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Abstract

We carry out a careful analysis of the notion of observation of distant objects in a curved
static universe. To this end, we introduce an observer-based representation referential en-
dowed with a Euclidean structure, and postulate that all measurement are performed with
respect to this reference frame. For a universe of constant positive spatial curvature, this
causes a distortion of metric quantities which grows with the distance to the observer. In
this context, the redshift of cosmological objects is not caused by their recessions, but in-
stead by the spatial curvature along the trajectory of photons from the emitting source to the
observer. Applying these considerations to the Einstein’s static universe, we obtain a red-
shift/distance relationship that is consistent with cosmological measurements. We show that
this effect also explains the existence of a Cosmic Microwave Background whose character-
istics agree with the observations of the Planck mission. Furthermore, this model predicts
the abundance of well-formed galactic structures in the high redshift universe, which were
recently detected by the JWST.

1 Introduction

In 1917, Albert Einstein proposed a finite static solution to its equations of general relativ-
ity as a representation of the universe. Assuming a uniform and homogeneous distribution
of matter, and after introducing an additional term to his field equations, he derived a uni-
verse of constant spherical curvature. However, this view of the universe soon faced two
major challenges. Firstly, in 1930, Eddington raised concerns about the stability of the Ein-
stein world and demonstrated that it is in fact unstable against a small variation of the total
matter density, causing it to exponentially expand or contract [2]. However, this kind of
non-local perturbation is non-physical in nature and it is still not clear today if the Einstein
world is indeed unstable against perturbations having physical relevance. We defer to the
very interesting chapter [3] for a detailed discussion of the matter. The discovery, by Hub-
ble, of a linear relation between the redshift of galaxies and their distances [4] achieved to
convince Einstein, at the beginning reluctant, to change his mind and accept the growing
consensus on models based on expansion of space [S,[7, 8]. Such models suited quite well
the small amount of observational data yet available, although the existence of an initial
spacetime singularity it requires raised important physical and philosophical questions, that
still remain unanswered today. The discovery of a cosmic microwave background (CMB)
made by Penzias and Wilson in 1964 [9] became a strong support for this theory, since its
characteristics are compatible with the radiation of a dense primordial plasma. In 1998, an
acceleration of the expansion of the universe was detected and surprised cosmologists [10].
This led to the introduction in the models of a dark energy that acts as a repulsive gravita-
tional force, whose origin remains very speculative. Efforts have been made to combine all
these considerations and the most accomplished result is the standard model of cosmology,



so called ACDM.

Alternative theories have been developed to explain the redshift of cosmological objects,
such as tired light theory [[11], but errors have been pointed out and the theory has never
been commonly accepted [12]]. In the current understanding of general relativity, if we ne-
glect hypothetical physical processes that steal energy from photons, the only possible ex-
planation for this redshift is a mechanism that acts on the metric of spacetime. As for now,
there is growing evidence that this standard cosmological model has fundamental flaws.
Thanks to a new generation of telescopes, and to an enhanced precision of measurements,
some tensions in the standard model have become increasingly apparent [[13} [14] and the
James Webb Space Telecope has recently discovered well formed galactic structures and
supermassive black holes that cannot be explained within the current concordance model.
We here propose an alternative explanation for the redshift of cosmological objects, by pos-
tulating that the wavelength of photons (as well as their frequency) is affected by the radial
curvature of space along the geodesic connecting the source to the observer. In the Ein-
stein’s static universe, the curvature produces a redshift for incoming photons that grows
with the distance of the light source, in a way that is consistent with cosmological observa-
tions. In the proposed theory, this effect originates from the observer’s natural perception
of its spatial environment as being flat, even though they live in a curved universe, inducing
a distortion of the images of cosmological objects and affecting the wavelength of incom-
ing photons. We first motivate the idea by discussing the notion of observation of distant
objects in curved spacetimes. This will lead us to introduce an observer-based referential
in which the rules of Euclidean geometry apply. We then postulate that all observations of
our physical environment are performed with respect to this referential. This allows us to
derive a formula for the redshift in function of the distance in the context of a static uni-
verse of closed spatial geometry, that we test successfully against observational data. In
the final section, we show that our model accounts for the existence of the CMB and of its
characteristics.

2 The perception of distant objects in a curved universe

In his book Wholeness and the implicate order [15], David Bohm points out a fundamental
duality of the physical reality: a world, hardly accessible to our senses, home to unfamiliar
processes that he calls the implicate order, reveals itself in an unfolded, explicate order, in
which measurements can be performed, and which corresponds to our everyday experience
of the physical environment. Originally thought to account for the puzzling properties of
quantum mechanics, these views also find an echo in general relativity. In the latter, the
fundamental object is a curved 4-dimensional pseudo-Riemannian manifold in which space
and time are entangled in a profound interlace. Yet in our way of representing this envi-
ronment, space and time are fundamentally distinct objects, for otherwise no measurement
would be possible. We will refer to this fact as the separation principle.

In this explicate world of observation, the environment is also perceived as being flat, as
we are living in a locally flat portion of the universe and our brains are equipped to make
linear representations of our surroundings. To this extent, Albert Einstein writes in one of
his famous 1905 paper [16]:

“If a material point is at rest relatively to a system of co-ordinates, its position can
be defined relatively thereto by the employment of rigid standards of measurement and the
methods of Euclidean geometry, and can be expressed in Cartesian co-ordinates.”

A few years later, the development of general relativity challenged this view and intro-
duced more sophisticated geometrical tools to describe the physical world.
Let us now take the point of view of an observer living in a universe whose geometry is
described by Einstein’s field equations. In order to measure quantities such as lengths and
durations associated to events around him, the observer can directly compare them with dif-



ferent measuring devices, such as a ruler or a chronometer. In Minkowskian spacetime and
for objects in uniform linear motion with respect to the observer, direct comparison is not
possible and a procedure was proposed by Einstein to determine the length of such an ob-
ject, based on the constancy of the speed of light c. This procedure turns out to give a value
in the direction of motion that is different from the length one would measure directly by
comparing the object with a ruler. This is the core of special relativity. A similar procedure
allows to determine the distance between the observer and an object at rest: one can send
a light ray in the direction of the object at time ¢y, and wait for the light ray to be reflected
back at time ¢;. The distance d from the event s is then defined in the following way:

d(s) = 2 ;to. (1)

This definition of distance extends to more general spacetime geometries and is called
proper distance in the context of a static universe. It can be thought of as the length of the
shortest spatial geodesic connecting the observer to the object.

Now that he is able to determine the distance of an object, the observer may ask the follow-
ing question: Is there a procedure to assign lengths and durations to events situated at large
distances, and how to do so? In a flat spacetime, and if the object is at rest, the answer is
trivial: it can be done by using of the tools of Euclidean geometry. To answer this question
in the more general set up of curved spacetime geometry, we have to introduce a represen-
tation referential Ry, according to which the observer creates a consistent representation
of its physical environment.

Consider an observer living in a spatial universe U, that we suppose static. The position of
the observer is denoted by O € U. We denote R, the tangent space of U at O. Letx € U
be a point at proper distance dyy from O. Denote T'(z:) : U — Rgps the representation map,
which transforms a point 2 € U to the point T'(x) in R,ps situated at distance dr = dy

from O and such that the vector (’ﬁ (2) has the same initial direction as that of the minimal
geodesic connecting O to x in U. If we suppose that T is invertible, any object X C U
has a unique representation 7'(X) in Rps. In that case, T~ is called the exponential map
in the mathematical literature. In R, the trajectory of a photon traveling from x to O in
U is represented as a straight line. We now impose a linear geometric structure in R,ps, by
endowing it with the Euclidean metric. Note that 7' does not constitute a mere change of
the coordinates describing the spatial geometry, since the metrics in U and R,;s describe,
in general, different geometries.

In the reference frame R,;s, physical objects are represented stretched, deformed, even-
tually split and present at different locations, which corresponds exactly to the way we
perceive them. There would be no way for the observer to recover the spatial geometry in
U from its observations in R,,s without further knowledge of the constitution of its physi-
cal environment. For this reason, we will postulate that all the measures performed by the
observer are performed with respect to R,s, and are therefore consistent with the rules of
Euclidean geometry. In particular, we postulate that radiation behave as in a flat space and
the photons, once emitted, keep a constant wavelength in the representation space.

Now, in curved spatial geometries, although the proper distance of an object is preserved by
T, its size in R differ from the ones in the object’s natural referential, even if it is at rest
with respect to O. To quantify this distortion, we introduce for each point x in U a scalar
a(x), the scaling factor, which can be determined in the following way: a bundle of light
rays with infinitesimal solid angle J{2 is sent in the direction of z, and we compute

08
@) = |5

where 65 is the area intersected by the bundle in the neighborhood of x in the natural local
referential at = and §S,; is the area that intersects the bundle in R, that is §S,ps = d25$2?
for a point at proper distance d from O. The obtained scaling field is a priori not continu-
ous, can contain singularities and domains where it is not defined (in a black hole region for
example). In order to compute it in a general set up, one needs to study the metric induced




on geodesic balls. To the author’s knowledge, no general formula for a exists in the math-
ematical literature. It is obvious that if U is the Euclidean space, then a(x) = 1 for all x.
Note that if we assume a continuous metric, the value of a(z) is entirely determined by the
spatial curvature along the geodesic connecting x to O and therefore the theory satisfies the
principle of locality. We make the additional assumption that the speed of light is constant
equal to ¢ everywhere when measured in R,;s. For that, we suppose that the scaling factor
a(x) also applies to durations associated to events happening at . Such time dilations have
been observed for distant Supernovae [17]]. In the following section, we will compute a(x)
explicitly in the case when U has spherical geometry.

3 Cosmological considerations

3.1 Einstein’s world

Let us from now on place ourselves in the Einstein’s static universe of radius of curvature R.
It has closed spatial geometry and is the only static solution to the field equations, assuming
a fined-tuned homogeneous distribution of matter/energy and a positive cosmological con-
stant [[1]]. The spatial component of the metric is the one induced by the ambient Euclidean
metric in R* on the manifold

4
U=5={(v1,22,73,24) € R*: fo = R?*}.

i=1

The time component of the metric is set equal to —1 and allows the possibility of a cyclic
time. In this eternal return scenario, contemplated by many cosmogonies, the age of astro-
nomical objects would be bounded, as observed for nearby stars.

3.2 Scaling factor and redshift

The procedure described in the preceding section gives for a point at distance d from the
observer the following scaling factor:

) 7Rsin(%)
a= 5 7 . 2)

In Fig. 1, we give a visual representation of this distortion effect in dimension 2.

A

Figure 1: 2-dimensional representation of the distortion effect in the Einstein universe.
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Figure 2: Evolution with proper distance of the scaling factor (left) and the redshift (right) in the
Einstein universe

As seen in Fig. 2a, the scaling factor decreases with the distance d until degeneration when
the antipode A is reached, which corresponds to the distance D = 7w R. From the observer’s
perspective, space seems to vanish at this point. An infinitesimally small object located at
A appears stretched over the whole celestial vault. As postulated in the previous section,
incoming photons, which act as a messenger between the emitting source and the observer,
keep track of the orthogonal dilation of the metric quantities. The resulting redshift z can
be computed by comparing the measured wavelength A\, of an incoming photon with its
wavelength at emission A.,,,. We have by definition:

/\ob - )\em
= > 3
o (3)
Since )
— em 4
a= 4)
we get that:
d
z= —1. 5
Rsin(%) ©)

A graphical representation of Eq. [5]is shown in Fig. 2b] The derivative of the scaling factor,
that in big bang theories is interpreted as the rate of expansion of the universe, is given by

cos(4
a'(d) = (;R) — d—lzsm(%)

(6)
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Figure 3: Evolution of the derivative of the scaling factor with proper distance

As seen in Fig. [3| @’ changes monotony at a certain distance dg. Observations of type Ia
Supernovae have confirmed this behavior [6], and actual cosmological models attribute it to
an acceleration of the expansion of the universe that started a few billions years ago. In the
present model, we do not have to refer to dark energy to explain this behavior. It is a simple
consequence of the distortion effect.

3.3 The relation between different distances

The proper distance of celestial bodies is difficult to estimate from observations. Instead,
two redshift-independent methods are commonly used to assess their distance. Both require
some knowledge about the observed object. The luminosity distance dj, is computed by
comparing the flux of incoming light with the known luminosity of the source. The estima-
tion of the angular diameter distance d 4 requires for its part some knowledge about the size
of the observed object.

dy, is defined implicitly in the relation:

L
Fops = —-
b 4rd?

Here, F is the flux measured by the observer and L is the known luminosity of the object
in its local referential. Let us consider an object situated at proper distance d from the
observer, that emits n photons of energy hv per unit of surface per unit of time, where all
these quantities are expressed in the natural referential of the object. In R, the situation
is equivalent to the following: in a flat universe, an object at proper distance d is emitting
n photons of energy hv/(z + 1) per (z + 1)? units of surface per (z + 1) units of time.
Therefore, the luminosity of the object for the observer is

)

Lops = L/(z 4+ 1)%.
In the flat space R,, the measured flux follows the inverse square law, so that

Lobs L
Fops = = . 8
YT dnd? dwd?(z + 1)* ®)

Combining[7]and[8] we get that

dp = d(z+1)% 9)
In a space of spherical geometry, the angular diameter distance d 4 is for its part given by
d d
da = Rsin(—=) = 10
A Sln( R) 241 ) ( )
so that
dp, = da(z +1)>% (11)



Note that the Etherington-Ellis reciprocity theorem does not hold in this theory.

3.4 Tests

In Fig. fal we test our theory by showing its best x> fit for the Supernovae 1A data of the
Union 2 catalog [18], performed on its 257 most distant galaxies. The same general trend
is observed between the theoretical curve and the observational data, although the fit for
small values of z is not satisfying. We stress however that these data are model dependent
and therefore systematic bias may be at stake [[19]. The local dynamics of galaxies and the
local spatial geometry of our universe should also affect the observed redshift of photons
emanating from nearby sources in our model. The best fit is obtained for R ~ 2.67 Gly, for
which the antipodal region is at proper distance D = Rm = 8.4 Gly. That is of the same
order of magnitude as estimates of the distance of the cosmological horizon in the current
standard model of cosmology [6].

In the right hand side of Fig. [d] we plotted 4 curves for the angular diameter distance/redshift
relationship given by Eq. [3.3|for different values of R, together with the observational data
taken from the hydrostatic equilibrium scenario in [20]]. The large error bars for these data
render a proper fit irrelevant. The estimates of R seem consistent for both approaches,
although a more precise analysis of this relation, using model independent data needs to be
performed. We stress that in both cases, our fits involve only one parameter: the radius of
curvature R of the universe.
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Figure 4: Left: Best fit of the model using the 257 most distant supernovae of the catalog. The
best x? fit is obtained for R = 2.67 Gly. Right: Comparison between theoretical curves and
angular diameter distance data, for different values of R.

4 On the CMB

The Cosmic Microwave Background is a radiation detectable at all point of the universe
which has the property of being extremely regular in all directions in space, although having
small anisotropies distributed with privileged angle scales [9]. The observed spectrum of
this radiation is one of a black body that has a maximum of emission at A ~ 2 mm. The
existence and the characteristics of the CMB are thought to be a strong evidence for a
big bang scenario since it fits very well the predictions of ACDM [21]], although several
anomalies have been pointed out [22]. The aim of this section is to show that the presented
theory may also be compatible with these observations.



4.1 Opver the horizon

Until here, our study has been limited to distances smaller that the maximal geodesic dis-
tance D = wR. Although it corresponds to an apparent horizon, one can perceive in this
model (ghost) images from objects at distances larger than D. We now extend the definition
of proper distance d to objects over this horizon, so that it corresponds to the length of the
trajectory of a photon from the object to the observer. Applying the arguments developed in
the previous sections, we get that the scaling factor is given by:

Rsin(4)
d) = |——=].
ald) = | =
The observed redshift is then:
d
z(d) = — 1.
(@) Rsin(4)
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Figure 5: Evolution of the redshift with distance

4.2 Thermal radiation

In the context of a static universe, we cannot explain the CMB by an extremely hot black
body that emitted light in a primordial state of the universe. These photons must emanate
from standard cosmological objects. By looking at Fig. [5] we can characterize two classes
of sources that produce highly redshifted light, which could contribute to the CMB:

1. Very old objects whose radiation has traveled around the universe many times before
arriving to us, at huge distance from us. This type of sources will be referred as class 1.

2. Objects that emitted the perceived light in the region of one pole of the 3-sphere (our
current position or its antipode), whose distance is near a multiple of D. This type of
objects will be referred as class 2.



We assume that the contribution of class 2 objects does not make up the essential of the
microwave background, their proportion being negligible compared to type 1 objects. If
we assume a homogeneous and isotropic universe, the cumulative effect of the abundant
class 1 objects would generate a highly regular background radiation, with no privileged
direction. The ancient light emitted by these objects, having undergone substantial redshift,
has experienced scattering and absorption. In the context of the static and fully symmetric
Einstein universe, these photons should exhibit a uniform spatial distribution, and have the
characteristics of a photon gas in thermal equilibrium. Consequently, the resulting spectrum
is that of a black body, with a low characteristic temperature T s, due to the highly
redshifted wavelengths associated with type 1 sources. The specific value of Toprp could
be determined independently of directly measuring the CMB, by examining the emission
and absorption properties of the universe’s matter content, along with the distribution and
properties of radiation sources.

4.3 Anisotropies

We must now explain the different levels of primary anisotropies of the radiation. We stated
in the previous section that the contribution of class 1 objects should make up a very reg-
ular background, leaving no place for irregularities. These small perturbations could be
explained by the presence of type 2 objects (mostly galaxies) in the pole regions. It is a well
established fact that the distribution of the anisotropies in the CMB is consistent with the
distribution of galactic structures in the universe. The radiation of these objects is highly
redshifted and leaves some prints on the CMB. Each pole, at different times, contributes to
one level of anisotropy and explains the peaks in the angular power spectrum of the CMB
temperature anisotropy.

To formalize this idea, we will first assume that the emission spectrum of a galaxy is re-
duced to its strongest wavelength Ay which we assume to be the same for every galaxy. We
will also assume that the power spectrum of the CMB is centered around its strongest wave-
length A. These strong restrictions should still provide a decent estimate of the location of
the peaks in the power spectrum.

To add to the regular background of wavelength A, the received light must also have ob-
served wavelength A, so the source must be at a distance d that satisfies the equation

Ao
a(d)

that is:

N o oo d
Xd =] Rsm(ﬁ) | . (12)

The solutions of the above equation are typically close to the pole at distance k7 R from us,
that we will call the pole k. For each k, there are two associated solutions dj and d%, which
correspond to distances from the pole k of I, = knR — dj, and I}, = dj, — kmR. Replacing
in equation[I2] we obtain:

20 (kmR — ) =| Rsin(%) |,

R
13)
20 (krR+ 1)) =| Rsin(%%) | .
As I, and [, are typically small compared to R, we get
20 (knR — 1) ~ Ik
(14)

20 (knR+ 1) ~ 1,
so that



Iy =
(15)

Iy =

Since /\AO has a big order of magnitude (= 10%), I}, and [}, correspond roughly to the same
distance to the pole k, that we will call again [:

I — /\0 kR
TR

Now that we have found the typical distance of these galaxies to the pole k, we can estimate
the contribution of the pole k to the anisotropy power spectrum, by computing the number of
galaxies near the pole & that will imprint their mark on the CMB. To constitute an anisotropy,
their image must have an observed wavelength between A — ¢ and A + ¢, being ¢ of the
order of the width of the CMB spectrum.
From equation (I6), these galaxies are at a distance from the pole k between

(16)

17 A+e
and
27 A—¢-

Let p be the mean density of galaxies in the universe (we assume a homogeneous distribution
of galaxies). In S®, the volume of space between I and [% is given by

2%

21%
V = 7R%*(215 — 21¥ + Rsin( 7 =1

) — Rsin( R)) (17
~ATR? (15 —1%),
so that the number of galaxies at distances between [§ and I5 to the pole k is

1

A—e A+e
N 8T R3pkAge
N

The number of galaxies associated to the pole k& whose images are imprinted in the CMB
is then 2N, since the galaxies at distance dj, also leave the same characteristic prints. If
we assume equidistribution of the galaxies and independence between the images of the
galaxies at distances dj, and d}, these galaxies are equally spaced on the celestial vault and
their number corresponds to the multipole moment P, for which there is a peak in the power
spectrum:

N = kmpdr R3 \o( )

(18)

1672 R3pAock
= N
Equation shows a linear relation between Pj and k. We also predict that the strength
of these peaks decreases with k£, mostly because distant source undergo more extinction
effects.
Overall, these results seem compatible with the measurements of the Planck collaboration
[21], although we are presently not able to provide a more detailed analysis of the matter.
We have made some approximations in our computations and quite strong restrictions to
arrive at this result: in reality, the spectra of both galaxies and CMB are composed of a large
band of wavelengths. Moreover, the density of galaxies p and there precise distribution
may differ for the different pole regions, in particular due to the lacunary structure of the
large-scale distribution of matter in the universe.

Py = C.k. (19)
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5 Conclusion and comments

We have performed an analysis of the notions of perception in general relativity, which
led us to introduce a representation referential in which measurements are performed. Our
theoretical framework aligns with extensive observations on a macroscopic scale, includ-
ing redshift-distance diagrams and the properties of the Cosmic Microwave Background
(CMB), while clearing away questions raised by the existence of an initial space-time sin-
gularity, and a dark energy that derives the galaxies away. Furthermore, the absence of a
chronological history for the Universe within this model provides an explanation for the
coherent structure of galaxies in the high-redshift universe, recently detected by the James
Webb Space Telescope. This theory accommodates the concept of galactic dark matter en-
tirely composed of neutrinos, a notion previously dismissed within conventional Big Bang
scenarios. Our model also predicts the existence of a gravitational wave background, whose
origin is analog to that of the CMB.

More complete and model-independent data-based studies are required to bring support
to this theory. In particular, a careful analysis of the CMB characteristics in the present
context still needs to be performed. Several complementary predictions could be verified
experimentally on the short and longer run. The theory predicts for instance double images
for galaxies in the antipodal region. More difficult to check at our temporal scale, the tem-
perature of the CMB should not vary in time, and its anisotropies should move according to
the characteristic dynamics of galaxies.

The fact that lengths and durations are not absolute properties of observed events but depend
on the referential in which they are measured is well established since the development of
relativity. The present theory constitutes an extension of the relativity principle to distant
objects in curved spacetime geometries.
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