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Abstract

We propose an alternative explanation for the redshift of cosmological objects.
In this approach, the wavelength of a photon is affected by the spatial curvature in-
tegrated along its trajectory from the source to the observer. We explain this effect
by postulating that all measurements are performed in an observer-based represen-
tation referential that has the geometrical properties of flat space, resulting in a
distortion of lengths associated to distant objects. Applying these considerations
in the Einstein’s static universe, we obtain a redshift/distance relationship that is
consistent with observations. We are also able to explain the existence and charac-
teristics of the Cosmic Microwave Background.

1 Introduction
The intuition of a static universe led Albert Einstein in 1917 to consider a finite
static solution of the equations of general relativity to be the universe we live in.
He described a spatially closed universe of spherical curvature [1], requiring the in-
troduction of a controversial cosmological constant that kept the universe from col-
lapsing due to gravitational effects. Shortly after, this vision of the universe faced
two major challenges. In 1930, Eddington was the first to consider the question of
stability of the Einstein world [2] and showed that it is unstable under certain types
of small perturbations. This issue is still subject to investigations and is thought to
be an important point to understand the early universe [3]. It is the discovery of the
linear relation between the redshift of galaxies and their distance in the late twen-
ties [4] that convinced Einstein, at the beginning reluctant, to finally change his
mind and accept the growing consensus on models based on expansion of space
[5, 7, 8]. Such models suited quite well the small amount of observational data
yet available, although the existence of an initial spacetime singularity it requires
raises important physical and philosophical questions. The discovery of a cosmic
microwave background (CMB) made by Penzias and Wilson in 1964 [9] became a
strong support for this theory, since its characteristics are compatible with a dense
primordial plasma that emitted light shortly after the big bang, whose analysis is
thought to provide important information on the state of the primordial universe. In
1998, an ‘acceleration of the expansion of the universe’ was detected and surprised
cosmologists [10]. This led to the introduction in the models of a dark energy
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that acts as a repulsive gravitational force, whose origin remains very speculative.
Efforts have been made to combine all these considerations and the most accom-
plished result is the standard model of cosmology, so called ΛCDM . Alternative
theories have been developed to explain the redshift of cosmological objects, such
as tired light theory [11], but errors have been pointed out. The theory has never
been commonly accepted and seems to be now completely abandoned [12]. In the
current understanding of general relativity, if we neglect hypothetical physical pro-
cesses that pump energy from light, the only possible explanation for this redshift
is a mechanism that acts on the metric of spacetime. As for now, there is growing
evidence that this standard cosmological model has fundamental flaws: thanks to
enhanced precision of measurements, some tensions have become increasingly ap-
parent [13, 14].

We will here propose an alternative explanation for the redshift of galaxies, by
postulating that the wavelength of photons (as well as their frequency) is affected
by the radial curvature of space. When placing ourselves in the Einstein’s static
universe, this produces a redshift of incoming photons that grows with the distance
of the light source, in a way that is consistent with observations. The effect orig-
inates from the observer’s perception of its environment as being flat. The latter
performs measurements in a usual Galilean referential, resulting in a distortion of
observed lengths that affects the nature of incoming light. We start by motivating
this idea and we then show its consistency with observations, in particular with
Hubble diagrams and CMB characteristics.

2 An observer-based referential
In his book Wholeness and the implicate order [15], David Bohm points out a fun-
damental duality of the physical reality: a world, hardly accessible to our senses,
home to unfamiliar processes that he calls the implicate order, reveals itself in an
unfolded, explicate order, in which measurements can be performed, and which
corresponds to our everyday experience of the physical environment. Originally
thought to account for the puzzling properties of quantum mechanics, these views
also find an echo in general relativity. In the latter, the fundamental object is a
curved 4-dimensional pseudo-Riemannian manifold in which space and time are
entangled in a profound interlace. Yet in our way of representing this environment,
space and time are fundamentally distinct objects, for otherwise no measurement
would be possible. We will refer to this fact as the separation principle.

In this explicate world of observation, the environment is also perceived as be-
ing flat, as we are living in a locally flat portion of the universe and our brain is
equipped to make linear representations of our surroundings. To this extent, Albert
Einstein writes in his famous 1905 paper [16]:

“If a material point is at rest relatively to a system of co-ordinates, its position
can be defined relatively thereto by the employment of rigid standards of measure-
ment and the methods of Euclidean geometry, and can be expressed in Cartesian
co-ordinates.”
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A few years later, the development of general relativity challenged this view
and introduced more sophisticated geometrical tools to describe the physical world.
We now follow the point of view of the observer to investigate the existence of a
consistent referential in which Einstein’s considerations apply. Let us consider the
following situation: in a universe whose geometry is described by Einstein’s field
equations (possibly with a cosmological constant), lives an observer, whose funda-
mental nature is to create a consistent representation of its physical environment, in
which he is able to measure quantities such as lengths and durations associated to
events around him, using a ruler and a chronometer for example. In Minkowskian
spacetime and for objects in uniform linear motion with respect to the observer,
direct comparison is not possible and a procedure was proposed by Einstein to de-
termine the length of such an object, based on the constancy of the speed of light c.
This procedure turns out to give a value in the direction of motion that is different
from the length one would measure directly by comparing the object with a ruler.
This is the core of special relativity. A similar procedure allows to determine the
distance between the observer and an object at rest: he can send a light ray in the
direction of the object at time t0, and wait for the light ray to be reflected back to
him at time t1. The distance d from the event s is then defined in the following
way:

d(s) = c
t1 − t0

2
. (1)

This definition of distance extends to more general spacetime geometries and
is called proper distance in the context of a static universe. It can be thought of as
the length of the shortest geodesic connecting the observer to the object.

Now that he is able to measure lengths and durations associated to events in its
direct environment using his local coordinates and to determine the distance of an
object, the observer may ask the following question: is there a procedure to assign
lengths and durations to events situated at large distance d, and how to do so? In
a flat spacetime, and if the object is at rest, the answer is trivial: it can be done
by using of the tools of Euclidean geometry, as stated by Einstein. To provide an
answer to this question in the more general set up of curved spacetime geometry,
we will make a strong hypothesis.

Let R0 be the referential in which a geodesic connecting the observer to an ob-
served object in the physical space is mapped, by a transformation T , into a straight
line leaving the observer with the same direction as the geodesic, with respect to
its local referential. We take T such that it preserves the distances between the
observer and the objects, in the sense that the proper distance in the physical world
and the Euclidean distance in R0 are equal. In R0, a photon travelling from an ob-
ject to the observer will follow straight lines and travel at a constant speed c. T is
not a mere change of the coordinates describing the spatial geometry, since we now
impose a linear geometrical structure in R0, given by the Euclidean metric. In this
referential, physical objects are represented stretched, deformed, eventually split
and present in different locations of the referential. That corresponds exactly to
the usual way we observe them with our telescopes and perceive our environment,
and there would be no way for the observer to distinguish between a flat space and

3



a curved space without a priori knowledge of the constitution of its physical en-
vironment. For this reason, we will postulate that all the measures performed by
the observer are performed in the representation referential R0, and are therefore
consistent with the rules of Euclidean geometry. In particular, radiations behave as
in a flat space and the photons, once emitted, keep a constant wavelength.

Of course, in curved spatial geometries, the lengths measured inR0 differ from
the ones measured in the object’s natural referential, and the hypothesis that we
made may appear surprising to the reader, but we will see that it is consistent with
observations. To quantify the distortion of lengths of the observed objects, we
introduce for each point x in R0 a quantity a(x), that we shall call the scaling
factor. We may determine it in the following way: a bundle of light rays with
infinitesimal solid angle δΩ is sent in the direction of x, and we compute

a(x) =

√
δS

δS0
,

where δS is the area intersected by the bundle in the neighborhood of x in the
natural referential around x and δS0 is the area that intersects the bundle in R0

(δS0 = d2δΩ2). This scaling field is a priori not continuous, can contain singular-
ities and domains where it is not defined (in a black hole region for example). In
order to compute it in a general set up and for a point x at proper distance d, one
needs to study the local properties of the metric of the surface defined by all the
points at geodesic distance d from the observer. To the author’s knowledge, no such
object has yet been studied in a systematic fashion in the mathematical literature.

With the assumption that the speed of light is constant equal to c everywhere
in R0 (as expected in a flat geometry), the time component that has been discarded
until now thanks to the separation principle can be restored by introducing a scaling
factor that applies to infinitesimal durations associated to events happening at the
point x. This scaling factor must be taken equal to the one for the spatial component
a(x), so that a photon travelling in the region of the observed event has velocity

a(x)δl

a(x)δτ
=
δl

δτ
= c, (2)

where δl is the distance travelled by the photon and δτ is the interval of time it
took, in local coordinates. This time dilation for distant events has been observed
for Supernovae [17].

3 Cosmological considerations

3.1 Einstein universe
Let us from now on place ourselves in the Einstein’s static universe of radius of
curvature R. It has closed spatial geometry and is a solution of its field equations
with a positive cosmological constant, assuming a fined-tuned homogenous distri-
bution of matter [1]. The spatial component of the metric is the one induced by the
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ambient Euclidean coordinates xi on the manifold

4∑
i=1

x2
i = R2.

The time component of the metric is set to 1 and allows the possibility of a
cyclic time. In this eternal return scenario, contemplated by many cosmogonies,
the age of astronomical objects would be bounded, as seems to be the case, at least
for nearby stars.

The procedure described in the preceding section gives for a point at distance
d from the observer the following scaling factor:

a =

√
δS

δS0
=
R sin( dR)

d
. (3)

In figure 3.1, we give a representation of the effect in dimension 2.

O

R

δS

δS0

P

A

d

d

δΩ

Figure 1: The observer is at position P . The scaling factor decreases with the distance d
until degeneration when the antipode A is reached. Space seems to vanish at this point.
An infinitesimally small object located at the exact antipode would appear stretched
over the whole celestial vault, impacting the measured wavelength of its radiation in
this model.

3.2 On the relation between redshift and distance
As postulated, the photon, which acts as a messenger between the emitting source
and the observer, keeps track of the orthogonal dilation of the metric quantities, so
that light coming from an object located at distance d has a redshift z that can be
computed by comparing the measured wavelength λob of an incoming photon with
its wavelength at emission λem. We have by definition:

z =
λob − λem
λem

. (4)

Considering that
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(a) (b)

Figure 2: Evolution with proper distance of the scaling factor (left) and the redshift
(right) in the Einstein universe

a =
λem
λob

, (5)

we get that the redshift for a source at distance d is:

z =
d

Rsin( dR)
− 1. (6)

A graphical representation of equation 6 is depicted in figure 2b.

The derivative of the scaling factor, that in big bang theories is interpreted as
its rate of expansion, is given by

a′(d) =
cos( dR)

d
− R

d2
sin(

d

R
). (7)

Figure 3: Evolution of the derivative of the scaling factor with proper distance
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We observe a change of monotony for a′ at a certain distance d0 (see figure
3). Observations of type Ia Supernovae have pointed out this fact [6], and actual
cosmological models interpret it as an acceleration of the expansion of the universe
that started a few billion years ago. In the present context, we do not have to refer
to any kind of dark energy.

3.3 Test
We now test our model by examining the relation between redshift and distance.
Estimating the distance of cosmological objects is a long standing issue [18], but
two redshift-independent methods are commonly used. Both require some knowl-
edge about the observed object. The luminosity distance is computed by comparing
the flux of incoming light with the luminosity of the source that is supposed to be
known. The estimation of the angular diameter distance for its part requires some
knowledge about the diameter of the observed object. Let us now determine the re-
lation between the proper distance d and the luminosity distance dL in our model,
which is defined implicitly in the relation:

Fobs =
L

4πd2
L

. (8)

Here, Fobs is the flux measured by the observer and L is the luminosity of the
object in its local referential.

Let us consider an object situated at proper distance d from the observer, that
emits n photons of energy hν per unit of surface per unit of time, where all these
quantities are expressed in the natural referential of the object. With the hypothesis
that we made, in the observer’s referential R0, the situation is equivalent to the
following: in a flat universe, an object at proper distance d is emitting n photons of
energy hν/(z+1) per (z+1)2 units of surface per (z+1) units of time. Therefore,
the luminosity of the object in the observer’s referential is

Lobs = L/(z + 1)4.

In the flat space R0, the measured flux follows the inverse square law, so that

Fobs =
Lobs
4πd2

=
L

4πd2(z + 1)4
. (9)

Combining 8 and 9, we get that

dL = d(z + 1)2. (10)

In a space of spherical geometry, the angular diameter distance dA is for its part
given by

dA = R sin(
d

R
) =

d

z + 1
. (11)

Note that the Etherington-Ellis reciprocity theorem does not hold in this situa-
tion, since

dL = dA(z + 1)3.
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In figure (4a), we performed a fit of the Supernovae 1A data provided by the Union
2 catalog [19]. The same general trend is observed between the theoretical curve
and the observational data, although the fit for small values of z is not satisfying.
This may be due to systematic bias in the supernovae data [20]. For this reason, we
discarded the closest galaxies and performed a χ2 fit only for the 257 most distant
galaxies of the catalog. The best fit is obtained for a value ofR of aroundR = 2.67
Gly. The antipodal region, that constitutes an apparent cosmological horizon, is
therefore at distance D = Rπ = 8.4 Gly, which is of the same order of magnitude
as estimates of the horizon in the current standard model of cosmology [6]. In the
right hand side of figure 4, we also plotted different fits for the angular diameter
distance/redshift relationship, where the data are taken from the hydrostatic equi-
librium model in [21]. Estimates of R are consistent for both approaches, although
a more precise analysis of this relation, using model independent data needs to be
performed. We stress that in both cases, the fits involve only one parameter: the
radius of curvature R of the universe.

(a) (b)

Figure 4: Left: Best fit of the model using the 257 most distant supernovae of the catalog.
The best χ2 fit is obtained for R = 2.67 Gly. Right: Comparison between theoretical
curves and angular diameter distance data, for different values of R.

3.4 On the CMB
The Cosmic Microwave Background is a radiation detectable in all regions of the
universe which has the property of being very regular in all directions in space,
just showing some small anisotropies distributed with privileged angle scale [9].
The observed spectrum is one of a black body that has a maximum of emission at
Λ ≈ 2mm. The existence and characteristics of the CMB is thought to be a strong
evidence for a big bang scenario since it fits very well the predictions of ΛCDM
[22], although several anomalies have been pointed out [23]. The aim of this sec-
tion is to show that the model that we developed here may also be compatible with
these observations.
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3.4.1 Over the horizon

Until here, our study has been limited to distances smaller that the maximal geodesic
distance D = πR. Although this distance could be called an apparent horizon, the
observer can see (ghost) images from over this distance. In fact, we can extend the
definition of proper distance d to objects over this horizon, so that it corresponds to
the length of the trajectory of a photon from the object to the observer. Applying
the arguments developed in the previous sections, we get that the scaling factor is
then given by:

a(d) =

∣∣∣∣∣R sin( dR)

d

∣∣∣∣∣ .
We take the absolute value, because we do not consider orientation of lengths

that might be inverted. The redshift observed for these objects is then:

z(d) =

∣∣∣∣∣ d

R sin( dR)

∣∣∣∣∣− 1.

Figure 5: Evolution of the redshift with distance

In this static universe, we cannot explain the CMB by an extremely hot black
body that emitted light in a primordial state of the universe. The radiation must
be made out of light emitted by standard cosmological objects. Just by looking at
the evolution of z, we can characterize two classes of sources that produce highly
redshifted light, which could contribute to the CMB:

1. Very old objects whose radiation has travelled around the universe many
times before arriving to us, at huge distance from us. This type of sources
will be refered as class 1.
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2. Objects that emitted the perceived light in the region of one pole of the 3-
sphere (our current position or its antipode), whose distance is near a multi-
ple of D. This type of objects will be refered as class 2.

We assume that the contribution of class 2 objects does not make up the es-
sential of the microwave background, their proportion being negligible compared
to type 1 objects. If we assume a homogenous universe, the global contribution in
light of the infinity of highly redshifted class 1 objects would create a highly regu-
lar background radiation, with no privileged direction in the sky. This very ancient
(and therefore highly redshifted) light has suffered scattering and absorption, so
that it becomes difficult for the observer to trace back to its source. Overall, the
resulting radiation should be completely randomized and resemble thermal radia-
tion.

3.4.2 Anisotropies

We must now explain the different levels of primary anisotropies of the radiation.
We stated in the previous section that the global light emission of class 1 object
should make up a very regular background, leaving no place for irregularities.
These small perturbations could be explained by the presence of type 2 object
(mostly galaxies) in the pole regions. It is a well established fact that the distri-
bution of the anisotropies in the CMB is consistent with the distribution of galactic
structures in the universe. Their highly redshifted light adds to the regular back-
ground and leaves some trace. Each pole, at different times, contributes to one level
of anisotropy and explains the peaks in the angular power spectrum of the CMB
temperature anisotropy.

To formalize this, we will first assume that the emission spectrum of a galaxy
is reduced to its strongest wavelength λ0 which we assume to be the same for
every galaxy. We will also assume that the power spectrum of the CMB is centered
around its strongest wavelength Λ. These strong restrictions should still provide a
decent estimate of the location of the peaks in the power spectrum. To add to the
regular background of wavelength Λ, the received light must also have observed
wavelength Λ, so the source must be at a distance d that satisfies the equation

λ0

a(d)
= Λ,

that is:

λ0

Λ
d =| R sin(

d

R
) | . (12)

The solutions of the above equations are typically close to a pole that we will
call the pole k, at distance kπR from us. For each k, there are two associated
solutions dk and d′k, which correspond to distances to the pole k of lk = kπR− dk
and l′k = d′k − kπR. Replacing in equation 12, we have that:
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
λ0
Λ (kπR− lk) =| R sin( lkR ) |

λ0
Λ (kπR+ l′k) =| R sin(

l′k
R ) | .

(13)

As lk and l′k are typically small compared to R, we get
λ0
Λ (kπR− lk) ≈ lk

λ0
Λ (kπR+ l′k) ≈ l′k,

(14)

so that 
lk = kπR

Λ
λ0

+1

l′k = kπR
Λ
λ0
−1
.

(15)

Since Λ
λ0

has a big order of magnitude (≈ 104), lk and l′k correspond roughly
to the same distance to the pole k, that we will call again lk:

lk =
λ0kπR

Λ
(16)

Now that we have found the typical distance of these galaxies to the pole k, we
can estimate the contribution of the pole k to the anisotropy power spectrum, by
computing the number of galaxies near the pole k that will imprint their mark on
the CMB. To constitute an anisotropy, their image must have an observed wave-
length between Λ − ε and Λ + ε, being ε of the order of the width of the CMB
spectrum.

From equation (16), these galaxies are at a distance from the pole k between

lk1 =
λ0kπR

Λ + ε

and
lk2 =

λ0kπR

Λ− ε
.

Let ρ be the mean density of galaxies in the universe (we assume a homogenous
repartition of galaxies). In S3, the volume of space between lk1 and lk2 is given by

V = πR2(2lk2 − 2lk1 +R sin(
2lk2
R

)− sin(
2lk1
R

))

≈ 4πR2(lk2 − lk1),

(17)

so that the number of galaxies at distances between lk1 and lk2 to the pole k is

N = kπρ4πR3λ0(
1

Λ− ε
− 1

Λ + ε
)

≈ 8π2R3ρkλ0ε

Λ2
.

(18)
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The number of galaxies associated to the pole k whose images are imprinted in
the CMB is then 2N , since the galaxies at distance d′k also leave the same character-
istic prints. If we assume equirepartition of the galaxies and independence between
the images of the galaxies at distances dk and d′k, these galaxies are equally spaced
in the sky and their number corresponds to the multipole moment Pk for which we
have a peak in the power spectrum:

Pk =
16π2R3ρλ0εk

Λ2
= Cεk. (19)

Equation (19) shows a linear relation betweenPk and k. We also predict that the
strength of these peaks decreases with k, mostly due to extinction. Overall, these
results seem compatible with the ones of the Planck collaboration [22], although I
am presently not able to provide a more detailed analysis of the anisotropy spec-
trum. We have made some approximations in our computations and quite strong
restrictions to arrive at this result: in reality, the spectra of both galaxies and CMB
are composed of a large band of wavelengths. Moreover, the density of galaxies ρ
may differ for the different pole regions, in particular due to the lacunary structure
of the large-scale distribution of galaxies.

4 Conclusion and comments
We have performed an analysis of the notions of perception and measurement in
general relativity, by introducing a referential in which the observer represents its
physical environment and in which he can perform measurements. Such con-
siderations turn out to be consistent with large-scale observations, such as red-
shift/distance relation and the existence and characteristics of the CMB. These ef-
fects should also affect gravitational waves, in a completely analogous way. In
particular, the existence of a gravitational wave background is also predicted in
this model. We are able to clear away questions raised by the existence of an ini-
tial spacetime singularity, and a dark energy that derives the galaxies dramatically
away. More detailed theoretical works together with more complete data-based
studies and a careful analysis of the CMB in the context of a static universe of
spherical curvature could bring more support to this theory and refine estimations
of the radius of the universe. Several complementary predictions could be verified
experimentally on the short and longer run. The new generation of telescopes that
will soon observe the distant universe could discover ghost images of galaxies and
large-scale structures compatible with this model. More difficult to check at our
temporal scale, the temperature of the CMB should not vary in time, and the dif-
ferent levels of anisotropies of the CMB should move with a characteristic speed,
as the objects they represent had individual motions when they emitted the light.

The statement that lengths and durations are not absolute properties of observed
events but depend on the referential in which they are measured is well established
since the development of relativity. The relativity principle is here extended to
distant objects in curved spacetime geometry. This approach introduces a funda-
mental duality between the physical world and its manifestation to the observer.
Such a duality is reminiscent of quantum mechanics, in which the observer rep-
resents a world of non-locality, superposition and fuzziness as being composed of
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actual objects that are localized, separated and which can be apprehended.
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