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Abstract

We carry out a careful analysis of the notion of observation of distant objects in a curved
static universe. To this end, we introduce an observer-based representation referential en-
dowed with a Euclidean structure, and postulate that all measurement are performed with
respect to this reference frame. For a universe of constant positive spatial curvature, this
causes a distortion of metric quantities which grows with the distance to the observer. In
this context, the redshift of cosmological objects is not caused by their recessions, but in-
stead by the spatial curvature along the trajectory of photons from the emitting source to the
observer. Applying these considerations to the Einstein’s static universe, we obtain a red-
shift/distance relationship that is consistent with cosmological measurements. We show that
this effect also explains the existence of a Cosmic Microwave Background whose character-
istics agree with the observations of the Planck mission. Furthermore, this model predicts
the abundance of well-formed galactic structures in the high redshift universe, which were
recently detected by the JWST.

1 Introduction
In 1917, Albert Einstein proposed a finite static solution to its equations of general relativity
as a representation of the universe. He envisioned a universe with constant spherical curva-
ture that required the introduction of a cosmological constant to prevent it from collapsing
due to gravitational effects. However, this view of the universe soon faced two major chal-
lenges. Firstly, in 1930, Eddington raised concerns about the stability of the Einstein world
under small perturbations and demonstrated that it is unstable in certain situations [2]. But
it is the discovery, by Hubble, of a linear relation between the redshift of galaxies and their
distance [4] that convinced Einstein, at the beginning reluctant, to finally change his mind
and accept the growing consensus on models based on expansion of space [5, 7, 8]. Such
models suited quite well the small amount of observational data yet available, although
the existence of an initial spacetime singularity it requires raised important physical and
philosophical questions, that still remain unanswered today. The discovery of a cosmic
microwave background (CMB) made by Penzias and Wilson in 1964 [9] became a strong
support for this theory, since its characteristics are compatible with the radiation of a dense
primordial plasma. In 1998, an acceleration of the expansion of the universe was detected
and surprised cosmologists [10]. This led to the introduction in the models of a dark energy
that acts as a repulsive gravitational force, whose origin remains very speculative. Efforts
have been made to combine all these considerations and the most accomplished result is the
standard model of cosmology, so called ΛCDM.
Alternative theories have been developed to explain the redshift of cosmological objects,
such as tired light theory [11], but errors have been pointed out and the theory has never been
commonly accepted [12]. In the current understanding of general relativity, if we neglect
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hypothetical physical processes that steal energy from photons, the only possible explana-
tion for this redshift is a mechanism that acts on the metric of spacetime. As for now, there
is growing evidence that this standard cosmological model has fundamental flaws. Thanks
to a new generation of telescopes, and to an enhanced precision of measurements, some
tensions in the standard model have become increasingly apparent [13, 14].
We here propose an alternative explanation for this redshift. We postulate that the wave-
length of photons (as well as their frequency) is affected by the radial curvature of space.
In the Einstein’s static universe, this produces a redshift for incoming photons that grows
with the distance of the light source, in a way that is consistent with observations. In the
proposed theory, this effect originates from the observer’s perception of its environment as
being flat, affecting the nature of incoming light. We start by motivating this idea and by
introducing a suitable referential in which we postulate that all observations of our physical
environment are performed. We then show the agreement of our model with observations.

2 The perception of distant objects in a curved universe
In his book Wholeness and the implicate order [15], David Bohm points out a fundamental
duality of the physical reality: a world, hardly accessible to our senses, home to unfamiliar
processes that he calls the implicate order, reveals itself in an unfolded, explicate order, in
which measurements can be performed, and which corresponds to our everyday experience
of the physical environment. Originally thought to account for the puzzling properties of
quantum mechanics, these views also find an echo in general relativity. In the latter, the
fundamental object is a curved 4-dimensional pseudo-Riemannian manifold in which space
and time are entangled in a profound interlace. Yet in our way of representing this envi-
ronment, space and time are fundamentally distinct objects, for otherwise no measurement
would be possible. We will refer to this fact as the separation principle.
In this explicate world of observation, the environment is also perceived as being flat, as we
are living in a locally flat portion of the universe and our brain is equipped to make linear
representations of our surroundings. To this extent, Albert Einstein writes in one of his fa-
mous 1905 paper [16]:

“If a material point is at rest relatively to a system of co-ordinates, its position can
be defined relatively thereto by the employment of rigid standards of measurement and the
methods of Euclidean geometry, and can be expressed in Cartesian co-ordinates.”

A few years later, the development of general relativity challenged this view and intro-
duced more sophisticated geometrical tools to describe the physical world.
Let us now take the point of view of an observer living in a universe whose geometry is
described by Einstein’s field equations (possibly with a cosmological constant). In order
to measure quantities such as lengths and durations associated to events around him, the
observer can directly compare them with different measuring devices, such as a ruler or
a chronometer. In Minkowskian spacetime and for objects in uniform linear motion with
respect to the observer, direct comparison is not possible and a procedure was proposed by
Einstein to determine the length of such an object, based on the constancy of the speed of
light c. This procedure turns out to give a value in the direction of motion that is different
from the length one would measure directly by comparing the object with a ruler. This is
the core of special relativity. A similar procedure allows to determine the distance between
the observer and an object at rest: one can send a light ray in the direction of the object at
time t0, and wait for the light ray to be reflected back at time t1. The distance d from the
event s is then defined in the following way:

d(s) = c
t1 − t0

2
. (1)

This definition of distance extends to more general spacetime geometries and is called
proper distance in the context of a static universe. It can be thought of as the length of the
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shortest spatial geodesic connecting the observer to the object.
Now that he is able to determine the distance of an object, the observer may ask the follow-
ing question: Is there a procedure to assign lengths and durations to events situated at large
distances, and how to do so? In a flat spacetime, and if the object is at rest, the answer is
trivial: it can be done by using of the tools of Euclidean geometry. To answer this question
in the more general set up of curved spacetime geometry, we have to introduce a represen-
tation referential Ro, according to which the observer creates a consistent representation of
its physical environment.
Consider an observer living in a spatial universe U , that we suppose static. The position of
the observer is denoted by o ∈ U . We denote Ro the tangent space of U at o. Let x ∈ U
be a point at proper distance dU from o. Denote T (x) : U → Ro the representation map,
which transforms a point x ∈ U to the point T (x) in Ro situated at distance dR = dU

from o and such that the vector
−→
oT (x) has the same initial direction as that of the minimal

geodesic connecting o to x in U . Suppose for now that that T is invertible. In that case,
any object X ⊂ U has a unique representation T (X) in Ro. T−1 is called the exponential
map in the mathematical literature. In Ro, the trajectory of a photon traveling from x to o
in U is represented as a straight line. We now impose a linear geometrical structure in Ro,
by endowing it with the Euclidean metric. Note that T does not constitute a mere change of
the coordinates describing the spatial geometry, since it has a different metric.
In this reference frame, physical objects are sometimes represented stretched, deformed,
eventually split and present at different locations, which corresponds exactly to the way we
perceive them. There would be no way for the observer to recover the spatial geometry in
U from its observations in Ro without further knowledge of the constitution of its physi-
cal environment. For this reason, we will postulate that all the measures performed by the
observer are performed with respect to Ro, and are therefore consistent with the rules of Eu-
clidean geometry. In particular, radiations should behave as in a flat space and the photons,
once emitted, keep a constant wavelength.
Now, in curved spatial geometries, although the proper distance of an object is preserved
by T , the metric quantities associated to it in Ro differ from the ones in the object’s natural
referential, even if at rest with respect to o. To quantify this distortion, we introduce for
each point x in U a scalar a(x), the scaling factor, which can be obtained in the following
way: a bundle of light rays with infinitesimal solid angle δΩ is sent in the direction of x,
and we compute

a(x) =

√
δS

δSo
,

where δS is the area intersected by the bundle in the neighborhood of x in the natural local
referential at x and δSo is the area that intersects the bundle in Ro. Note that δS0 = d2δΩ2

for a point at proper distance d from o. The obtained scaling field is a priori not continuous,
can contain singularities and domains where it is not defined (in a black hole region for
example). In order to compute it in a general set up, one needs to study the metric induced
on geodesic balls. To the author’s knowledge, no general treatment of this problem has been
performed in the mathematical literature. It is obvious that if U is the Euclidean space, then
a(x) = 1 for all x. We will, in the following section, compute this quantity explicitly in the
case when U has spherical geometry.
We make the additional assumption that the speed of light is constant equal to c everywhere
in Ro. For that, we must suppose that the scaling factor a(x) also applies to durations
associated to events happening at x. Such time dilations has been observed for distant
Supernovae [17].
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3 Cosmological considerations

3.1 Einstein’s world
Let us from now on place ourselves in the Einstein’s static universe of radius of curvature R.
It has closed spatial geometry and is the only static solution to the field equations, assuming
a fined-tuned homogenous distribution of matter/energy and a positive cosmological con-
stant [1]. The spatial component of the metric is the one induced by the ambient Euclidean
metric in R4 on the manifold

U = S3 = {(x1, x2, x3, x4) ∈ R4 :

4∑
i=1

x2
i = R2}.

The time component of the metric is set equal to −1 and allows the possibility of a cyclic
time. In this eternal return scenario, contemplated by many cosmogonies, the age of astro-
nomical objects would be bounded, as observed for nearby stars.

3.2 Scaling factor and redshift
The procedure described in the preceding section gives for a point at distance d from the
observer the following scaling factor:

a =

√
δS

δSo
=

R sin( d
R )

d
. (2)

In Fig. 1, we give a visual representation of this distortion effect in dimension 2.

O

R

δS

δS0

o

A

d

d

δΩ

Figure 1: 2-dimensional representation of the distortion effect in the Einstein universe.

As observed in Fig. 2a, the scaling factor decreases with the distance d until degeneration
when the antipode A is reached, which corresponds to the distance D = πR. From the
observer’s perspective, space seems to vanish at this point. An infinitesimally small object
located at A appears stretched over the whole celestial vault. As postulated in the previous
section, incoming photons, which act as a messenger between the emitting source and the
observer, keep track of the orthogonal dilation of the metric quantities. The resulting redshift
z can be computed by comparing the measured wavelength λob of an incoming photon with
its wavelength at emission λem. We have by definition:

z =
λob − λem

λem
. (3)
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(a) (b)

Figure 2: Evolution with proper distance of the scaling factor (left) and the redshift (right) in the
Einstein universe

Since
a =

λem

λob
, (4)

we get that:

z =
d

Rsin( d
R )

− 1. (5)

A graphical representation of Eq. 5 is shown in Fig. 2b. The derivative of the scaling factor,
that in big bang theories is interpreted as the rate of expansion of the universe, is given by

a′(d) =
cos( d

R )

d
− R

d2
sin(

d

R
). (6)

Figure 3: Evolution of the derivative of the scaling factor with proper distance

As seen in Fig. 3, a′ changes monotony at a certain distance d0. Observations of type
Ia Supernovae have confirmed this behavior [6], and actual cosmological models attribute it
to an acceleration of the expansion of the universe that started a some billions of years ago.
In the present model, we do not have to refer to dark energy to explain this behavior. It is a
simple consequence of the distortion effect.
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3.3 On the relation between different distances in our model
The proper distance of celestial bodies is difficult to estimate from observation. Instead,
two redshift-independent methods are commonly used to assess their distance. Both require
some knowledge about the observed object. The luminosity distance dL is computed by
comparing the flux of incoming light with the known luminosity of the source. The estima-
tion of the angular diameter distance dA requires for its part some knowledge about the size
of the observed object.
dL is defined implicitly in the relation:

Fobs =
L

4πd2L
. (7)

Here, Fobs is the flux measured by the observer and L is the known luminosity of the object
in its local referential. Let us consider an object situated at proper distance d from the
observer, that emits n photons of energy hν per unit of surface per unit of time, where all
these quantities are expressed in the natural referential of the object. In Ro, the situation
is equivalent to the following: in a flat universe, an object at proper distance d is emitting
n photons of energy hν/(z + 1) per (z + 1)2 units of surface per (z + 1) units of time.
Therefore, the luminosity of the object for the observer is

Lobs = L/(z + 1)4.

In the flat space Ro, the measured flux follows the inverse square law, so that

Fobs =
Lobs

4πd2
=

L

4πd2(z + 1)4
. (8)

Combining 7 and 8, we get that
dL = d(z + 1)2. (9)

In a space of spherical geometry, the angular diameter distance dA is for its part given by

dA = R sin(
d

R
) =

d

z + 1
, (10)

so that
dL = dA(z + 1)3. (11)

Note that the Etherington-Ellis reciprocity theorem does not hold in this theory.

3.4 Tests
In Fig. 4a, we test our theory by showing its best χ2 fit for the Supernovae 1A data of the
Union 2 catalog [18], performed on its 257 most distant galaxies. The same general trend is
observed between the theoretical curve and the observational data, although the fit for small
values of z is not satisfying. We stress however that these data are model dependent and
therefore systematic bias may be at stake [19]. The best fit is obtained for R ≈ 2.67 Gly,
for which the antipodal region is at proper distance D = Rπ = 8.4 Gly. That is of the same
order of magnitude as estimates of the distance of the cosmological horizon in the current
standard model of cosmology [6].
In the right hand side of Fig. 4, we plotted 4 curves for the angular diameter distance/redshift
relationship given by Eq. 3.3 for different values of R, together with the observational data
taken from the hydrostatic equilibrium scenario in [20]. The large error bars for these data
render a proper fit irrelevant. The estimates of R seem consistent for both approaches,
although a more precise analysis of this relation, using model independent data needs to be
performed. We stress that in both cases, our fits involve only one parameter: the radius of
curvature R of the universe.
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(a) (b)

Figure 4: Left: Best fit of the model using the 257 most distant supernovae of the catalog. The
best χ2 fit is obtained for R = 2.67 Gly. Right: Comparison between theoretical curves and
angular diameter distance data, for different values of R.

4 On the CMB
The Cosmic Microwave Background is a radiation detectable in all regions of the universe
which has the property of being very regular in all directions in space, although having
small anisotropies distributed with privileged angle scales [9]. The observed spectrum is
one of a black body that has a maximum of emission at Λ ≈ 2 mm. The existence and
the characteristics of the CMB are thought to be a strong evidence for a big bang scenario
since it fits very well the predictions of ΛCDM [21], although several anomalies have been
pointed out [22]. The aim of this section is to show that the presented theory may also be
compatible with these observations.

4.1 Over the horizon
Until here, our study has been limited to distances smaller that the maximal geodesic dis-
tance D = πR. Although it corresponds to an apparent horizon, the observer can see (ghost)
images from objects at distances larger than D. We can extend the definition of proper dis-
tance d to objects over this horizon, so that it corresponds to the length of the trajectory of a
photon from the object to the observer. Applying the arguments developed in the previous
sections, we get that the scaling factor is given by:

a(d) =

∣∣∣∣∣R sin( d
R )

d

∣∣∣∣∣ .
The observed redshift is then:

z(d) =

∣∣∣∣∣ d

R sin( d
R )

∣∣∣∣∣− 1.
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Figure 5: Evolution of the redshift with distance

4.2 Thermal radiation
In the context of a static universe, we cannot explain the CMB by an extremely hot black
body that emitted light in a primordial state of the universe. These photons must emanate
from standard cosmological objects. By looking at Fig. 5, we can characterize two classes
of sources that produce highly redshifted light, which could contribute to the CMB:

1. Very old objects whose radiation has travelled around the universe many times before
arriving to us, at huge distance from us. This type of sources will be refered as class 1.

2. Objects that emitted the perceived light in the region of one pole of the 3-sphere (our
current position or its antipode), whose distance is near a multiple of D. This type of
objects will be refered as class 2.

We assume that the contribution of class 2 objects does not make up the essential of the
microwave background, their proportion being negligible compared to type 1 objects. If we
assume a homogenous and isotropic universe, the global contribution in light of the infinity
of highly redshifted class 1 objects would create a highly regular background radiation,
with no privileged direction in the sky. This very ancient (and therefore highly redshifted)
light has suffered scattering and absorption, so that it becomes difficult for the observer to
trace back its source. Overall, the resulting radiation should be completely randomized and
resemble thermal radiation. We propose that the CMB is constituted by these photons.

4.3 Anisotropies
We must now explain the different levels of primary anisotropies of the radiation. We stated
in the previous section that the contribution of class 1 objects should make up a very reg-
ular background, leaving no place for irregularities. These small perturbations could be
explained by the presence of type 2 objects (mostly galaxies) in the pole regions. It is a well
established fact that the distribution of the anisotropies in the CMB is consistent with the
distribution of galactic structures in the universe. The radiation of these objects is highly
redshifted and leaves some prints on the CMB. Each pole, at different times, contributes to

8



one level of anisotropy and explains the peaks in the angular power spectrum of the CMB
temperature anisotropy.
To formalize this idea, we will first assume that the emission spectrum of a galaxy is re-
duced to its strongest wavelength λ0 which we assume to be the same for every galaxy. We
will also assume that the power spectrum of the CMB is centered around its strongest wave-
length Λ. These strong restrictions should still provide a decent estimate of the location of
the peaks in the power spectrum.
To add to the regular background of wavelength Λ, the received light must also have ob-
served wavelength Λ, so the source must be at a distance d that satisfies the equation

λ0

a(d)
= Λ,

that is:

λ0

Λ
d =| R sin(

d

R
) | . (12)

The solutions of the above equation are typically close to the pole at distance kπR from us,
that we will call the pole k. For each k, there are two associated solutions dk and d′k, which
correspond to distances from the pole k of lk = kπR − dk and l′k = d′k − kπR. Replacing
in equation 12, we obtain: 

λ0

Λ (kπR− lk) =| R sin( lkR ) |,

λ0

Λ (kπR+ l′k) =| R sin(
l′k
R ) | .

(13)

As lk and l′k are typically small compared to R, we get
λ0

Λ (kπR− lk) ≈ lk

λ0

Λ (kπR+ l′k) ≈ l′k,
(14)

so that 
lk = kπR

Λ
λ0

+1

l′k = kπR
Λ
λ0

−1
.

(15)

Since Λ
λ0

has a big order of magnitude (≈ 104), lk and l′k correspond roughly to the same
distance to the pole k, that we will call again lk:

lk =
λ0kπR

Λ
(16)

Now that we have found the typical distance of these galaxies to the pole k, we can estimate
the contribution of the pole k to the anisotropy power spectrum, by computing the number of
galaxies near the pole k that will imprint their mark on the CMB. To constitute an anisotropy,
their image must have an observed wavelength between Λ − ε and Λ + ε, being ε of the
order of the width of the CMB spectrum.
From equation (16), these galaxies are at a distance from the pole k between

lk1 =
λ0kπR

Λ + ε

and
lk2 =

λ0kπR

Λ− ε
.
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Let ρ be the mean density of galaxies in the universe (we assume a homogenous repartition
of galaxies). In S3, the volume of space between lk1 and lk2 is given by

V = πR2(2lk2 − 2lk1 +R sin(
2lk2
R

)− sin(
2lk1
R

))

≈ 4πR2(lk2 − lk1),

(17)

so that the number of galaxies at distances between lk1 and lk2 to the pole k is

N = kπρ4πR3λ0(
1

Λ− ε
− 1

Λ + ε
)

≈ 8π2R3ρkλ0ϵ

Λ2
.

(18)

The number of galaxies associated to the pole k whose images are imprinted in the CMB
is then 2N , since the galaxies at distance d′k also leave the same characteristic prints. If
we assume equirepartition of the galaxies and independence between the images of the
galaxies at distances dk and d′k, these galaxies are equally spaced in the sky and their number
corresponds to the multipole moment Pk for which we have a peak in the power spectrum:

Pk =
16π2R3ρλ0εk

Λ2
= Cεk. (19)

Equation (19) shows a linear relation between Pk and k. We also predict that the strength of
these peaks decreases with k, mostly due to the extinction effects endured by distant light.
Overall, these results seem compatible with the measurements of the Planck collaboration
[21], although we are presently not able to provide a more detailed analysis of the matter.
We have made some approximations in our computations and quite strong restrictions to
arrive at this result: in reality, the spectra of both galaxies and CMB are composed of a large
band of wavelengths. Moreover, the density of galaxies ρ may differ for the different pole
regions, in particular due to the lacunary structure of the large-scale distribution of galaxies.

5 Conclusion and comments
We have performed an analysis of the notions of perception in general relativity and intro-
duced a representation referential in which measurements are performed. This theory turns
out to be consistent with large-scale observations, such as redshift/distance diagrams and
the existence and characteristics of the CMB. Our model also predicts the existence of a
gravitational wave background, whose origin is analog to that of the CMB.
This simple theory allows to clear away questions raised by the existence of an initial space-
time singularity, and a dark energy that derives the galaxies away. It also accounts for the
existence of well-formed galactic structure in the high-redshift universe.
More complete and model-independent data-based studies are required to bring support to
this theory. A careful analysis of the CMB characteristics in the present context still needs
to be performed. Several complementary predictions could be verified experimentally on
the short and longer run. The theory predict for instance the existence of ghost images of
galaxies situated in the pole regions. More difficult to check at our temporal scale, the tem-
perature of the CMB should not vary in time, and its anisotropies should not be fixed, but
move at characteristic velocities.
The fact that lengths and durations are not absolute properties of observed events but depend
on the referential in which they are measured is well established since the development of
relativity. The present theory constitutes an extension of the relativity principle to distant
objects in curved spacetime geometries. As in quantum mechanics, it implies a fundamental
duality between the physical world and its manifestation to the observer, which needs to be
understood at a deep level.
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