(mn). Finally,
we enumerate all y, w in O(n2) to compute max

{
gw(x, y) : d(x,w) ≤ hx,y(w)

}
. By Lemma 6.3,

the obtained value is exactly τx(G) = max τx,y(G). Therefore, we are just left with proving that
we can compute gw(x, y) and hx,y(w) for all y, w in time O(mn), which is a direct consequence
of the two next lemmas.

Lemma 6.4. For any fixed x,w ∈ V , one can compute the values of gw(x, y) for all y ∈ V in
O(m) time.

Proof. In order to compute gw(x, y), we use the following recursive formula: gw(x, y) = 0 if
d(x, y) < d(x,w), gw(x, y) = d(w, y) if d(x, y) = d(x,w), and gw(x, y) = max

{
gw(x, y′) : y′ ∈

N(y) and d(x, y′) = d(x, y) − 1
}

otherwise. Given the distance matrix D, for any y ∈ V ,
we can compute {y′ ∈ N(y) : d(x, y′) = d(x, y) − 1} in O(deg(y)) time. Therefore, using a
standard dynamic programming approach, we can compute the values gw(x, y) for all y ∈ V in
O(
∑

y deg(y)) = O(m) time. �

Lemma 6.5. For any fixed x, y ∈ V , one can compute the values of hx,y(w) for all w ∈ V in
O(m) time.

Proof. In order to compute hx,y(w), we use the following recursive formula: hx,y(w) =
max

{
(y|w)x, h

′
x,y(w)

}
where h′x,y(w) = max

{
hx,y(w

′) : w′ ∈ N(w) and d(x,w′) = d(x,w) + 1
}

.

Given the distance matrix D, for any fixed w ∈ V , we can compute
{
w′ ∈ N(w) :

d(x,w′) = d(x,w) + 1
}

in O(deg(w)) time. If we order the vertices of V by non-increasing
distance to x, using dynamic programming, we can compute the values of hx,y(w) for all w in
O(
∑

w deg(w)) = O(m) time. �

6.2. Exact computation of slimness. The goal of this subsection is to prove the following
result (Theorem 6.1(2)):

Proposition 6.6. ς(G) can be computed in Ô(n2m + n4/ log3 n) time combinatorially and in
O(n3.273) time using matrix multiplication.

To prove Proposition 6.6, we introduce the “pointed slimness” ςw(G) of a given vertex w.
Formally, ςw(G) is the least integer k such that, in any geodesic triangle ∆(x, y, z) such that
w ∈ [x, y], we have d(w, [x, z] ∪ [y, z]) ≤ k. Note that ςw(G) cannot be used to approximate
ς(G) (that is in sharp contrast with δw(G) and τw(G)). In particular, ςw(G) = 0 whenever w is
a pending vertex (a vertex of degree 1), or, more generally, a simplicial vertex (a vertex whose
every two neighbors are adjacent) of G. On the other hand, we have ς(G) = maxw∈V ςw(G).
Therefore, given an algorithm for computing ςw(G) in O(T (n,m)) time, we can compute ς(G)
in O(nT (n,m)) time, by calling n times this algorithm. Next we describe such an algorithm

that is combinatorial and runs in Ô(nm + n3/ log3 n) (Lemma 6.10). We also explain how to
compute ς(G) in O(n2.373) time using matrix multiplication (Corollary 6.11). By the remark
above, it will prove Theorem 6.1(2). For every y, z ∈ V we set pw(y, z) to be the least integer
k such that, for every geodesic [y, z], we have d(w, [y, z]) ≤ k. The following lemma is the
cornerstone of our algorithm.

Lemma 6.7. ςw(G) ≤ k iff for all x, y ∈ V such that w ∈ I(x, y), and any z ∈ V ,
min{pw(x, z), pw(y, z)} ≤ k.
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Proof. In one direction, let ∆(x, y, z) be any geodesic triangle such that w ∈ [x, y]. Then,
d(w, [x, z] ∪ [y, z]) ≤ min{pw(x, z), pw(y, z)} ≤ k. Since ∆(x, y, z) is arbitrary, ςw(G) ≤ k.
Conversely, assume that ςw(G) ≤ k. Let x, y, z ∈ V be arbitrary vertices such that
w ∈ I(x, y). Consider a geodesic triangle ∆(x, y, z) by selecting its sides in such a way that
w ∈ [x, y] and d(w, [x, z]) = pw(x, z), d(w, [y, z]) = pw(y, z) hold. Then d(w, [x, z] ∪ [y, z]) =
min{pw(x, z), pw(y, z)} ≤ ςw(G) ≤ k, and we are done. �

The algorithm for computing ςw(G) proceeds in two phases. We first compute pw(y, z) for
every y, z ∈ V . Second, we seek for a triplet (x, y, z) of distinct vertices such that w ∈ I(x, y)
and min{pw(x, z), pw(y, z)} is maximized. By Lemma 6.7, the obtained value is exactly ςw(G).
Therefore, we are just left with proving the running time of our algorithm.

Lemma 6.8. The values pw(y, z), for all y, z ∈ V , can be computed in O(nm) time.

Proof. By induction on d(y, z), the following formula holds for pw(y, z): pw(y, z) = d(w, y) if
y = z; otherwise, pw(y, z) = min{d(w, y), max{pw(x, z) : x ∈ N(y) ∩ I(y, z)}}. Since the
distance matrix D of G is available, for any y, z ∈ V and for any x ∈ N(y), we can check in
constant time whether x ∈ I(y, z) (i.e., whether d(x, z) = d(y, z) − 1). In particular, given
y ∈ V , for every of the n possible choices for z, the intersection N(y)∩ I(y, z) can be computed
in O(deg(y)) time. Therefore, using a standard dynamic programming approach, all the values
pw(y, z) can be computed in time O(nm+

∑
y n · deg(y)), that is in O(nm). �

We note that once the distance-matrix of G has been precomputed, and we have all the
values pw(y, z), for all y, z ∈ V , then we can compute ςw(G) as follows. We enumerate all
possible triplets (x, y, z) of distinct vertices of G, and we keep one such that w ∈ I(x, y) and
min{pw(x, z), pw(y, z)} is maximized. It takes O(n3) time. In what follows, we shall explain
how the running time can be improved by reducing the problem to Triangle Detection.
More precisely, let k be a fixed integer. The graph Γς [k] has vertex set V1 ∪ V2 ∪ V3, with
every set Vi being a copy of V \ {w}. There is an edge between x1 ∈ V1 and y2 ∈ V2 if and
only if the corresponding vertices x, y ∈ V satisfy w ∈ I(x, y). Furthermore, there is an edge
between x1 ∈ V1 and z3 ∈ V3 (respectively, between y2 ∈ V2 and z3 ∈ V3) if and only if we have
pw(x, z) > k (respectively, pw(y, z) > k).

Lemma 6.9. ςw(G) ≤ k if and only if Γς [k] is triangle-free.

Proof. By construction there is a bijective correspondence between the triangles (x1, y2, z3)
in Γς [k] and the triplets (x, y, z) such that w ∈ I(x, y) and min{pw(x, z), pw(y, z)} > k. By
Lemma 6.7, we have ςw(G) ≤ k if and only if there is no triplet (x, y, z) such that w ∈ I(x, y)
and min{pw(x, z), pw(y, z)} > k. As a result, ςw(G) ≤ k if and only if Γς [k] is triangle-free. �

Lemma 6.10. For w ∈ V , we can compute ςw(G) in Ô(nm+n3/ log3 n) time combinatorially.

Proof. We compute the values pw(y, z), for every y, z ∈ V . By Lemma 6.8, it takes time O(nm).
Furthermore, within the same amount of time, we can also compute the distance matrix D of
G. Then, we need to observe that given an algorithm to decide whether ςw(G) ≤ k for any
k, that runs in O(T (n,m)) time, we can compute ςw(G) in O(T (n,m) log n) time, simply by
performing a one-sided binary search. In what follows, we describe such an algorithm that

runs in time Ô(n3/ log4 n). For that, we reduce the problem to Triangle Detection. We
construct the graph Γς [k]. Since the values pw(y, z), for all y, z ∈ V , and the distance matrix
of G are given, this can be done in O(n2) time. Furthermore, by Lemma 6.9, ςw(G) ≤ k if
and only if Γς [k] is triangle-free. Since Triangle Detection can be solved combinatorially

in time Ô(n3/ log4 n) [34], we are done by calling O(log n) times a Triangle Detection
algorithm. �

Interestingly, in the proof of Lemma 6.10 we reduced the computation of ςw(G) to a single
call to an all-pair-shortest-path algorithm, and to O(log n) calls to a Triangle Detection
algorithm. It is folklore that both problems can be solved in time O(nω log n) and O(nω),
respectively, where ω < 2.373 is the exponent for square matrix multiplication. Hence, we
obtain the following algebraic version of Lemma 6.10:
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Corollary 6.11. For w ∈ V , we can compute ςw(G) in O(nω log n) time.

We stress that Corollary 6.11 implies the existence of an O(nω+1 log n)-time algorithm for
computing the slimness of a graph (since ω < 2.373, this algorithm runs in O(n3.273) time).
In sharp contrast to this result, we recall that the best-known algorithm for computing the
hyperbolicity runs in time O(n3.69) [22].

A popular conjecture is that Triangle Detection and Matrix Multiplication are
equivalent. We prove next that under this assumption, the result of Corollary 6.11 is optimal
up to polylogarithmic factors:

Proposition 6.12. Triangle Detection on n-vertex graphs can be reduced in time O(n2)
to computing the pointed slimness of a given vertex in a graph with Θ(n)-vertices.

Proof. Let G = (V,E) be any graph input for Triangle Detection. Suppose without loss
of generality that G is tripartite with a valid partition V1, V2, V3 (otherwise, we replace G with
H = (V1∪V2∪V3, EH) where V1, V2, V3 are disjoint copies of V and EH = {xiyj : xy ∈ E and 1 ≤
i < j ≤ 3}). We construct a graph G∗ from G, as follows.

• For every v ∈ V , there is a path (v−, v∗, v+). We so have three copies of the partition
sets Vi, 1 ≤ i ≤ 3, that we denote by V −i , V

∗
i , V

+
i .

• For every xz ∈ E such that x ∈ V1, z ∈ V3, we add an edge x−z+. In the same way,
for every yz ∈ E such that y ∈ V2, z ∈ V3, we add an edge y+z−. However, for every
x ∈ V1, y ∈ V2 we add an edge x+y− if and only if xy /∈ E.
• We also add two new vertices α, β and the edges {αx∗ : x ∈ V1} ∪ {βy∗ : y ∈ V2}.
• Finally, we add two more vertices a, b and the edges {ab, aα, aβ} ∪ {ax+, bx− : x ∈
V1} ∪ {ay−, by+ : y ∈ V2} ∪ {bz−, bz+ : z ∈ V3}.

The resulting graph G∗ has O(n) vertices and it can be constructed in O(n2)-time (for an
illustration, see Fig. 6). In what follows, we prove that ςa(G

∗) ≥ 2 if and only if G contains a
triangle.

First we assume that G contains a triangle xyz where x ∈ V1, y ∈ V2, z ∈ V3. By construction,
the paths (x∗, x−, z+, z∗) and (z∗, z−, y+, y∗) are geodesics and they do not intersect NG∗ [a].
Furthermore, since xy ∈ E, we cannot find any two neighbors of x∗ and y∗, respectively, that are
adjacent, thereby implying dG∗(x

∗, y∗) = 4 (e.g., (x∗, x+, a, y−, y∗) is a geodesic). Overall, the
triplet x∗, y∗, z∗ is such that a ∈ I(x∗, y∗), pa(x

∗, z∗) = pa(y
∗, z∗) = 2. As a result, ςa(G

∗) ≥ 2.
Conversely, assume ςa(G

∗) ≥ 2. Let r, s, t ∈ V (G∗) such that: a ∈ I(r, s), pa(r, t) ≥ 2
and in the same way pa(s, t) ≥ 2. We claim that r = x∗ for some x ∈ V . Indeed, suppose
by way of contradiction that this is not the case. By the hypothesis r /∈ NG∗ [a], and so,
r ∈ {v+, v−} for some v ∈ V and r ∈ NG∗(b). Furthermore, dG∗(r, a) = 2, and so, since
a ∈ I(r, s) and by the hypothesis s /∈ NG∗ [a], dG∗(r, s) ≥ 4. However, by construction every
vertex of G∗ is at a distance ≤ 2 from vertex b. Since b ∈ NG∗(r), this implies that r has
eccentricity at most three, a contradiction. Therefore, we proved as claimed that r = x∗ for
some x ∈ V . We can prove similarly that s = y∗ for some y ∈ V . Then, observe that we
cannot have x, y ∈ V1 (otherwise, (x∗, α, y∗) is a geodesic, dG∗(r, s) = dG∗(x

∗, y∗) = 2 and
a /∈ I(r, s)); we cannot have x, y ∈ V2 either. Finally, we cannot have x ∈ V3 for then we would
get dG∗(x

∗, a) + dG∗(a, y
∗) ≥ 3 + 2 = 5 > 4 ≥ dG∗(x∗, y∗); for the same reason, we cannot have

y ∈ V3. Overall, we may assume without loss of generality that x ∈ V1, y ∈ V2. Note that
xy /∈ E (otherwise, dG∗(x

∗, y∗) = 3 and a /∈ I(x∗, y∗)). Let P be a shortest (x∗, t)-path and Q
be a shortest (y∗, t)-path such that dG∗(a, P ) ≥ 2, dG∗(a,Q) ≥ 2. Since V ∗3 ∪NG∗ [a] intersects
any path from V ∗1 to V ∗2 , there exists z ∈ V3 such that z∗ ∈ P ∪ Q. By symmetry, we may
assume z∗ ∈ P . It follows from the construction of G∗ that the unique shortest (x∗, z∗)-path
that does not intersect NG∗ [a], if any, must be (x∗, x−, z+, z∗). In particular, xz ∈ E. Suppose
by contradiction t 6= z∗. Then, (x∗, x−, z+, z∗, z−) is a subpath of P , that is impossible because
dG∗(x

∗, z−) = 3. Therefore, t = z∗. We prove similarly as before that yz ∈ E. Summarizing,
xyz is a triangle of G. �
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Figure 6. The graph G∗ obtained from a tripartite graph G and used in the
proof of Proposition 6.12.

6.3. Approximating the minsize is hard. In this subsection we prove that, at the differ-
ence from other hyperbolicity parameters, deciding whether ρ−(G) ≤ 1 is NP-complete (Theo-
rem 6.1(3)). Note that since ρ−(G) is an integer, this immediately implies that we cannot find
a (2− ε)-approximation algorithm to compute ρ−(G) unless P = NP.

Proposition 6.13. Deciding if ρ−(G) ≤ 1 is NP-complete.

Note that if we are given a BFS-tree T rooted at w, we can easily check whether ρw,T (G) ≤ 1,
and thus deciding whether ρ−(G) ≤ 1 is in NP. In order to prove that this problem is NP-hard,
we do a reduction from Sat.

Let Φ be a Sat formula with m clauses c1, c2, . . . , cm and n variables x1, x2, . . . , xn. Up to
preprocessing the formula, we can suppose that Φ satisfies the following properties (otherwise,
Φ can be reduced to a formula satisfying these conditions):

• no clause cj can be reduced to a singleton;
• every literal xi, xi is contained in at least one clause;
• no clause cj can contain both xi, xi;
• no clause cj can be strictly contained in another clause ck;
• every clause cj is disjoint from some other clause ck (otherwise, a trivial satisfiability

assignment for Φ is to set true every literal in cj);
• if two clauses cj , ck are disjoint, then there exists another clause cp that intersects cj in

exactly one literal, and similarly, that also intersects ck in exactly one literal (otherwise,
we add the two new clauses x ∨ y and x ∨ y, with x, y being fresh new variables; then,
we replace every clause cj by the two new clauses cj ∨ x ∨ y and cj ∨ x ∨ y).

Let X := {x1, x1, . . . , xn, xn}. For simplicity, in what follows, we often denote xi, xi by
`2i−1, `2i. Let C := {c1, . . . , cm} be the clause-set of Φ. Finally, let w and V = {v1, v2, . . . , v2n}
be additional vertices. We construct a graph GΦ with V (GΦ) = {w} ∪ V ∪X ∪ C and where
E(GΦ) is defined as follows:

• N(w) = V and V is a clique,
• for every i, i′, vi and `i′ are adjacent if and only if i = i′;
• for every i, i′, `i and `i′ are adjacent if and only if `i′ 6= `i;
• for every i, j, vi and cj are not adjacent;
• for every i, j, `i and cj are adjacent if and only if `i ∈ cj ;
• for every j, j′, cj , cj′ are adjacent if and only if cj , cj′ intersect in exactly one literal.

We refer to Fig. 7 for an illustration.

Proposition 6.14. ρ−(GΦ) ≤ 1 if and only if Φ is satisfiable.
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(d) A BFS tree T rooted at w s.t. ρw,T (GΦ) = 1.

Figure 7. The graph GΦ obtained from the formula Φ = (a∨ b)∧ (ā∨ b̄). After
preprocessing Φ, we got the equivalent formula (a∨ b∨ x∨ y)∧ (a∨ b∨ x̄∨ ȳ)∧
(ā ∨ b̄ ∨ x ∨ y) ∧ (ā ∨ b̄ ∨ x̄ ∨ ȳ) ∧ (x̄ ∨ y) ∧ (x ∨ ȳ).

In order to prove the hardness result, we start by showing that in order to get ρr,T (GΦ) ≤ 1
we must have r = w. In the following proofs, by a parent node of a node we mean its parent in
a BFS-tree T .

Lemma 6.15. For every BFS-tree T rooted at cj ∈ C, we have ρcj ,T (GΦ) ≥ 2.

Proof. Suppose for the sake of contradiction that we have ρcj ,T (GΦ) ≤ 1. Let Xj ⊆ X be the

literals in cj . Note that since |Xj | > 1, every vertex in Xj is at distance two from cj . We claim

that for every `i′ ∈ Xj , the parent node of `i′ is in Xj . Indeed, otherwise this would be some
clause-vertex ck such that `i′ ∈ ck and ck ∩ cj 6= ∅. Then, let `i ∈ cj \ ck. Vertex `i must be the
parent node of vi. However, (vi|`i′)cj = (2 + 2− 2)/2 = 1. The latter implies that ck, `i should
be adjacent, that contradicts the fact that `i /∈ ck. Therefore, the claim is proved.
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Then, let ck be disjoint from cj . By construction, d(cj , ck) = 2, and the parent node of ck
must be some cp such that cj ∩ cp 6= ∅, and similarly cp ∩ ck 6= ∅. Let `i′ ∈ cj ∩ cp. Furthermore,

let `i ∈ cj be the parent node of its negation `i′ in T . We stress that `i /∈ cp since `i′ is the

unique literal contained in cj ∩ cp. We have (ck|`i′)cj = 2−d(ck, `i′)/2 ∈ {1, 3/2}. In particular,

b(ck|`i′)cjc = 1. As a result, ρcj ,T (GΦ) ≥ d(cp, `i) = 2. �

Lemma 6.16. For every BFS-tree T rooted at `i ∈ X, we have ρ`i,T (GΦ) ≥ 2.

Proof. Suppose for the sake of contradiction that ρ`i,T (GΦ) ≤ 1. Since there is a perfect
matching between X and V = N(w), the parent node of w must be vi. We claim that the
parent node of vi′ , for every i′ 6= i, must be also vi. Indeed, otherwise this should be `i′ .
However, (w|vi′)`i = (2 + 2 − 1)/2 = 3/2. In particular, b(w|vi′)`ic = 1, and so, ρ`i,T (GΦ) ≤ 1
implies vi and `i′ should be adjacent, that is a contradiction. So, the claim is proved.

Then, let cj ∈ C be nonadjacent to `i. We have d(cj , `i) = 2, and the parent node pj of cj
must be in X ∪ C. Let `i′ ∈ cj (possibly, pj = `i′). We have (cj |vi′)`i = (2 + 2− 2)/2 = 1. So,
ρ`i,T (GΦ) ≥ d(vi, pj) = 2. �

Lemma 6.17. For every BFS-tree T rooted at vi ∈ V , we have ρvi,T (GΦ) ≥ 2.

Proof. There exists i′ 6= i such that `i, `i′ are nonadjacent. In particular, the parent of `i′ must
be vi′ . Furthermore, there exists cj ∈ C such that d(vi, cj) = 2. In particular, `i must be the
parent of cj . However, (`i′ |cj)vi = 2− d(`i′ , cj)/2 ∈ {1, 3/2}. In particular, b(`i′ |cj)vic = 1. So,
ρvi,T (GΦ) ≥ d(vi′ , `i) = 2. �

From now on, let w be the basepoint of T . We prove that for most pairs s and t, d(st, ts) ≤ 1
always holds (i.e., regardless whether Φ is satisfiable).

Lemma 6.18. If s ∈ V and t is arbitrary, then d(st, ts) ≤ 1.

Proof. Since w is a simplicial vertex and s ∈ N(w), we have d(w, t)− 1 ≤ d(s, t) ≤ d(w, t), and
consequently,

(s|t)w = (d(s, w) + d(t, w)− d(s, t))/2 = 1/2 + (d(t, w)− d(s, t))/2 ∈ {1/2, 1}.

In particular, st, ts ∈ N [w], and so, d(st, ts) ≤ 1 since w is simplicial. �

Lemma 6.19. If s, t ∈ X, then d(st, ts) ≤ 1.

Proof. We have (s|t)w = 2 − d(s, t)/2. In particular, b(s|t)wc ≤ 1. As a result, st, ts ∈ N [w],
and since w is simplicial, we obtain d(st, ts) ≤ 1. �

Lemma 6.20. If s ∈ X and t ∈ C, then d(st, ts) ≤ 1.

Proof. We have (s|t)w = 5/2−d(s, t)/2 ∈ {3/2, 2}. In particular, if d(s, t) = 2 then b(s|t)wc = 1,
and so, we are done because st, ts ∈ N [w] and w is simplicial. Otherwise, d(s, t) = 1, and so,
(s|t)w = 2. In particular, st = s and st, ts are two literals contained in t. The latter implies
d(st, ts) ≤ 1 since a clause cannot contain a literal and its negation. �

Finally, we prove that in order to get ρw,T (GΦ) ≤ 1, a necessary and sufficient condition is
that the parent nodes in T of the clause vertices are pairwise adjacent in GΦ. By construction,
the latter corresponds to a satisfying assignment for Φ.

Lemma 6.21. If s, t ∈ C, then st, ts ∈ X.

Proof. We have (s|t)w = 3− d(s, t)/2 ∈ {2, 5/2}. In particular, b(s|t)wc = 2. �
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