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We consider a coupled PDE-ODE model representing a slow moving vehicle immersed in vehicular traffic. The PDE consists of a scalar conservation law modeling the evolution of vehicular traffic and the trajectory of a slow moving vehicle is given by an ODE depending on the downstream traffic density. The slow moving vehicle may be regarded as a moving bottleneck influencing the bulk traffic flow via a moving flux pointwise constraint. We prove existence of solutions with respect to initial data of bounded variation. Approximate solutions are constructed via the wave-front tracking method and their limit are solutions of the Cauchy problem PDE-ODE.

Introduction 1.Presentation of the Problem

The modeling of the impact of slow moving vehicles on the vehicular traffic has been studied by engineering communities [START_REF] Giorgi | A traffic flow model for urban traffic analysis: extensions of the lwr model for urban and environmental applications[END_REF][START_REF] Lebacque | Introducing buses into first-order macroscopic traffic flow models[END_REF][START_REF] Leclercq | Moving bottlenecks in lighthill-whithamrichards model: A unified theory[END_REF] and in the applied mathematics [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF][START_REF] Laura | Stability estimates for scalar conservation laws with moving flux constraints[END_REF][START_REF] Lattanzio | Moving bottlenecks in car traffic flow: A pde-ode coupled model[END_REF] leading to a hybrid PDE-ODE model. The PDE models the evolution of vehicular traffic and the ODE represents the trajectory of slow moving vehicles. It is usual that a tractor or an Amish buggy produce a traffic jam when the density of cars is high enough. Thus, solutions of the PDE may be influenced by the ODE. Mathematically speaking, different approaches is used to model this impact; in [START_REF] Lattanzio | Moving bottlenecks in car traffic flow: A pde-ode coupled model[END_REF], the authors multiply the usual flux function by a mollifier to represent the capacity drop of car flow due to the presence of a slow vehicle. They prove the existence of solutions in the sense of Fillipov ( [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF]) using a fractional step approach and assuming that the slow vehicle travels at maximal speed. In [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF][START_REF] Laura | Stability estimates for scalar conservation laws with moving flux constraints[END_REF], the slow moving vehicle is regarded as a moving constraint influencing solutions of the PDE via moving pointwise flux constraint. In [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF], the authors defined the constrained Riemann 1 problem for the following hybrid PDE-ODE ∂ t ρ(t, x) + ∂ x (f (ρ(t, x))) = 0, (t, x) ∈ IR + × IR, (1a)

ρ(0, x) = ρ 0 (x), x ∈ IR, (1b) 
f (ρ(t, y(t)))ẏ(t)ρ(t, y(t)) F α ( ẏ) := α max ρ∈[0,ρmax]

(f (ρ) -ẏρ), t ∈ IR + , (1c) 
ẏ(t) = min(V b , v(ρ(t, y(t)+))), t ∈ IR + , (1d)

y(0) = y 0 . (1e) 
with f (ρ) = 1ρ and show that approximate solutions of (1) constructed by a wave-front tracking method converge to a weak solution of (1a)-(1b). This paper addresses the existence of solutions for the whole PDE-ODE systems [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF]. In [START_REF] Liard | Well-posedness for scalar conservation laws with moving flux constraints[END_REF], a proof of the stability of solutions for (1) is given using a wave-front tracking method and the notion of generalized tangent vectors. Some numerical methods have also been developed in [START_REF] Daganzo | Moving bottlenecks: A numerical method that converges in flows[END_REF][START_REF] Daganzo | On the numerical treatment of moving bottlenecks[END_REF][START_REF] Laura | A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow[END_REF][START_REF] Laura | Micro-macro model for local instability[END_REF]; in [START_REF] Laura | A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow[END_REF], the algorithm used is based on Godunov schemes using reconstruction techniques to avoid diffusion effects and capture non-classical shocks.

In [START_REF] Laura | Micro-macro model for local instability[END_REF], the authors use a wave-front tracking algorithm regarding a front-wave as a numerical object.

An extension to second order model has been studied in [START_REF] Villa | Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model[END_REF]; they replace the Lighthill-Whitham-Richards (briefly LWR) model (1a) by the Aw-Rascle-Zhang (briefly ARZ) second order model [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF][START_REF] Zhang | A non-equilibrium traffic model devoid of gas-like behavior[END_REF]. They define two different Riemann Solvers and they propose numerical methods.

A strongly coupled PDE-ODE system

We consider a stretch of road IR where ρ max and V max stand for the maximum density and the maximum speed of cars allowed on the road respectively. Here we focus on the hybrid PDE-ODE model [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF], proposed in [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF], describing the impact of a slow moving vehicle on the evolution of vehicular traffic. The first order model (1a) with (1b) was proposed by Lighthill-Whitham-Richards [START_REF] Lighthill | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF][START_REF] Paul | Shock waves on the highway[END_REF] and this model consists of a single conservation law for the traffic density. The function ρ = ρ(t, x) ∈ [0, ρ max ] denotes the macroscopic traffic density at time t 0 and at the position x ∈ IR. The flux f is given by f : ρ ∈ [0, ρ max ] → ρv (ρ), where v ∈ C 2 ([0, ρ max ]; [0, V max ]) is the average speed of cars. We assume that the flux satisfies the condition (F) f : C 2 ([0, ρ max ]; [0, +∞)), f (0) = f (ρ max ) = 0, f is strictly concave: -B f (ρ) -β < 0 for all ρ ∈ [0, ρ max ], for some β, B > 0.

In particular, the speed v is a strictly decreasing function and V max := v(0) is the maximal speed of cars. The ODE (1d) with (1e) describes the trajectory of the slow moving vehicle starting at (t, x) = (0, y 0 ): the slow moving vehicle moves at its maximum speed V b ∈ (0, V max ) as long as the downstream traffic moves faster, otherwise it has to adapt its velocity accordingly to the traffic density in front (see Figure 1 where we chose v(ρ) = 1ρ).

The slow moving vehicle is regarded as a Moving Bottleneck (briefly MB), see Figure 2. It acts on the evolution of vehicular traffic through the moving constraint (1c). The left side of (1c) represents the flux of cars at the position of the MB in the MB reference frame. F α ( ẏ) := α max ρ∈[0,ρmax] (f (ρ)ẏρ) in the right side of (1c) is the reduced maximum flow due to the presence of the MB (see Figure 3 and Figure 4). For instance, if

v(ρ) = V max (1 -ρ ρmax ) then we have F α ( ẏ) := αρmax 4Vmax (V max -ẏ(t)) 2 .
For future use, ρα and ρα with ρα < ρα denote the two solutions to the equation 3 and Figure 4). Since f is strictly concave, ρα , ρα and ρ * are well-defined. In the case where v(ρ) = V max (1 -ρ ρmax ), we have ρ

F α ( ẏ) + V b ρ = f (ρ) and ρ * is the solution to V b ρ = f (ρ) (see Figure
-V b ρ F max (V b ) Fα(Vb) := αFmax(Vb) ρα ρα ρ * • ρ max f (ρ) -V b ρ Figure 4: Flux function for ẏ = V b in the MB reference frame. ρα = ρ max (V max -V )( 1- √ 1-α 2Vmax ), ρα = ρ max (V max -V )( 1+ √ 1-α 2Vmax ) and ρ * = ρ max (1 -V b Vmax ). Notation: Given ρ 1 , ρ 2 ∈ [0, ρ max ], we denote by σ(ρ 1 , ρ 2 ) := f (ρ1)-f (ρ2) ρ1-ρ2
the Rankine-Hugoniot speed of the front-wave (ρ 1 , ρ 2 ).

Main result

Let's introduce the definition of solutions to the constrained Cauchy problem (1) as in [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF]Section 4].

Definition 1. The couple (ρ, y) ∈ C 0 [0, +∞[; L 1 ∩ BV(IR; [0, ρ max ]) × W 1,1 ([0, +∞[; IR)
is a solution to (1) if i The function ρ is a weak solution to the PDE in (1), for (t, x) ∈ (0, +∞) × IR, i.e for all ϕ ∈ C 1 c (IR 2 , IR),

I R+ I R (ρ∂ t ϕ + f (ρ)∂ x ϕ)dxdt + I R ρ 0 (x)ϕ(0, x)dx = 0.
ii The function ρ satisfies Kružhkov entropy conditions on (0, +∞) × IR \ {(t, y(t)); t ∈ IR + }, i.e for every k ∈ [0, ρ max ], for all ϕ ∈ C 1 c (IR 2 , IR + ) such that ϕ(t, y(t)) = 0, t > 0,

I R+ I R (|ρ -k|∂ t ϕ + sgn(ρ -k)(f (ρ) -f (k))∂ x ϕ)dxdt + I R |ρ 0 -k|ϕ(0, x)dx 0;
iii For a.e t ∈ IR + , ẏ(t) = min(V b , v(ρ(t, y(t)+))) or for every t ∈ IR + y(t) = y 0 + t 0 min (V b , v(ρ(s, y(s)+))) ds ;

iv The constraint (1c) is satisfied, in the sense that for a.e. t ∈ IR lim

x→y(t)± (f (ρ(t, x)) -ẏ(t)ρ(t, x)) F α ( ẏ) ;
The goal of this paper is to prove the existence of solutions for the hybrid PDE-ODE system defined in (1).

Theorem 1. Let ρ 0 ∈ BV (IR, [0, ρ max ]), then the Cauchy problem (1) admits a solution in the sense of Definition 1.

The proof of Theorem 1 is structured as follows: we contruct piecewise constant approximate solutions (ρ n , y n ) of ( 1) via the wave-front tracking method described in Section 2.2. By introducing a suitable TV type functional Γ(t) defined in [START_REF] Laura | Stability estimates for scalar conservation laws with moving flux constraints[END_REF], we show that there exists C > 0 such that, for every t ∈ IR + , T V (ρ n (t, •)) C (see Section 3.1). Lemma 3 in Section 3.1 is devoted to prove the convergence of the approximate solution (ρ n , y n ) to (ρ, y) as n → ∞. In Section 3.2, we show that the limit ρ is a weak solution of (1) in the sense of Definition 1 and ρ is an entropy admissible solution in (0, +∞) × IR \ {(t, y(t)); t ∈ IR + }. Thus, the limit (ρ, y) verifies Definition 1 i and 1 ii. Moreover, we prove that the limit (ρ, y) verifies Definition 1 iv using that both ρ n are ρ are weak solutions of (1a) on {(t, x) ∈ [0, T ] × IR/x < y(t)} and on {(t, x) ∈ [0, T ] × IR/y(t) < x}. In section 3.3, we study the behavior of ρ n around the point ( t, y n ( t)) in order to prove that the limit (ρ, y) verifies Definition 1 iii.

2 The Riemann problem of (1) and Wave-front tracking method

The Riemann problem with moving constraints

We consider [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF] with Riemann type initial data

ρ 0 (x) = ρ L if x < 0 ρ R if x > 0 and y 0 = 0. ( 2 
)
The definition of the Riemann solver for (1) and ( 2) is described in [7, Section 3]; we denote by R the standard Riemann solver for (1a)-(1b) where ρ 0 is defined in [START_REF] Bressan | Hyperbolic systems of conservation laws[END_REF]. We have the following:

Definition 2. The constrained Riemann solver R α : [0, ρ max ] 2 → L 1 loc (IR; [0, ρ max ]) for (1) and (2) is defined as follows. i If f (R(ρ L , ρ R )(V b )) > F α (V b ) + V b R(ρ L , ρ R )(V b ), then R α (ρ L , ρ R )(x/t) = R(ρ L , ρα )(x/t) if x < V b t, R(ρ α , ρ R )(x/t) if x V b t, and 
y(t) = V b t. ii If V b R(ρ L , ρ R )(V b ) f (R(ρ L , ρ R )(V b )) F α (V b ) + V b R(ρ L , ρ R )(V b ), then R α (ρ L , ρ R ) = R(ρ L , ρ R ) and y(t) = V b t. iii If f (R(ρ L , ρ R )(V b )) < V b R(ρ L , ρ R )(V b ), then R α (ρ L , ρ R ) = R(ρ L , ρ R ) and y(t) = v(ρ R )t.
The three cases above are illustrated in Figure 5, Figure 6 and Figure 7. ρα ρα

Fα(Vb) + Vbρ Vbρ ρ max f (ρ) • • ρ L ρ R ρ * Fundamental diagram representation x t 0 ρ R ρ L ẏ = V b space-time diagram
Figure 6: The solution of the constrained Riemann problem of (1) with 0 < ρ L < ρα and ρα < ρ R ρ max : case ii of Definition 2.

Wave-front tracking method

We introduce on [0, ρ max ] the mesh M n = {ρ n i } 2 n i=0 defined by

M n = ρ max (2 -n IN ∩ [0, 1]).
We add the points ρα , ρα and ρ * to the mesh M n as described in [7, Section 4.1]:

• if min i |ρ α -ρn i | = ρ max 2 -n-1
then we add the point ρα to the mesh

M n := M n ∪ {ρ α }; ρ Fα(Vb)
ρα ρα

Fα(Vb) + Vbρ Vbρ ρ max f (ρ) • • ρ L ρ R ρ * Fundamental diagram representation x t 0 ρ L ρ R ẏ = v(ρR)
space-time diagram Figure 7: The solution of the constrained Riemann problem of (1) with ρ * < ρ L < ρ R : case iii of Definition 2.

• if |ρ α -ρn l | = min i |ρ α -ρn i | < ρ max 2 -n-1
then we replace ρn l by ρα

M n = M n ∪ {ρ α } \ {ρ n l };
• we perform the same operation for ρα and for ρ * .

We denote by N := card(M n ). We have 2 n N 2 n + 3 and the constructed density mesh M n := {ρ n i } N i=0 , sorted in ascending order, includes ρα , ρα and ρ * . Moreover, for every i, j ∈ {0, • • • , N }, we have

ρ max 2 -n-1 |ρ n i -ρ n j | 3ρ max 2 -n-1 . (3) 
Let ρ 0 ∈ BV (IR, [0, 1]). Since our problem is scalar, we use the very first wave-front tracking algorithm proposed by Dafermos [START_REF] Dafermos | Polygonal approximations of solutions of the initial value problem for a conservation law[END_REF]; the initial density ρ 0 is approximated by piecewise constant functions ρ n 0 verifying ρ n 0 (x) ∈ M n for a.e x ∈ IR. We denote by (

x n i ) i=1,••• ,M the M ∈ IN discontinuity points of ρ n 0 . • If ρ n 0 (x n i -) < ρ n 0 (x n i +), a shock wave (ρ n 0 (x n i -), ρ n 0 (x n i +)
) is generated with speed given by the Rankine-Hugoniot condition

• If ρ n 0 (x n i -) > ρ n 0 (x n i +)
, we split the rarefaction wave (ρ n 0 (x n i -), ρ n 0 (x n i +)) into a fan of rarefaction shocks; since, for every x ∈ IR, ρ n 0 (x) ∈ M n = {ρ n j } N j=0 , there exists j 0 < j 1 such that ρ n 0 (x i -) = ρ n j1 and ρ n 0 (x i +) = ρ n j0 . We create j 1j 0 rarefaction shocks (ρ n j , ρ n j+1 ) j=j0,••• ,j1-1 with speed prescribed by the Rankine-Hugoniot condition. The strength of each rarefaction shock is less than 3ρ max 2 -n-1 and greater than ρ max 2 -n-1 . Thus, solving approximately the Riemann problem at each point of discontinuity of ρ n 0 as described above and piecing solutions together, we construct a solution ρ n until two waves meet at time t 1 . The approximate solution ρ n (t 1 , •) is a piecewise constant function verifying ρ n (t 1 , x) ∈ M n for a.e x ∈ IR, the corresponding Riemann problems can again be approximately solved within the class of piecewise constant functions and so on. We define y n to be the solution of

ẏ(t) = min(V b , v(ρ n (t, y(t)+))), t ∈ IR + , y(0) = y 0 , x ∈ IR, (4) 
where ρ n (t, •) is the wave-front tracking approximate solution at time t as described above with initial data ρ n 0 , see also [START_REF] Garavello | Traffic flow on networks[END_REF]Section 2.6].

Structure of the approximate solution (ρ n , y n )

As soon as two discontinuity waves collide (see Figure 8), or a discontinuity wave hits the bus trajectory (Figure 9, Figure 10, Figure 11 and Figure 12) a new Riemann problem arises and its solution is obtained in the former case using the standard Riemann solver R and in the latter case using the constrained Riemann solver R α , see Definition 2. There are no other possible interactions (for more details, we refer to [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF]). The study of these interactions shows that no new rarefaction shock can arise at t > 0. 

A wave-front (ρ L , ρ R ) is called a shock if ρ L < ρ R , a rarefaction shock if ρ L > ρ R and 3ρ max 2 -n-1 ρ L -ρ R 3ρ max 2 -n-1 or a non classical shock if ρ L = ρα and ρ R = ρα . Let ρ 1 , ρ 2 ∈ M n verifying that ρ 2 < ρ 1 and t > 0, we introduce the set A(ρ 1 , ρ 2 , t) ⊂ M n × IR × IR defined as follows: (ρ n 0 , x 1 , x 2 ) ∈ A(ρ 1 , ρ 2 , t) iff x 1 < x 2 with ρ n ( t, x i ) = ρ i , i ∈ {1, 2}, ∀x ∈ [x 1 , x 2 ], ρ max 2 -n-1 ρ n (t, x-) -ρ n (t, x+) 3ρ max 2 -n-1 , or ρ n (t, x-) -ρ n (t, x+) 0,
where ρ n ( t, •) is the wave-front tracking approximate solution at time t with initial data

ρ n 0 . If (ρ n 0 , x 1 , x 2 ) ∈ A(ρ 1 , ρ 2 , t) then x ∈ [x 1 , x 2 ] → ρ n ( t, x
) may decrease by a jump of strength at most 3ρ max 2 -n-1 . Thus, the shocks or the rarefaction shocks are the only wave-fronts which are allowed over Lemma 1. Let ρ 1 , ρ 2 ∈ M n verifying that ρ 2 < ρ 1 and t > 0. We have

{ t} × [x 1 , x 2 ]. ρ R min(V b , v(ρ L )) min(V b , v(ρ R )) ρ L Case a) ρ * ρ R < ρ L and ρ max 2 -n-1 ρ L -ρ R 3ρ max 2 -n-1 . ρ R min(Vb, v(ρL)) min(Vb, v(ρR)) ρ L Case b) ρ * < ρ R and ρ L ∈ [0, ρα ] ∪ [ρ α , ρ R ).
R ρα ρα Case a) ρ R ∈ (ρ α , ρ max ] ρ R ρα ρα V b ρ L Case b) ρ L = ρα and ρ max 2 -n-1 ρ L -ρ R 3ρ max 2 -n-1
V b ρ L Case a) ρ L ∈ [0, ρα ) ρ R ρα ρα V b ρ L Case b) ρ R = ρα and ρ max 2 -n-1 ρ L -ρ R 3ρ max 2 -n-1
δ n (ρ 1 , ρ 2 , t) := min (ρ n 0 ,x1,x2)∈A(ρ1,ρ2, t) x 2 -x 1 tβ(ρ 1 -ρ 2 -ρ max 2 -n+1 ).
Remark 1. δ n (ρ 1 , ρ 2 , t) is the minimal length in space at time t to go from ρ 1 to ρ 2 only using shocks and rarefaction shocks.

Proof. Since (ρ n 0 , x 1 , x 2 ) ∈ A(ρ 1 , ρ 2 , t)
, the minimal length in space at time t to go from ρ 1 to ρ 2 is obtained by a fan of rarefaction shocks (ρ 1 , ρ 2 ) coming from (x, t) = (x 0 , 0) (see Figure 13). Since ρ 1 , ρ 2 ∈ M n , there exists j 2 < j 1 such that ρ 1 = ρ n j1 and ρ 2 = ρ n j2 . Thus,

δ n (ρ 1 , ρ 2 , t) = tσ(ρ n j2+1 , ρ n j2 ) + x 0 -tσ(ρ n j1 , ρ n j1-1 ) + x 0 = t σ(ρ n j2+1 , ρ n j2 ) -σ(ρ n j1 , ρ n j1-1 )
By definition of σ and using that f is strictly concave,

f (ρ n j2+1 ) < σ(ρ n j2+1 , ρ n j2 ) < f (ρ n j2 ) and f (ρ n j1 ) < σ(ρ n j1 , ρ n j1-1 ) < f (ρ n j1-1 ). ρ R V b V b ρ L Figure 12: ρ L ∈ [0, ρα ], ρ R ∈ [0, ρα ] ∪ [ρ α , p * ] and ρ L + ρ R < ρ * .
Interaction coming from the left with the MB trajectory. 

Using that ρ max 2 -n-1 ρ n j2+1 -ρ n j2 3ρ max 2 -n-1 and ρ max 2 -n-1 ρ n j1 -ρ n j1-1 3ρ max 2 -n-1 , we conclude that δ n (ρ 1 , ρ 2 , t) > t f (ρ n j2+1 ) -f (ρ n j1-1 ) , = tf (c)(ρ n j2+1 -ρ n j1-1 ), c ∈ (ρ n j2+1 , ρ n j1-1 ), tβ(ρ 1 -ρ 2 -ρ max 2 -n+1 ). x t t x 0 ρ 1 = ρ j1 ρ 2 = ρ j2 δ n (ρ 1 , ρ 2 , t) x = σ(ρ n j1 , ρ n j1-1 )t + x0 x = σ(ρ n j2+1 , ρ n j2 )t + x0

An instructive example

Assuming

f (ρ) = ρv(ρ) with v(ρ) = 1 -ρ. Let ρ 0 (•) = ρα 1 (x1,x2) + 1 (x2,+∞) and y 0 = x1+x2 2 
(see Figure 14a). We have

V b = 1 -ρα -ρα = v(ρ α
) and the solution (ρ, y) of ( 1) is

ρ(t, x) =            0, if (t, x) ∈ {(t, x) ∈ [0, x 2 -x 1 ] × IR /x < (1 -ρα )t + x 1 } , {(t, x) ∈ [x 2 -x 1 , ∞) × IR /x < (1 -ρα )(x 2 -x 1 ) + x 1 }, ρα , if (t, x) ∈ {(t, x) ∈ [0, x 2 -x 1 ] × IR /(1 -ρα )t + x 1 < x < -ρ α t + x 2 }, 1, if (t, x) ∈ {(t, x) ∈ [0, x 2 -x 1 ] × IR / -ρα t + x 2 < x}, {(t, x) ∈ [x 2 -x 1 , ∞) × IR /(1 -ρα )(x 2 -x 1 ) + x 1 < x}.
and

y(t) = V b t + y 0 , if t < x2-y0 1-ρα , V b ( x2-y0 1-ρα ) + y 0 , if x2-y0 1-ρα < t.
Since ρα ∈ M n and ρα ∈ M n , for n large enough, there exist j 0 , j 1 ∈ {1, • • • , N } such that ρα = ρ n j0 , ρα = ρ n j1 and

M n = {0, 2 -n , • • • , ρα := ρ n j0 , ρ n j0+1 , • • • , ρ n j1-1 , ρα := ρ n j1 , • • • , 1 -2 -n , 1}. Let ρ n 0 = 2 -n 1 (-∞,x1) + ρα 1 (x1,y0) + ρ n j1-1 1 (y0,x2) + (1 -2 -n )1 (x2,+∞) (see Figure 14b) and ρα -3 2 -n-1 ρ n j1-1 ρα -2 -n-1 . It is obvious that lim n→∞ ρ n 0 -ρ 0 L 1 (IR) = 0 and T V (ρ n 0 ) = T V (ρ 0 ). Since ρ n j1-1 ∈ (ρ α , ρα )
, a non classical shock (ρ α , ρα ) and a shock wave (ρ α , ρ n j1-1 ) are created at (0, y 0 ). The shock wave (ρ n j1-1 , 1 -2 -n ) created at (0, x 2 ) interacts with the shock wave (ρ α , ρ n j1-1 ) at time tn ). Thus, for every t ∈ (0, t), we have lim n→∞ ρ n (t, y n (t)+) = ρα = ρα = ρ(t, y(t)+). However, for every t ∈ (0, t),

1 = x2-y0 1-ρα-2 -n . The resulting shock (ρ α , 1-2 -n ) cancels the non classical shock at time tn 2 := ρα-ρ n j 1 -1
lim n→∞ min(V b , v(ρ n (t, y n (t)+))) = V b = min(V b , v(ρ(t, y(t)+))). (5) 
Morever, for every t

∈ [ t, t n 2 ), min(V b , v(ρ n (t, y n (t)+))) = V b and min(V b , v(ρ(t, y(t)+))) = 0. ( 6 
)
For every t > t n 2 , min(V b , v(ρ n (t, y n (t)+))) = v(1 -2 -n ) and min(V b , v(ρ(t, y(t)+))) = 0.

Using that t n 2 → t, ( 5), ( 6) and ( 7), we deduce that lim n→∞ min(V b , v(ρ n (t, y n (t)+))) = min(V b , v(ρ(t, y(t)+))), for a.e t ∈ IR + .

Example 2.4 shows that the equality lim n→∞ ρ n (t, y n (t)+) = ρ(t, y(t)+) for almost every t ∈ IR + doesn't hold since for every t ∈ (0, t), ρ(t, y(t)+) = ρα and ρ n (t, y n (t)+) = ρα . To prove Definition 1 iii, we construct a measure-zero set I such that for every t ∈ I

lim n→∞ min(V b , v(ρ n (t, y n (t)+))) = min(V b , v(ρ(t, y(t)+))).
3 Proof of Theorem 1 3.1 Convergence of the wave-front tracking approximate solutions (ρ n , y n )

The proof of convergence follows the same arguments as in [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF]. For the sake of completeness, we write the proof in our case where f verifies (F). For a.e t ∈ IR, we define the Total Variation functional where γ is given by

Γ(t) = Γ(ρ n (t, •)) = T V (ρ n (t, •)) + γ(t), (8) 
x t ρα 0 1 t x 1 x 2 y 0 (a) Solution (ρ, y) of (1) with (ρ0(•), y0) = (ρα1 (x 1 ,x 2 ) (•) + 1 (x 2 ,+∞) (•), x 1 +x 2 2 ) and t = x 2 -y 0 1-ρα . x t ρα ρα 2 -n 1 -2 -n tn 1 tn 2 x 1 x 2 y 0 ρ n j1-1 (b) Approximate solution (ρ n , y n ) of (1) with n ∈ IN * , (ρ n 0 (•), y0) = (2 -n 1 (-∞,x 1 ) + ρα1(x 1 ,y 0 ) + ρ n j 1 -1 1 (y 0 ,x 2 ) + (1 -2 -n )1 (x 2 ,+∞) , x 1 +x 2 2 ) with with ρα -3 2 -n-1 ρ n j 1 -1 ρα -2 -n-1 and tn 1 = x 2 -y 0 1-ρα-2 -n .
γ(t) = -2|ρ α -ρα | if ρ n (t, y n (t)-) = ρα and ρ n (t, y n (t)+) = ρα , 0 otherwise. 
Above, (ρ n (t, •), y n (t)) is the approximate solution of (1) at time t constructed by the wave-front tracking method described in Section 2.2.

Lemma 2. [7, Lemma 2] For every n ∈ IN, at any interaction, the functional Γ(t) either decreases by at least ρ max 2 -n-1 or remains constant and the number of waves does not increase.

Proof. If no interaction takes place at time t, we immediately have Γ( t+) = Γ( t-) and the number of wave-fronts remains constant. At any interaction time t = t either two wave-fronts interact or a wave-front hits the MB trajectory. All the possible interactions are described in Section 2.2.

• Case Figure 8; the wave-front (ρ L , ρ M ) interacts with the wave-front (ρ M , ρ R ) at time t. We have Γ( t+) -

Γ( t-) = |ρ R -ρ L | -|ρ R -ρ M | -|ρ M -ρ L | 0,
and the number of wave-fronts decreases by one.

• Case Figure 9 and Figure 12; a wave interacts at time t with a MB without creating or cancelling a non classical shock. We have

Γ( t+) -Γ( t-) = |ρ R -ρ L | -|ρ R -ρ L | = 0,
and the number of wave-fronts remains constant.

• Case Figure 10 a); a non classical shock (ρ α , ρα ) is cancelled at time t by a shock (ρ α , ρ R ) coming from the right of the MB trajectory. Since ρ R > ρα , we have

Γ( t+) -Γ( t-) = |ρ R -ρα | -(|ρ R -ρα | + |ρ α -ρα | -2|ρ α -ρα |) = 0,
and since a non classical shock is cancelled, the number of wave-fronts decreases by one.

• Case Figure 10 b); a non classical shock (ρ α , ρα ) is created at time t by a rarefaction shock (ρ L , ρ R ) coming from the right of the MB trajectory. Since ρ L = ρα and

ρ max 2 -n-1 ρ L -ρ R 3ρ max 2 -n-1 , we have Γ( t+)-Γ( t-) = (|ρ R -ρα | + |ρ α -ρα | -2|ρ α -ρα |)-|ρ R -ρ L | -2|ρ R -ρ L | -ρ max 2 -n-1 ,
and since a non classical shock is created, the number of wave-fronts increases by one.

• Case Figure 11 a); a non classical shock (ρ α , ρα ) is cancelled at time t by a shock (ρ L , ρα ) coming from the left of the MB trajectory. Since ρ L ∈ [0, ρα ), we have

Γ( t+) -Γ( t-) = |ρ L -ρα | -(|ρ L -ρα | + |ρ α -ρα | -2|ρ α -ρα |) = 0,
and since a non classical shock is cancelled, the number of wave-fronts decreases by one.

• Case Figure 11 b); a non classical shock (ρ α , ρα ) is created at time t by a rarefaction shock (ρ L , ρ R ) coming from the left of the MB trajectory. Since ρ R = ρα and

ρ max 2 -n-1 ρ L -ρ R 3ρ max 2 -n-1 , we have Γ( t+)-Γ( t-) = (|ρ L -ρα | + |ρ α -ρα | -2|ρ α -ρα |)-|ρ R -ρ L | -2|ρ R -ρ L | -ρ max 2 -n-1 ,
and since a non classical shock is created, the number of wave-fronts increases by one.

From Lemma 2, we conclude that the wave front tracking procedure can be prolonged to any time T > 0 and for every n ∈ IN, for every t ∈ IR + ,

T V (ρ n (t, •)) T V (ρ 0 ) + γ(0) -γ(t) T V (ρ 0 ) + 2|ρ α -ρα |. (9) 
The inequality [START_REF] Laura | Micro-macro model for local instability[END_REF] is the key point to prove the convergence of the wave-front tracking approximate solution (ρ n , y n ).

Lemma 3. Let (ρ n , y n ) be the approximate solution of (1) constructed by the wave-front tracking method described in Section 2.2. Assume T V (ρ 0 ) C with C > 0 and for every x ∈ IR 0 ρ 0 (x) ρ max . Then, up to a subsequence, we have the following convergences

ρ n → ρ, in L 1 loc (IR + × IR; [0, ρ max ]); y n (•) → y(•), in L ∞ ([0, T ]; IR) for all T > 0; ẏn (•) → ẏ(•), in L 1 ([0, T ]; IR) for all T > 0; for some ρ ∈ C 0 (IR + ; L 1 ∩ BV (IR; [0, ρ max ])) and y ∈ W 1,1 ([0, T ]; IR) ∩ C 0 ([0, T ]; IR) with Lipschitz constant V b .
Proof. From (9) and using Helly's Theorem (see [ 

(•) → y(•) in L ∞ ([0, T ]; IR) for all T > 0.
To prove that ẏn (•) → ẏ(•) in L 1 ([0, T ]; IR) for all T > 0, we show that T V ( ẏn ) is uniformly bounded. Since ẏn L ∞ V b , it is sufficient to estimate the positive variation of ẏn over [0, T ], denoted by P V ( ẏn ; [0, T ]). More precisely, we have

T V ( ẏn ; [0, T ]) 2P V ( ẏn ; [0, T ]) + ẏn L ∞ . (11) 
From Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12 in Section 2.3, the speed of the MB is increasing only by interactions with rarefaction waves coming from the right of the MB trajectory. Since all rarefaction shocks start at t = 0, we have P V ( ẏn ; [0, T ]) T V (ρ 0 ). From [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF], we deduce that

T V ( ẏn ; [0, T ]) 2T V (ρ 0 ) + V b ,
which concludes the proof of Lemma 3.

3.2

The limit (ρ, y) verifies the points i-ii-iv of Definition 1

From ( 9), for every (t 0 , x 0 ) ∈ IR + × IR, there exist lim

x→x0,x>x0
ρ n (t 0 , x) := ρ n (t 0 , x 0 +) and lim x→x0,x<x0

ρ n (t 0 , x) := ρ n (t 0 , x 0 -) and from Lemma 3 there exist lim ρ(t 0 , x) := ρ(t 0 , x 0 -).

We start by proving that the limit (ρ, y) defined in Lemma 3 verifies Definition 1 i-ii. Since ρ n is a weak solution of (1a) with initial density ρ n 0 , then, for every ϕ ∈ C 1 c (IR 2 ; IR),

I R+ I R (ρ n ∂ t ϕ + f (ρ n )∂ x ϕ) dx dt + IR ρ n 0 (x)ϕ(0, x) dx = 0. ( 12 
)
From Lemma 3, by passing to the limit in [START_REF] Garavello | Traffic flow on networks[END_REF] as n → +∞, we conclude that ρ is a weak solution of (1a) and (1b). Similarly, we prove that the limit ρ is an entropy admissible solution both in IR + ×] -∞, y(t)[ and in IR + ×]y(t), +∞[: points i and ii of Definition 1 hold. Let T > 0. To prove point iv of Definition 1, as in [10, Section 5], we use the fact that both ρ n and ρ are weak solutions of (1a) in {(t, x) ∈ [0, T ] × IR/x < y(t)} and {(t, x) ∈ [0, T ] × IR/y(t) < x}. Since the speed of y n and y are finite and for every t ∈ (0, T ], y n (t) → y(t) as n → ∞, there exists a compact and connected set K ⊂ (0, T ] × IR with smooth boundary such that (t, y n (t)) ∈ K and (t, y(t)) ∈ K for every n ∈ IN and for every t ∈ (0, T ]. Let ψ : (0, T ] → IR be a C 1 function with compact support in K. We introduce the vector fields g n : IR 2 → IR 2 and g : IR 2 → IR 2 defined respectively by

g n (t, x) = (ρ n (t, x)ψ(t, x), f (ρ n (t, x))ψ(t, x)), and 
g(t, x) = (ρ(t, x)ψ(t, x), f (ρ(t, x))ψ(t, x)).
Applying the divergence theorem to

g n on {(t, x) ∈ [0, T ]×IR/x < y n (t)} and on {(t, x) ∈ [0, T ]×IR/ y n (t) < x}, we have, for every ψ ∈ C 1 c ((0, T ] × IR, IR) with compact support in K, {(t,x)∈(0,T ]×I R/y n (t)<x} div g n (t, x)dtdx = T 0 (f (ρ n (t, y n (t)+))-ρ n (t, y n (t)+) ẏn (t))ψ(t, y n (t)+)dt, (13) 
{(t,x)∈(0,T ]×I R/y n (t)>x} div g n (t, x)dtdx = T 0 (f (ρ n (t, y n (t)-))-ρ n (t, y n (t)-) ẏn (t))ψ(t, y n (t)-)dt. ( 14 
)
and applying the divergence theorem to g on {(t, x) ∈ [0, T ] × IR/x < y(t)} and on {(t, x) ∈ [0, T ] × IR/y(t) < x}, we have, for every ψ ∈ C 1 c ((0, T ] × IR, IR) with compact support in K,

{(t,x)∈(0,T ]×I R/y(t)<x} div g(t, x)dtdx = T 0 (f (ρ(t, y(t)+)) -ρ(t, y(t)+) ẏ(t))ψ(t, y(t)+)dt. (15) {(t,x)∈(0,T ]×I R/y(t)>x} div g(t, x)dtdx = T 0 (f (ρ(t, y(t)-)) -ρ(t, y(t)-) ẏ(t))ψ(t, y(t)-)dt. ( 16 
)
From Lemma 3 and using dominated convergence theorem, we deduce that

lim n→∞ {(t,x)∈(0,T ]×I R/y n (t)<x} div g n (t, x)dtdx = {(t,x)∈(0,T ]×IR/y(t)<x} div g(t, x)dtdx. ( 17 
) lim n→∞ {(t,x)∈(0,T ]×I R/y n (t)>x} div g n (t, x)dtdx = {(t,x)∈(0,T ]×IR/y(t)>x} div g(t, x)dtdx. (18) 
Since (ρ n , y n ) verifies the point iv of Definition 1, we have

T 0 (f (ρ n (t, y n (t)+)) -ρ n (t, y n (t)+) ẏn (t))ψ(t, y n (t)+)dt T 0 F α ( ẏn (t))ψ(t, y n (t)+)dt. ( 19 
) T 0 (f (ρ n (t, y n (t)-)) -ρ n (t, y n (t)-) ẏn (t))ψ(t, y n (t)-)dt T 0 F α ( ẏn (t))ψ(t, y n (t)-)dt. ( 20 
)
with F α ( ẏn (t)) := α max ρ∈[0,ρmax] (f (ρ)-ẏn (t)ρ). From ( 13), ( 14), (15) ( 16), ( 17), ( 18) and Lemma 3, by passing to the limit in ( 19) and ( 20) we have for every

ψ ∈ C 1 c ((0, T ]×IR, IR) with compact support in K, T 0 (f (ρ(t, y(t)+)) -ρ(t, y(t)+) ẏ(t))ψ(t, y(t)+)dt T 0 F α (y(t))ψ(t, y(t))dt, T 0 (f (ρ(t, y(t)-)) -ρ(t, y(t)-) ẏ(t))ψ(t, y(t)-)dt T 0 F α (y(t))ψ(t, y(t))dt,
with F α ( ẏ(t)) := α max ρ∈[0,ρmax] (f (ρ)ẏ(t)ρ), whence the point iv of Definition 1

The limit (ρ, y) verifies the point iii of Definition 1

Let > 0, from Lemma 3 and using the fact that (ρ n , y n ) satisfies (4), there exists a measurezero set N such that, for every t ∈ IR + \ N ,

• lim n→∞ ρ n ( t, x) = ρ( t, x) for almost every x ∈ IR, • y(•) is a differentiable function at t = t,
• lim n→∞ ẏn ( t) = ẏ( t). In particular, for n large enough,

|y n ( t) -y( t)| β t 2 . • For every n ∈ IN, ẏn ( t) = min(V b , v(ρ n ( t, y n ( t))).
We will prove that for every t

∈ IR + \ N , lim n→∞ min(V b , v(ρ n ( t, y n ( t)+))) = min(V b , v(ρ( t, y( t)+))).
We denote by ρ + := lim x→y( t),x>y( t) ρ( t, x) and ρ -:= lim x→y( t),x<y( t) ρ( t, x). The following Lemma gives the range of ρ n and ρ in a neighbourhood of ( t, y( t)), see Figure 15.

Lemma 4. Fix t ∈ IR + \ N and > 0. Assume that ρ -, ρ + ∈ [0, ρ max ]. There exists δ > 0 such that ρ( t, x) ∈ (max(ρ --2 , 0), min(ρ -+ 2 , ρ max )) ∀ x ∈ (y( t) -δ, y( t)), (max(ρ + -2 , 0), min(ρ + + 2 , ρ max )) ∀ x ∈ (y( t), y( t) + δ), (21) 
and there exits 0 < δ < δ such that, for n ∈ IN large enough, ρ n ( t, x) ∈ (max(ρ --, 0), min(ρ -+ , ρ max )) ∀ x ∈ (min(y( t), y n ( t)) -δ, min(y( t), y n ( t))), (max(ρ + -, 0), min(ρ + + , ρ max )) ∀ x ∈ (max(y( t), y n ( t)), max(y( t), y n ( t)) + δ). ( 22)

ρ x ρ n ( t, •) ∈ ρ( t, •) ∈ y( t) y n ( t) y n ( t) -δ y n ( t) -δ y( t) + δ y( t) + δ ρ - ρ + ρ -+ ρ -- ρ + + ρ + - Figure 15: Illustration of Lemma 4; ρ -, ρ + ∈ [0, ρ max ] with y n ( t) < y( t).
The approximate density ρ n ( t, •) over [y n ( t) -δ, y n ( t)] ∪ [y( t), y( t) + δ] belongs to the area surrounded by the dotted lines (...) and ρ( t, •) over [y( t)δ, y( t) + δ] belongs to the shaded zone.

Proof. From Lemma 3, there exists C > 0 such that T V (ρ( t, •)) < C. Thus, we have for every > 0, there exists δ > 0 such that T V (ρ |(y( t),y( t)+δ) ) < 2 and T V (ρ |(y( t)-δ,y( t)) ) < 2 . This implies [START_REF] Villa | Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model[END_REF]. We argue by contradiction to prove that there exists δ verifying 0 < δ < δ such that, for n large enough, ρ n ( t, x) ∈ (ρ + -, ρ + + ), for every x ∈ (max(y n ( t), y( t)), max(y n ( t), y( t))+ δ); we assume that for every δ > 0 with 0 < δ < δ, for every n 0 ∈ IN, there exists n n 0 and x n ∈ (max(y n ( t), y( t)), max(y n ( t), y( t)) + δ) such that

ρ n ( t, x n ) ∈ [0, ρ + -] ∪ [ρ + + , ρ max ]. In particular, choosing δ = δ n , we construct a sequence (x n ) n∈I N such that * lim n→∞ x n = y( t), * x n > max(y n ( t), y( t)), * ρ n ( t, x n ) ∈ [0, ρ + -] ∪ [ρ + + , ρ max ] .
From Lemma 3, there exists a sequence (z m ) m∈IN such that z m > y( t), lim m→∞ z m = y( t) and

lim n→∞ ρ n ( t, z m ) = ρ( t, z m ) ∈ (ρ + -2 , ρ + + 2 ). Thus, for n large enough, ρ n ( t, z m ) ∈ (ρ + - 3 4 , ρ + -3 4 ). • If ρ n ( t, x n ) ∈ [0, ρ + -], by diagonal method, we construct (z n ) n∈IN such that Lemma 6. Fix t ∈ IR + \ N and > 0. Assume that ρ * ρ - ρ + . Then for n ∈ IN * large enough, ρ n ( t, x) ∈ (ρ --2 , min(ρ + + 2 , ρ max )),
for every x ∈ (min(y( t), y n ( t)), max(y( t), y n ( t))).

An illustration of Lemma 6 is given in Figure 16.

ρ x ρ n ( t, •) ∈ ρ( t, •) ∈ y( t) y n ( t) y n ( t) -δ y n ( t) -δ y( t) + δ y( t) + δ ρ - ρ + ρ -+ ρ -- ρ + + ρ + -
Figure 16: Illustration of Lemma 6; ρ * ρ - ρ + with y n ( t) < y( t). The approximate density ρ n ( t, •) over (y n ( t) -δ, y( t) + δ) belongs to the area surrounded by the dotted lines (...) and ρ( t, •) over (y( t)δ, y( t) + δ) belongs to the shaded zone.

Proof. We argue by contradiction; in the same spirit of Proof of Lemma 4, we construct a sequence (x n ) n∈I N such that * lim n→∞ x n = y( t), * min(y n ( t), y( t)) < x n < max(y n ( t), y( t)),

* ρ n ( t, x n ) ∈ [0, ρ --2 ] ∪ [min(ρ + + 2 , ρ max ), ρ max ].
From Lemma 4, ρ n (t, min(y n ( t), y( t))-) ∈ (ρ --, min(ρ -+ , ρ max ) and ρ n (t, max(y n ( t), y( t))+) ∈ (ρ + -, min(ρ + + , ρ max )). By construction of (x n ) n∈IN and using that t ∈ IR\N , we have

x n -min(y n ( t), y( t)) |y n ( t) -y( t)| β t 2 . ( 26 
)
and max(y n ( t), y( t)) -

x n |y n ( t) -y( t)| β t 2 . ( 27 
) • Assuming that ρ n ( t, x n ) ∈ [0, ρ --2 ].
Since ρα < ρ --2 , to go from ρ -to ρ --2 in ρ n we only have shocks or rarefaction shocks. Therefore, from Lemma 1, for n large enough,

δ n (ρ --, ρ --2 , t) > tβ 2 . ( 28 
)
From ( 26) and (28), for n large enough, we have δ n (ρ --, ρ --2 , t) > x nmin(y n ( t), y( t)).

Using that ρ n ( t, x n ) ∈ [0, ρ --2 ] and from Lemma 4, ρ n (t, min(y n ( t), y( t))-) ∈ (ρ --, min(ρ -+ , ρ max ), we have a contradiction. Proof of point iii of Definition 1 when (ρ -, ρ + ) ∈ [ρ * , ρ max ]: From Lemma 5, the only possible case is ρ * ρ -ρ + .

• If ρ + = ρ -; using Lemma 4 and Lemma 6, we have v(min(ρ + + 2 , ρ max )) min(V b , v(ρ n ( t, y n ( t)+))) := ẏn ( t) min(V b , v(ρ + -2 )). (30) Since t ∈ IR * + \N , by passing to the limit in (30) as n → ∞, we deduce that for the arbitrarily of ẏ( t) = v(ρ + ) := min(V b , v(ρ( t, y( t)+))).

(31)

• If ρ + = ρ -and y( t) y n ( t) for an infinite set of indices n; from Lemma 4 we have

v(min(ρ + + , ρ max )) min(V b , v(ρ n (t, y n ( t)+))) := ẏn ( t) v(ρ + -). (32) 
Since t ∈ IR * + \ N , the equality (31) holds by passing to the limit in (32) as n → ∞.

• If ρ + = ρ -and y n ( t) < y( t) for an infinite set of indices n; in this case, from Lemma 4 and Lemma 6, ρ n ( t, y n ( t)+) ∈ (ρ --2 , ρ + + 2 ). We study the behavior of the approximate solution (ρ n , y n ) in the triangle T 0 defined by

T 0 := (t, x) ∈ [ t, t f [×]v(ρ --2 )(t -t) + y n ( t) -δ, f (ρ + + 2 )(t -t) + y( t) + δ[ , (33) 
with t f = y( t)-y n ( t)+2 δ v(ρ--2 )-f (ρ++2 ) . The structure of the proof is illustrated in Figure 17.

Lemma 7. Fix t ∈ IR + \ N and > 0. Assume that ρ * ρ -< ρ + and y n ( t) < y( t) for an infinite set of indices n. There exists a piecewise constant function ξ n (•) such that for every

t ∈ [ t, t ξ f ), (t, ξ n (t)) ∈ T 0 , (34) 
and extending ξ n (•) to IR + by imposing that ξ n (t) = ξ n (t ξ f ) for every t ∈ [t ξ f , ∞), we have

ρ n (t, x+) ∈ (ρ + -, ρ + + ), ∀(t, x) ∈ {(t, x) ∈ [ t, +∞) × IR, x > ξ n (t)} ∩ T 0 . (35) 
We denote by t ξ f and t y n f the time when ξ n (•) and y n (•) exit the triangle T 0 respectively. Then we have min(t y n f , t ξ f ) t + c with c > 0 independent of n and there exists t n ∈ [ t, min(t 

y n f , t ξ f )) such that y n (t n ) = ξ n (t n ) and lim n→∞ t n = t. t x y( t) ξ n ( t) t y n ( t) y( t) + δ y n ( t) - δ t n • • t ξ f ρ n (t, x) ∈ (ρ+ -, ρ+ + ) (t, ξ n (t)) (t, y n (t)) T 0 Figure 17: ρ * ρ -< ρ + ρ max with y n ( t) < y( t), n ∈ IN.
Using that y is differentiable at time t and the arbitrarily of , we have ẏ( t) = v(ρ + ) = min(V b , v(ρ( t, y( t)+))).

Point iii of Definition 1 when (ρ

-, ρ + ) ∈ [0, ρ * ] Lemma 8. Fix t ∈ IR + \ N and > 0. Assume that (ρ -, ρ + ) ∈ [0, ρ * ]. For n ∈ IN * large enough, for every x ∈ (min(y n ( t), y( t)) -δ), max(y n ( t), y( t)) + δ)), ρ n ( t, x) ∈ (0, ρ * + 2 ).
Proof. From Lemma 4 and using that (ρ

-, ρ + ) ∈ [0, ρ * ], 0 ρ n (t, x) < ρ * + , (39) 
for every x ∈ min(y n ( t), y( t)) -δ), min(y n ( t), y( t)) ∪ max(y n ( t), y( t))), max(y n ( t), y( t)) + δ) .

To prove Lemma 8, we argue by contradiction: assuming that there exits a sequence (x n ) n∈IN * such that, for every n ∈ IN,

x n ∈ [min(y n ( t), y( t)), max(y n ( t), y( t))] and ρ n ( t,

x n ) ∈ [ρ * + 2 , ρ max ]. (40) 
Since ρα < ρ * + , to go from ρ * + 2 to ρ * + in ρ n we can only have shocks or rarefaction shocks. Therefore, from Lemma 1, for n large enough,

δ n (ρ * + 2 , ρ * + , t) > tβ 2 . (41) 
From ( 40) and (41) and t ∈ IR * + \ N , we have δ n (ρ + + 2 , ρ + + , t) > max(y n ( t), y( t))x n and δ n (ρ + + 2 , ρ + + , t) > x nmin(y n ( t), y( t)). Using that ρ n ( t, x n ) ∈ [ρ * + 2 , ρ max ] and (39), we have a contradiction.

Proof of point iii of Definition 1 when (ρ

-, ρ + ) ∈ [0, ρ * ]: Since t ∈ IR * + \N , ẏ( t) = lim n→∞ ẏn ( t) = lim n→∞ min(V b , v(ρ n ( t, y n ( t)+)). From Lemma 8, v(ρ * + ) min(V b , v(ρ n ( t, y n ( t))) V b . Since ρ + ∈ [0, ρ * ],
for arbitrarily of we conclude that ẏ( t) = V b = min(V b , v(ρ( t, y( t)+))).

Point iii of Definition 1 when ρ

-< ρ * < ρ + or ρ + < ρ * < ρ - Lemma 9. The only possible case is ρ -< ρ * < ρ + Proof. Assuming that ρ + < ρ * < ρ -. From Lemma 4, we have ρ n ( t, min(y n ( t), y( t))-) ∈ (min(ρ --, 0), ρ -+ ) ⊂ (ρ * + 2 , ρ max ) and ρ n ( t, max(y n ( t), y( t))+) ∈ [ρ + -, ρ + + ] ⊂ (0, ρ * -2 ).
Since ρα < ρ * -2 , to go from ρ * + 2 to ρ * -2 in ρ n we only have shocks and rarefaction shocks. Therefore, from Lemma 1, for n large enough, Proof of point iii of Definition 1 when ρ -< ρ * < ρ + or ρ + < ρ * < ρ -: From Lemma 9, the only possible case is ρ -< ρ * < ρ + .

δ n ρ * + 2 , ρ * -2 , t > tβ 2 . ( 42 
• If y( t) y n ( t) for an infinite set of indices n; from Lemma 4 we have v(min(ρ + + , ρ max )) min(V b , v(ρ n ( t, y n ( t)+))) := ẏn ( t) v(ρ + -).

(

) 43 
Since t ∈ IR * + \ N , the equality (31) holds by passing to the limit in (43) as n → ∞ and using the arbitrarily of .

• If y n ( t) < y( t) for an infinite set of indices n; we study the behavior of the approximate solution (ρ n , y n ) in the triangle T 1 defined by

T 1 := (t, x) ∈ [ t, t f [×]v(0)(t -t) + y n ( t) -δ, f (ρ + + 2 )(t -t) + y( t) + δ[ , (44) 
with t f = y( t)-y n ( t)+2 δ v(0)-f (ρ++2 ) . The structure of the proof is illustrated in Figure 18.

an outside front-wave of T 0 cannot enter in the triangle T 0 . Thus all discontinuity waves in T 0 are coming from the segment { t} × [y n ( t) -δ, y( t) + δ]. Since, ρα < ρ --2 , we deduce that we have ρ n (t, x) ∈ [ρ --2 , ρ + + 2 ] for every (t, x) ∈ T 0 and a non-classical shock cannot appear along the trajectory of y n in the triangle T 0 .

By construction of ρ n via the wave-front tracking method, ρ n ( t, •) has N ( t, n) points of discontinuity x n 1 < • • • < x n j < • • • < x n N ( t,n) such that for every j ∈ {1, • • • , N ( t, n)}, ρ n ( t, x n j -) ∈ M n and ρ n ( t, x n j +) ∈ M n . Lemma 12. There exists j 0 ∈ {1, • • • , N ( t, n)} such that x n j0 ∈ [y n ( t), y( t)] and for every j j 0 ρ n ( t, x n j +) ∈ (ρ + -, ρ + + ). ( 47) with x n j < y( t) + δ.

Proof. From Lemma 4 we have ρ n ( t, •) ∈ (ρ + -, ρ + + ) over (y( t), y( t) + δ). In particular, we have ρ n ( t, y( t)+) ∈ (ρ + -, ρ + + ). Moreover, there exists j 0 ∈ {1, • • • , N ( t, n)} such that x n j0 y( t) < x n j0+1 . Thus, ρ n ( t, x n j0 +) = ρ n ( t, y( t)+) ∈ (ρ + -, ρ + + ) and for every j j 0 , x n j0 n j y( t) + δ, whence ρ n ( t, x n j +) ∈ (ρ + -, ρ + + ). From Lemma 4 and using ρ -< ρ + , ρ n ( t, y n ( t)-) ∈ (ρ --, ρ -+ ). Thus, y n ( t) x n j0 . The proof of Lemma 7 is illustrated in Figure 17. We track forward in time the wave-front denoted by ξ n (•) constructed by a wave front tracking method and starting at ξ n (0) = x n j0 ; for every t ∈ [ t, t 1 ],

ξ n (t) = x n j0 + (t -t)σ(ρ n ( t, x n j0 -), ρ n ( t, x n j0 +)), where t 1 is defined as follows:

• if ξ n (•) never interacts with a front-wave in the triangle T 0 then t 1 is the time when ξ n (•) exits the triangle T 0 .

• otherwise, t 1 is the first time when ξ n (•) interacts with a front-wave. By construction of ρ n , two waves interacting together produces a third one (see Figure 8). Thus, for every t ∈ [t 1 , t 2 ],

ξ n (t) = ξ n (t 1 ) + (tt 1 )σ(ρ n (t 1 , ξ n (t 1 )-), ρ n (t 1 , ξ n (t 1 )+)), where t 2 is defined as follows:

if t ∈ (t 1 , ∞] → ξ n (t) never interacts with a front-wave in the triangle T 0 , t 2 is the time when ξ n (•) exits the triangle T 0 .

otherwise, t 2 is the first time where ξ n : (t 1 , ∞) → IR interacts with a front-wave and so on.

By induction, we construct a piecewise constant function ξ n (•) such that for every t ∈ [ t, t ξ f ), (t, ξ n (t)) ∈ T 0 with t ξ f = sup t∈[ t,∞], (t,ξ n (t))∈T t. We extend ξ n (•) to IR + by imposing that, for every t ∈ [t ξ f , ∞), ξ n (t) = ξ n (t ξ f ). Since an outside wavefront of T 0 cannot enter in T 0 and from Lemma 12, we conclude that for every (t, x) ∈ {(t, x) ∈ [ t, +∞) × IR, x > ξ n (t)} ∩ T 0 ρ n (t, x+) ∈ (ρ + -, ρ + + ).

(48)

From Lemma 11 and (48), we have for a.e t ∈ ( t, t ξ f ) σ(ρ + + , ρ + + 2 ) ξn (t) σ(ρ --2 , ρ + -).

(49)
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 1123 Figure 1: cars speed (--) and slow moving vehicle speed (-) with v(ρ) = ρ(1ρ).

Figure 5 :

 5 Figure 5: The solution of the constrained Riemann problem of (1) with ρ L = ρ R = ρ ∈ (ρ α , ρα ): case i of Definition 2.

Figure 8 :

 8 Figure 8: Two waves interact together producing a third wave

Figure 9 :

 9 Figure 9: Interaction coming from the right with the MB trajectory

  ρ

Figure 10 :

 10 Figure 10: Interaction coming from the right with the MB trajectory cancelling (Case a)) or creating (Case b)) a non classical shock.

Figure 11 :

 11 Figure 11: Interaction coming from the left with the MB trajectory cancelling (Case a)) or creating (Case b)) a non classical shock.

Figure 13 :

 13 Figure 13: Illustration of the proof of Lemma 1

Figure 14 :

 14 Figure 14: Let t = x2-y01-ρα and n ∈ IN * . A case where ρ( t, y( t)+) = ρ n ( t, y n ( t)+) over (0, t).

  x→x0,x>x0 ρ(t 0 , x) := ρ(t 0 , x 0 +) and lim x→x0,x<x0

•

  Assuming that ρ + < ρ max and ρ n ( t, x n ) ∈ [ρ + + 2 , ρ max ]. Since ρα < ρ + + , to go from ρ + + 2 to ρ + + in ρ n we only have shocks or rarefaction shocks. Therefore, from Lemma 1, for n large enough δ n (ρ + + 2 , ρ + + , t) > , for n large enough, we have δ n (ρ + +2 , ρ + + , t) > max(y n ( t), y( t))-x n . Using that ρ n ( t, x n ) ∈ [ρ + + 2 , ρ max ] and from Lemma 4 ρ n (t, max(y n ( t), y( t))+) ∈ (ρ + -, ρ + + ), we have a contradiction.

	tβ 2	.	(29)
	From (27) and (29)		

  The proof of Lemma 7 is postponed in Appendix A. From Lemma 3, for a.e t > t y

	t	
	t ẏn (s)ds	(36)
	and	
	lim	

n (t)y n ( t) = n→∞ y n (t) = y(t).

(37)

We fix t ∈ ( t, t + c] with c defined in Lemma 7 such that (36) and (37) hold. For n large enough, t > t n and ẏn (s) ∈ (ρ + -, ρ + + ) for every s ∈ [t n , t]. By passing to the limit in (36), we have for a.e t ∈ ( t, t + c] y(t)y( t) t -t ∈ [v(ρ + + ), v(ρ + -)].
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max(y n ( t), y( t)) < z n < x n , -lim n→∞ z n = y( t), -ρ n (t, z n ) ∈ (ρ + - 3 4 , ρ + + 3 4 ).

Since lim n→∞ z n = lim n→∞ x n = y( t), for n large enough, we have x nz n tβ 8 . Since z n > y n ( t) and x n > y n ( t), to go from ρ n ( t, z n ) to ρ n ( t, x n ), we only have shocks or rarefaction shocks. From Lemma 1, the minimal length in space at time t to go from ρ n ( t, z n ) to ρ n ( t, x n ) is δ n (ρ n ( t, z n ), ρ n ( t, x n ), t) tβ(ρ n ( t, z n )ρ n ( t, x n )ρ max 2 -n+1 ).

Therefore, for n large enough, δ n (ρ n ( t, z n ), ρ n ( t, x n ), t) > tβ 8 . Since x nz n β t 8 we have δ n (ρ n ( t, z n ), ρ n ( t, x n ), t) > x nz n , whence the contradiction.

• If ρ n ( t, x n ) ∈ [ρ + + , ρ max ], by diagonal method, we construct (z n ) n∈IN such that max(y n ( t), y( t)) < x n < z n , -lim n→∞ z n = y( t), -ρ n (t, z n ) ∈ (ρ + - 3 4 , ρ + + 3 4 ).

Since lim n→∞ z n = lim n→∞ x n = y( t), for n large enough, z nx n tβ 8 . Since z n > y n ( t) and x n > y n ( t), to go from ρ n ( t, x n ) to ρ n ( t, z n ), we only have shocks or rarefaction shocks. From Lemma 1, the minimal length in space at time t to go from ρ n ( t,

Using the same strategy as above, we also show that there exists δ verifying 0 < δ < δ such that, for n large enough and for every x ∈ (min(y n ( t), y( t)) -δ, min(y n ( t), y( t))), ρ n ( t, x) ∈ (ρ --, ρ -+ ).

Point iii of Definition 1 when (ρ

Proof. Assume that ρ * ρ + < ρ -. We have ρα < ρ * and for small enough, ρ + < ρ --3 . From Lemma 4, we have

Since ρα < ρ + + , to go from ρ -to ρ + + in ρ n we only have shocks and rarefaction shocks. Therefore, from Lemma 1 and for n large enough

Using that t ∈ IR + \ N , we have |y n ( t)y( t)| tβ 2 . Therefore, from (23), ( 24) and (25), we conclude that, for n large enough, δ n (ρ n ( t, min(y n ( t), y( t))-), ρ n ( t, max(y n ( t), y( t))+), t) > |y n ( t)y( t)|, whence the contradiction.

Figure 18: Illustration of Lemma 10; ρ -< ρ * < ρ + < ρ max and y n ( t) < y( t).

Lemma 10. Fix t ∈ IR + \ N and > 0. Assume that ρ -< ρ * < ρ + and y n ( t) < y( t) for an infinite set of indices n. There exists a piecewise constant function

and extending

We denote by t ξ1 f and t y n f the time when ξ n 1 (•) and y n (•) exit the triangle T 1 respectively. Then we have min(t y n f , t ξ1 f ) > t+c with c > 0 independent of n and there exists t n ∈ [ t, min(t

The proof of Lemma 10 is postponed in Appendix B. Following the same argument as Section 3.3.2, (36), (37) and (38) hold. Using that y is differentiable at time t and the arbitrarily of , we have

A Proof of Lemma 7

We have ρ -, ρ + ∈ [ρ * , ρ max ], ρ -< ρ + and y n ( t) < y( t) for an infinite set of indices n. There exists a subsequence of (y n ) n∈I N , still denoted by (y n ) n∈IN such that for every n ∈ IN, y n ( t) < y( t). The construction of ξ n (•) is based on the three following lemmas:

Proof. From Lemma 4 and Lemma 6, for every x ∈ (y n ( t) -δ, y( t) + δ), we have

t be the time when y n (•) exits the triangle T 0 . From Lemma 11, for every t ∈ [ t, t y n f ), we have (t, y n (t)) ∈ T 0 and v(ρ

Using (49), we have

and using (50)

From ( 51) and ( 52), ther exists c > 0 independent of n such that min(t ξ f , t y n f ) t + c. From ( 49) and (50),

Using (53), y n (•) interacts with ξ n (•) at time t n > t and

Using that lim n→∞ y n ( t) = y( t) and y n ( t) ξ n ( t) y( t) and (54), we have lim n→∞ t n = 0.

B Proof of Lemma 10

We have ρ -< ρ * < ρ + and y n ( t) < y( t) for an infinite set of indices n. There exists a subsequence of (y n ) n∈I N , still denoted by (y n ) n∈IN , such that for every n ∈ IN y n ( t) < y( t). By construction of ρ n in Section 2.2,

Lemma 13. There exists

x n j1 ∈ [y n ( t), y( t)] and ρ n ( t, x n j +) ∈ (ρ + -, ρ + + ), for j j 1 such that x n j < y( t) + δ.

Proof. From Lemma 4, we have ρ n ( t, •) ∈ (ρ + -, ρ + + ) over (y( t), y( t) + δ). In particular, we have ρ n ( t, y(t)+) ∈ (ρ + -, ρ + + ). Moreover, there exists

x n j1 y( t) < x n j1+1 and ρ n ( t, x j1 +) = ρ n ( t, y( t)+). For every j j 1 , x n j1

x n j y( t) + δ and ρ n ( t, x n j +) ∈ (ρ + -, ρ + + ). From Lemma 4 and using ρ -< ρ * < ρ + , ρ n ( t, y n ( t)-) ∈ (max(0, ρ --), ρ -+ ). Thus, y n ( t) x n j1 .

Lemma 14. There exists

x n j0 ∈ [y n ( t), y( t)] and ρ n ( t, x n j +) ∈ (ρ * , ρ + + 2 ), for j j 0 such that x n j < y( t) + δ.

Proof. From Lemma 4, there exits j 0 ∈ {1, • • • , N ( t, n)} such that ρ n ( t, x n j0 -) ρ * and ρ n ( t, x n j0 +) > ρ * with x n j0 ∈ [y n ( t), y( t)] and for every j > j 0 , ρ n ( t, x n j +) > ρ * . We assume that there exists k > j 0 such that ρ n ( t, x n k +) ρ + + 2 . Using ρ * < ρ + and Lemma 13, we have ρ * < ρ n ( t, x n j1 +). Thus, we only have shocks and rarefaction shocks to go from ρ n ( t, x n k +) to ρ n ( t, x n j1 +). From Lemma 1 and Lemma 14, for n large enough,

Using that x n k , x n j1 ∈ [y n ( t), y( t)] and |y n ( t)y( t)| β t 2 , we have a contradiction. The proof of Lemma 10 is illustrated in Figure 18. We track forward in time two wavefronts denoted by ξ n 0 (•) and ξ n 1 (•) constructed by a wave front tracking method and starting at ξ n 0 (0

ji is constructed via the wave-front tracking method and we follow it until it interacts with an other wave-front or y n (•) at time t 1 i . By construction of T 1 defined in (44), other wave-fronts out of the triangle T 1 cannot interact with a wave-front in the triangle T 1 . Thus, from Lemma 14, for every t ∈ [0,

and from Lemma 13, for every t ∈ [0,

• If ξ n i (•) interacts with a shock or a rarefaction shock at time t 1 i ; we follow the unique front-wave produced (see Figure 8). Moreover,

interacts with y n (•) at time t 1 i ; from (55), (56) and using that all the possible interaction between a front-wave and y n (•) is described in Figure 9, Figure 10, Figure 11 and Figure 12, we deduce that only the cases illustrated in Figure 9 and Figure 10 a) are possible. Thus, a unique front-wave is produced. Moreover, ρ n (t 1 0 , ξ n 0 (t 1 0 )+) ∈ (ρ * , ρ + + 2 ), ρ n (t 1 1 , ξ n 1 (t ) and [ t, t ξ1 f ) respectively. For i = 1, 2, we extend ξ n i (•) to IR + by imposing that, for every t

). We conclude that, for every (t,

for every

and for every (t,

For i = 1, 2, we denote by t ξi f and t y n f the time when ξ n i (•) and y n (•) exits the triangle T 1 . We notice that for every t ∈ IR, ξ n 0 (t) ξ n 1 (t) and as soon as there exists t 1 t such that ξ n 0 (t 1 ) = ξ n 1 (t 1 ), we have for every t ∈ [t 1 , +∞] ξ n 0 (t) = ξ n 1 (t). From (57), ( 58) and (59), we have

Therefore, using that lim n→∞ y n ( t) = y( t), y n ( t) ∈ [y n ( t) -δ, y( t) + δ] and the finite speed of y n , there exists c > 0 independent of n such that min(t

From (57), ( 58) and (59), for every t > t such that (t, ξ n 0 (t)) ∈ T 1 , (t, ξ n 1 (t)) ∈ T 1 and (t, y n (t)) ∈ T 1 , if y n (•) belongs to the area A 1 defined by for every (t, x) ∈ A 1 , ρ n (t, x) ∈ (ρ * , ρ + + 2 ) (see the shaded zone in Figure 18) then v(ρ + + 2 ) ẏn (t) v(ρ * ) and we have

and if y n (•) belongs to the area A 2 defined by for every (t, x) ∈ A 2 , ρ n (t, x) ∈ (0, ρ * + ) (see white zone in Figure 18) then v(ρ * + ) ẏn (t) V b then either (62) holds or σ(ρ * + , ρ + + ) ξn

From ( 62), (63) and using that f is strictly concave ẏn (t) -ξn 1 (t) v(ρ * + )σ(ρ * , ρ + -) > 0 (64) Using (64), y n (•) interacts with ξ n 1 (•) at time t n > t and

Using that lim n→∞ y n ( t) = y( t) and y n ( t) ξ n 1 ( t) y( t) and (65), lim n→∞ t n = 0.