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On Elliptical Possibility Distributions
Charles LESNIEWSKA-CHOQUET1,∗, Gilles MAURIS1, Abdourrahmane M. ATTO1, Grégoire MERCIER2

Abstract—This paper aims to propose two main contributions
in the field of multivariate data analysis through the possibility
theory. The first proposition is the definition of a generalized
family of multivariate elliptical possibility distributions. These
distributions have been derived from a consistent probability-
possibility transformation over the family of so-called elliptical
probability distributions. The second contribution proposed by
the paper is the definition of two divergence measures between
possibilistic distributions. We prove that a symmetric version of
the Kullback-Leibler divergence guarantees all divergence prop-
erties when related to the space of possibility distributions. We
further derive analytical expressions of the latter divergence and
of the Hellinger divergence for certain possibility distributions
pertaining to the elliptical family proposed, especially the normal
multivariate possibility divergence in two dimensions. Finally, this
paper provides an illustration of the developed possibilistic tools
in an application of bi-band change detection between optical
satellite images.

Keywords: Multivariate possibility distributions; Joint pos-
sibility distributions; Elliptical probability distributions;
Kullback-Leibler divergence; Hellinger divergence; Change
detection.

I. INTRODUCTION

Multivariate data analysis has long been an outstanding
issue where the probability theory plays a major role. Recently,
different attempts have been made in the literature in terms of
possibility theory in order to suggest an alternative representa-
tion of multivariate data that can be convenient in cases where
probabilistic features are weak or difficult to obtain.
The first way to deal with a multivariate issue is to directly
define a multidimensional possibility distribution as proposed
among others, by Tanaka in [1], who considers multivariate
exponential distributions.
The second way consists in combining marginal possibility
distributions by means of t-norm [2], in order to obtain joint
possibility distribution [3][4][5][6].
The third way followed in this paper is to transform a
multivariate probability distribution by extending the uni-
variate probability-possibility transformation [7][8] to the n-
dimensional case. In the first part of this paper, we will
consider in the same framework:
• the probability-possibility transformation framework pro-

posed in one-dimension
• the multivariate elliptical probability distributions [9]
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• and the Mahalanobis distance relating multivariate data
to their monovariate closeness measures

in order to derive a family of multivariate possibility distribu-
tions. These possibility distributions will be called elliptical,
for terminology analogy with respect to their probabilistic
counter parts. Thus our work will help to design a possibility
distribution from any elliptical probability distribution thanks
to a general analytical form and regardless of the dimension.

In the second part of this paper, we consider possibilis-
tic divergence definition [10], called Π-divergence hereafter.
Two divergences are studied: the Kullback-Leibler and the
Hellinger divergence. We show that the probabilistic Kullback-
Leibler divergence [11] does not satisfy positivity constraints
when transposed to the possibility domain, and that its sym-
metric version does not suffer from this lack. On the other
hand, due to its closeness to the Euclidean norm, the Hellinger
divergence preserves its divergence properties when convert
to the possibility domain. Then we derive some analytical
closed forms from the previously mentioned Π-divergences
applied to elliptical possibility distributions that can be used
for dissemblance assessment in image processing applications.
We also prove the relevancy of the joint possibility modeling
and divergence evaluation in the context of a bi-band change
detection application between optical satellite images.

This paper is organized as follows: Section 2 presents the
proposed n-dimensional probability-possibility transformation
for the derivation of elliptical possibility distributions. Some
properties of this transformation are given as well as an
illustration of different possibility distributions obtained in
case n = 2. Section 3 is divided into two main steps. First,
two possibilistic divergence measures are proposed and their
analytical forms calculated for the joint possibility distribution
obtained from the normal bivariate distribution are given.
Secondly, an application using the possibilistic tools developed
in this paper is presented in the form of an algorithm of
bi-band change detection between optical satellite images.
Section 4 provides an overall conclusion to this paper.

II. ELLIPTICAL CONTINUOUS POSSIBILITY DISTRIBUTION

After recalling some definitions of the possibility theory
and of the probability-possibility transformation in the
continuous case for the unidimensional probability model,
this section will present a new family of n-dimensional
elliptical possibility distributions. At the end, a last subsection
will propose some bivariate elliptical possibility distributions
obtained from well-known probability distributions.
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A. Unidimensional Probability-Possibility transformation

In the following, let us consider a continuous random
variable X on the set of reals and its associated probability
density function p with mode x∗, F being its corresponding
cumulative distribution function.

Definition 1. (Definition 3.1 in [8]) The possibility distri-
bution induced by a continuous strictly unimodal probability
density p around x∗ is the possibility (denoted π∗) whose α-
cuts are the confidence interval I∗α of level P (I∗α) = α around
the mode x∗ computed from p.

π∗ can be defined as follows:

π∗(x) = 1− P ({y, p(y) ≥ p(x)}) (1)

The possibility distribution π∗ is continuous and encodes the
whole set of confidence intervals and π∗(x∗) = 1 .

Theorem 1. (Theorem 3.1 in [8]) For any probability density
p, the possibility distribution π∗ in definition 1 is consistent
with p, that is: ∀A measurable, Π∗(A) ≥ P (A), Π∗ and P
being the possibility and probability measures associated to
π∗ and p.

Lemma 1. (Lemma 3.1 in [8]) For any continuous probability
density p having a finite number of modes, any minimal length
measurable subset I of the real line such that P (I) = α ∈
(0, 1], is of the form {x, p(x) ≥ β} for some β ∈ [0, pmax]
where pmax = sup

x
p(x). It thus contains the modal value(s)

of p.

From Definition 1 and Theorem 1, it is stated that the
maximally specific possibility distribution π∗ obtained from
a given probability distribution although remaining consistent
is built from the set of confidence intervals around a nominal
value. From Lemma 1, we ensure that we preserve the
maximum amount of information during the transformation
from p to π when the nominal value around which is built
the possibility distribution is chosen to be the mode xm.
Moreover, in the one-dimensional case, it has been proved in
[8] that from (1), the expression of the possibility distribution
π∗ corresponding to a unimodal symmetric PDF of mode x∗

strictly increasing on the left and decreasing on the right can
be written as [12],[13]:

for −∞ < x ≤ x∗, π∗(x) = 2F (x)
for x∗ ≤ x <∞, π∗(x) = 2(1− F (x))

As an example we can consider the case of a Normal
probability distribution with mean µ and variance σ2, the
following possibility distribution is then:

for −∞ < x ≤ µ, π(x) = 1 + erf
(
x−µ
σ
√

2

)
for µ ≤ x <∞, π(x) = 1− erf

(
x−µ
σ
√

2

)
Where erf(x) = 2√

π

∫ x
0
e−t

2

dt is the Error function.
Since the Error function is negative when x < 0 and positive

when x > 0, we can then rewrite it as:

π(x) = 1− erf

(
|x− µ|
σ
√

2

)
(2)

As shown by (2), in one dimension, the continuous probability-
possibility transformation can be applied to any symmetric
unimodal probability distribution that has an analytical form
for its PDF.
However, one can note that definition 1 and theorem 1, in
which this transformation lies, is not limited to the unidi-
mensional case but only to unimodal probability distributions.
Lemma 1 can also be extended to the case of n-dimensional
possibility distributions by taking a hyper-volume as a mea-
surable length, which is a Lebesgue measure on Rn. Different
ways to define the hyper-volume are possible.
Thus, by taking as a starting point (1) from definition 1 and by
applying it to the n-dimensional case, in the next section we
will propose a new family of elliptical possibility distributions
derived from the family of elliptical probability distributions.

B. Probability-Possibility transformation for Multivariate el-
liptical probability distributions

For the sake of generality, we consider a family of prob-
ability which represents a general framework although pre-
senting good performance in the modelization of correlated
information. Thus our attention focuses on the family of ellip-
tical probability distributions which has been widely studied
especially in [14], [15] or [16], and has already shown its
usefulness. This family includes notably the Normal, Laplace,
Student’s t, and Cauchy distributions.
Firstly, let’s start by giving the considered framework.
Let X be an n-dimensional random vector elliptically con-
toured (denoted by X ∼ ECn(Σ)), whose PDF has the
following form

pX(x, µ,Σ) = αn|Σ|−
1
2 gn

(
(x− µ)TΣ−1(x− µ)

)
(3)

where µ ∈ Rn is the mean value, Σ ∈ Rn×n its positive and
symmetric variance-covariance matrix, αn is a normalization
scalar and |Σ| is the determinant of Σ. The function gn :
R+ → R+ is a density generator function of the elliptical
distribution in Rn with the following property [14]:∫

R
gn(xTx) dx = 1 .

Let dmah be the Mahalanobis distance between two vectors
x and y according to the weighting matrix Σ. Then dmah is
such as:

dmah(x, y) = ‖x− y‖
Σ

=
√

(x− y)TΣ−1(x− y) (4)

It is important to note that the equidensity contours of pX
are ellipsoids centered around the mean µ (which is also the
mode) and the axes of the ellipsoids are the eigenvectors of
Σ [17]. Secondly, let’s determine the probability accumulated
in a region delimited by an equidensity contour of the PDF p
given in (3).

Proposition 1. Let ax = dmah(x, µ), for an n-dimensional
random vector X ∈ Rn with mean µ ∈ Rn and covariance
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matrix Σ ∈ Rn×n, whose PDF is (3), the probability accumu-
lated in the region

A
Σ

:= {z ∈ Rn such that dmah(z, µ) ≤ ax} (5)

is

P (A
Σ
) :=P (dmah(z, µ)≤ax)=αn

2π
n
2

Γ(n2 )

∫ ax

0

rn−1gn(r2)dr (6)

where αn is a normalization scalar, Γ(u) =

∫ +∞

0

tu−1e−t dt

is the Gamma function and gn is the density generator
function.

Proof. Let’s directly evaluate P (AΣ) =
∫
A

Σ
p(z) dz. Firstly,

as Σ is a definite positive matrix, we can proceed to a change
of variable in the integral P (AΣ) by setting y = Σ−

1
2 (z −

µ) whose determinant of Jacobian is | ∂z∂y | = |Σ| 12 . Hence,
from (3)∫

A
Σ

p(z) dz = αn|Σ|−
1
2

∫
‖y‖≤ax

gn
(
‖y‖2

)
|Σ| 12 dy

= αn

∫
‖y‖≤ax

gn
(
‖y‖2

)
dy (7)

where ‖ · ‖ stands for the Euclidean Norm.
Then, by observing that there is a rotational invariance in the
integral in (7) since it’s the integral of an ellipsoid, we split
the n-dimensional volume element dy into an area element dA
and a radial element dr. Thus, by setting r = ‖y‖, we obtain
an expression of (7) in spherical coordinates such as

P (A
Σ

) = αn

∫ ax

0

∫
Sn−1(r)

gn(r2) dA dr,

where Sn−1(r) is the (n− 1)-sphere of radius r.
Knowing that the area of the surface of this (n − 1)-sphere
can be written as An(r) = rn−1An−1(1) where An−1(1) =
2π

n
2 /Γ

(
n
2

)
is the area of the unit sphere, we have

P (A
Σ

) = αn
2π

n
2

Γ(n2 )

∫ ax

0

rn−1gn(r2) dr (8)

Finally, from (1) and proposition 1 we are able to obtain the
elliptical possibility distribution associated with any elliptical
probability distribution:

πΣ(x) = 1− P (AΣ)

= 1− αn
2π

n
2

Γ(n2 )

∫ ax

0

rn−1gn(r2) dr (9)

with ax = dmah(x, µ). The following proposition provides
a stochastic dominance property between possibility distribu-
tions.

Proposition 2. Let X be an n-dimensional random vector on
the set of reals with mean µ ∈ Rn and ΣX ∈ Rn×n its semi-
definite positive covariance matrix.
Let Y be another n-dimensional random vector on the set of
reals with the same mean µ ∈ Rn and ΣY ∈ Rn×n its semi-
definite positive covariance matrix.

Lastly, let πX and πY be the two possibility distributions
associated respectively to X and Y .
If

the matrix M = ΣY − ΣX is semi-definite positive.

Then

πΣX ≤ πΣY .

Proof. Let’s denote C1 the class of all convex centrally sym-
metric sets in Rn and let’s ΣX and ΣY be two definite
positive matrices. Finally, let’s denote PΣX and PΣY as two
multivariate elliptical probability distributions.
As a consequence of Theorem 5.1 in [18] we have the
following statement: Assume that X ∼ ECn(Σ). If C ∈ C1
and C is closed, and if ΣY −ΣX is a definite positive matrix
then PΣX (C) ≥ PΣY (C).
Hence, we can conclude that

PΣX (C) ≥ PΣY (C) ⇔ 1− PΣX (C) ≤ 1− PΣY (C)

⇔ π
ΣX

(x) ≤ π
ΣY

(x)

Note that in the case of an uncorrelated random variable, the
associated covariance matrix is diagonal definite positive (i.e.
ΣX = diag(σX,1, ..., σX,n) and ΣY = diag(σY,1, ..., σY,n)).
Hence the matrix M = ΣY − ΣX is definite positive if and
only if the eigenvalues of the diagonal matrix M are positive
or null meaning that

∀i ∈ N∗, σX,i ≤ σY,i.

Although (9) may seem complicated to handle in its general
form, it has to be applied to some well-known elliptical
probability models such as the Normal multivariate probability
distribution, the Cauchy multivariate distribution or the Stu-
dent’s t-distribution, for example.

C. Special case of elliptical possibility distributions

In the previous section, we have determined a general form
of elliptical possibility distributions from the n-dimensional
family of elliptical probability distributions, let’s now apply
this transformation onto some well-known probability distri-
butions.
In order to illustrate the use of the probability-possibility
transformation given by (9), we will firstly consider the case
of one of the most famous elliptical probability distributions:
the Normal distribution. Firstly, we recall that the Normal
multivariate distribution possesses a PDF of the following
form:

p
N

(x) =
1

(2π)n/2|Σ|1/2
e−

1
2 (x−µ)TΣ−1(x−µ).

It corresponds to (3) when αn = 1
(2π)n/2

and gn(t) = e−
1
2 t.

From (6) the expression of the probability accumulated in the
region A

Σ
becomes

P
N

(A) =
2πn/2

(2π)n/2Γ(n/2)

∫ ax

0

rn−1e−
r2

2 dr. (10)
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Moreover, it has been proved (Result 2 in [19]), that (10),
which represents the probability accumulated in a region
delimited by an equidensity contour of the PDF, can be
computed in this way thanks to the substitution t = r2/2:

P
N

(A
Σ

) := P
N

(dmah(z, µ) ≤ ax) =
γ
(
n
2 ,

a2
x

2

)
Γ
(
n
2

) (11)

γ being the lower incomplete Gamma function defined as

γ(a, b) =

∫ b

0

ta−1e−tdt.

Finally, the possibility distribution associated to the multivari-
ate Normal distribution takes the following form:

∀x ∈ Rn, π
N

(x) = 1−
γ
(
n
2 ,

a2
x

2

)
Γ
(
n
2

) . (12)

In the case of n = 1, the Mahalanobis distance is equivalent
to dmah(x, µ) = ‖x − µ‖Σ = |x−µ|

σ and Γ
(

1
2

)
=
√
π. Thus,

we find an expression of the possibility distribution exactly
similar to (2).
In table I, we give the analytical expressions of joint possibility
distributions obtained for different probability distributions for
n = 2.
Fig. 1 presents different possibility distributions as well as

PDF Associated joint possibility distributions for n = 2

Cauchy

πC (x) =
1√

1 + (x− µ)TΣ−1(x− µ)
(13)

Student’s t

πS (x) =

(
1 +

(x− µ)TΣ−1(x− µ)

ν

)− ν
2

(14)

Normal
πN (x) = e−

1
2

(x−µ)TΣ−1(x−µ) (15)

TABLE I: Analytic forms of possibility distributions obtained
from well-known elliptical probability distributions.

their associated probability distributions. In each case the
mean vector is set to µ = (5 20), the variance along the
x and y components are σx = 8 and σy = 6 respec-
tively and the correlation coefficient is equal to 0.8. For the
Student’s t distribution, the degree of freedom ν is equal
to 3. Note that (15) is close to the analytical expression
found by H.Tanaka [1] although his exponential possibility
function holds for any dimension whereas (15) is derived
from a consistent probability-possibility transformation and it
is specific to the case n = 2 and differs otherwise. Finally,
as can be seen, (15) is remarkable as it is a covariance based
normalization of the joint probability distribution for n = 2
such as

π
N

(x) = 2π|Σ| 12 p
N

(x). (16)

Thus, in the following section, we will focus on the conse-
quences of this normalization based possibility distribution

(a) Cauchy’s PDF (b) πC

(c) Student’s t PDF (d) πS

(e) Normal’s PDF (f) πN

Fig. 1: Examples of PDFs (left column) and their associated
possibility distributions (right column).

through a change detection application under a high level of
imprecision.

III. CHANGE DETECTION OVER OPTICAL SATELLITE
IMAGES

In this section, we will firstly present the two divergences
we derived in order to compare possibility distributions. The
possibility distributions are obtained thanks to the previously
proposed multivariate probability-possibility transformation
applied to the Normal distribution on the special case of
n = 2. Then we will illustrate through a change detection
application on real optical satellite images the use of the
proposed possibilistic framework.

A. Possibilistic Divergences

Let’s first introduce the possibilistic divergences (Π-
divergence) as a comparison function between two possibility
distributions.
The first divergence proposed is inspired (though slightly
different) from the extension of the probabilistic Kullback-
Leibler divergence by replacing the probability distributions
by possibility distributions [20]. This approach has proved its
interest in many applications and is of particular value due to
the exponential form of the possibility distribution in (15).
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As a reminder, for two PDF p1 and p2, the probabilistic
Kullback-Leibler divergence is defined as

∀X ∈ R2 KL(p1‖p2) =

∫
R
p1(x)ln

(
p1(x)

p2(x)

)
dx. (17)

Remark 1. Let’s begin with an example. In the case where
π2 = π2

1 , a possibilistic Kullback-Leibler divergence would
take the following form

KL(π1‖π2) =

∫
R
π1log

π1√
π1

=
1

2

∫
R
π1log (π1) .

But it has been demonstrated in (25) in appendix that if π has
the form of (15) then we have∫

R
π1log (π1) = −2π|Σ1|

1
2 .

Thus KL(π1‖π2) = −π|Σ1|
1
2 which is negative and so a

possibilistic Kullback-Leibler divergence does not respect the
positivity.
Moreover, when the possibility distribution has the form
of (15) we can determine the lowest value of KL(π1‖π2) =∫
R
π1log

π1

π2
= −

∫
R
π1log

π2

π1
. Indeed, since the logarithm is

concave and thanks to the Jensen’s inequality we can write∫
R
π1log

π2

π1
≤ log

(∫
R
π1
π2

π1

)
= log

∫
R
π2.

From (16), we can rewrite this inequality as∫
R
π1log

π2

π1
≤ log

(
2π|Σ2|

1
2

∫
R
p2

)
.

Thus, we have KL(π1‖π2) ≥ −log
(

2π|Σ2|
1
2

)
.

In order to conserve the properties of a divergence, it
is necessary to consider a symmetrical form of the KL-
divergence. We have called this the divergence ΠD

KL
and

it is expressed for all X in R2 as

ΠD
KL

(π
1
,π

2
)=

∫
R
π

1
(x)log

(
π

1
(x)

π
2
(x)

)
dx+

∫
R
π

2
(x)log

(
π

2
(x)

π
1
(x)

)
dx

(18)
Note that (18) has to be close to the probabilistic Jeffrey’s
divergence [21].

Proposition 3. The divergence ΠD
KL

is a particular case of
divergence.

The demonstration that the divergence ΠD
KL

is a f -
divergence can be found in the appendix. Lastly, the analytical
expression of the Π-divergence between two possibility distri-
butions whose expression is of the form in (15) is given by:

ΠD
KL

(π1, π2)=π
√
|Σ1|

[
tr(Σ

−1

2 Σ1)+(µ1−µ2)
T

Σ
−1

2 (µ1−µ2)−2
]

+π
√
|Σ2|

[
tr(Σ

−1

1 Σ2)+(µ2−µ1)
T

Σ
−1

1 (µ2−µ1)−2
]

(19)

where |A| and tr(A) are respectively the determinant and
the trace of the matrix A. The calculation steps needed to
determine (19) are given in the appendix.
The second Π-divergence proposed is an extension of the
Hellinger divergence by replacing probability distributions by

possibility distributions.
As a reminder, for two PDF p1 and p2, the square of the
Hellinger divergence is defined as

H2
prob(p1, p2) =

1

2

∫
R

(√
p1(x)−

√
p2(x)

)2

dx. (20)

Note that, due to its form closely related to the Euclidean
norm, the Hellinger divergence still preserves its divergence
properties while replacing PDF by possibility distributions.
After some straightforward calculus, following [22], the square
of the analytical expression of the Hellinger divergence (called
ΠD

H
) between two possibility distributions in the form of (15)

is given by:

ΠD2
H
(π1, π2) = π

(√
|Σ1|+

√
|Σ2|

)
−2π|1

2
Σ−1

1 +
1

2
Σ−1

2 |−
1
2 × (21)

e
−1

8
(µ1−µ2)

T(
1

2
Σ2+

1

2
Σ1)−1(µ1−µ2)

.

Another approach to extend probabilistic divergence is to use a
measure-based approach as proposed by V.Torra, Y.Narukawa,
M.Sugeno in [23]. But unlike the distribution-based approach
analytical expressions are not available in a lot of cases.
Therefore we have not considered this approach in this paper
but this could be the object of future works.

B. Application

1) Data description: The application of change detection
has been carried out over 14 pairs of images from the
training set of the Onera Satellite Change Detection (OSCD)
dataset where the groundtruth is available. The OSCD dataset
has been presented in the paper “Urban Change Detec-
tion for Multispectral Earth Observation Using Convolutional
Neural Network” presented at the international conference
IGARSS’2018 [24]. The original OSCD dataset comprises
24 pairs of multispectral images taken from the Sentinel-2
satellite between 2015 and 2018. Locations are picked all
over the world, in South America, USA, Europe, Middle
East and Asia. For each location, registered pairs of 13-
band multispectral satellite images obtained by the Sentinel-
2 satellites are provided. Images vary in spatial resolution
between 10m, 20m and 60m. Fig. 2 presents an example of
a pair of images used in the application. The pair considered
hereafter consists of two optical images of the city of Beihai
taken between December 2016 and March 2018. The ground
truth mask of the changes is provided as well as an example
of change map obtained after running the algorithm of change
detection.

2) Experimental setup: Let’s now expose in more details
the algorithm functioning of the change detection application.

Firstly, a preliminary step is necessary before running the
core of the algorithm of change detection. The images are
represented as double precision numbers in the ranges 0 to
1. Next, in order to avoid any border effects, a symmetric
extension is applied to each satellite image proportionally to
the size of the sliding window considered after. Then, the
images are altered by the application of a Gaussian noise
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(a) Image Beihai date t1 (b) Image Beihai date t2

(c) Ground truth mask Beihai (d) Change Map

Fig. 2: Example of a pair of images with its associated Ground
truth and a change map obtained.

Fig. 3: Flowchart of proposed Change detection algorithm

with zero mean and fixed variance. This guarantees realistic
covariance matrix estimation in presence of rank-deficient
correlation structures that can be due to missing pixels. Note
that the higher the value of the variance, the blurrier the image
is. An example of the pair images of the city of Beihai altered
by a Gaussian noise with zero mean and variance equal to 0.1
is given in fig. 4. Secondly, we run the algorithm of change
detection over a pair of images. The principle of the algorithm
is to calculate a measure of dissemblance at each iteration
between the image before (t1) and the image after (t2) for a
pixel and its surrounding neighborhood. A high dissimilarity
measure signifies a possible change. At each iteration, a patch
(sliding window) is extracted for the two images and we
consider two color channels out of three available for the

(a) Image Beihai date t1 (b) Image Beihai date t2

Fig. 4: Example of the pair image of the city of Beihai altered
by a Gaussian noise with zero mean and a variance of 0.1.

sake of performing a bi-band Change Detection. Then, for
the two color channels selected, we extract the mean vector
µ and the variance-covariance matrix Σ thanks to the Sample
Covariance Matrix method (SCM) [25]. The parameters µ and
Σ being the parameters of the possibility distribution in (15).
Then, with the parameters estimated, one of the previously
proposed analytical possibilistic divergences (either in the
form of (19) or (22)) is computed and its result is stored
into the change map. The last step consists in shifting the
sliding window by one pixel before the next iteration. Fig. 3
presents the functioning of the algorithm for any possibilistic
divergence proposed and when the color channels selected for
the parameters extraction are the green and the blue ones.
Next, when the change map is fully completed, the perfor-
mance of the algorithm are determined by computing the
Receiving Operator Characteristic (ROC) curve by comparing
the change map and the ground truth mask. Then by looking at
the area under the curve (AUC) we can calculate the overall
performance of the algorithm for all possible thresholds of
detection. See [26] for more details.
Finally, in order to highlight the interest of a possibilistic
framework, we compare the performance of the possibilis-
tic model to the corresponding probabilistic one. We repeat
exactly the same steps with the analytical form of the sym-
metrical Kullback-Leibler divergence (called KLprob) or with
the Hellinger divergence (called Hprob) associated with the
normal bivariate probability distribution.

3) Experimental results: Two different test protocols have
been done with the change detection algorithm. In the first
series of tests, we set a specific variance of 0.01 for the
Gaussian noise applied to each image. Then we run the
algorithm several times by increasing the size of the sliding
window by 2 pixels each time from 3 by 3 pixels to 41 by 41
pixels. The results of this first series of tests are presented in
fig. 5 for the two pairs of images. In the second series of tests,
we fix the size of the sliding window to 5 by 5 pixels and we
increase the variance of the applied noise at each running of
the algorithm. The results of this second series of tests are
presented in fig. 6. In fig. 5, the two divergences considered
obtain similar results on the 14 pairs of images considered,
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Fig. 5: Graphs showing the average AUC over 14 pairs of
images as a function of the diameter of the patch used.

Fig. 6: Graphs showing the average AUC over 14 pairs of
images according to the variance of the applied noise for a
5x5 pixels sliding window.

either by comparing possibility distributions or probability
distributions. When the size of the patch is 3 by 3 pixels,
the SCM estimator is affected by the presence of outliers in
the patch. Therefore the overall performance of each method
is affected and the results are below the optimal performance.
On the other side, when the patch size is big enough (more
than 10 pixels width), the SCM estimator is more consistent.
Nevertheless, since most of the change size are about few
pixels width, each method has its AUC decreasing as the size
of the patch becomes bigger. Finally, the best compromise
seems to be found for a 7x7 pixels patch although it depends
highly on the size of the changes considered. Note that the
possibilistic algorithm shows an interesting robustness to the
noise observable both in the case of the Kullback-Leibler
divergence or in the Hellinger divergence. This property of
robustness needs to be confirmed in the second series of tests.
Fig. 6 presents the average AUC obtained while testing the
noise resilience of the possibilistic methods and of the prob-

abilistic methods over 14 pairs of images. As expected their
performance decrease as the variance of the Gaussian noise
applied increases. However, as we could begin to observe in
the first series of tests, an interesting property of robustness to
the noise emerges from the possibilistic methods compared to
the probabilistic methods. This property seems to be confirmed
by the fact that both divergences give similar results.
In the following paragraphs, the authors will propose a hy-
pothesis that could explain the robustness to the noise of the
possibilistic framework. First, it is important to recall that the
final results in terms of AUC are impacted by three factors:
the parameters estimator (SCM here), the statistical model
(probabilistic or possibilistic) and the divergences used. In
each case the parameter estimator and the divergences used are
the same. Thus, the real difference between the probabilistic
and the possibilistic framework is the statistical model chosen.
As both statistical models are elliptical distributions, we have
to look at their intrinsic properties to give an explanation
on the behavior observed. The elliptical possibility distribu-
tion is homogeneous to a cumulative function (but slightly
different) thanks to the probability-possibility transformation
which integrates the probability density function. Thus the
possibilistic divergence is a comparison between cumulative
functions whereas the probabilistic framework compares den-
sity functions. That could explain the difference in terms of
performance.

IV. CONCLUSION

In this paper we have proposed a new family of elliptical
possibility distributions derived from the well-known elliptical
family of probability distributions thanks to the extension
to the n-dimension of the continuous probability-possibility
transformation in one dimension.
Finally, through a change detection application, we have
emphasized the consequences of a possibilitic framework in
the field of multivariate data analysis especially when the data
are noisy or their amount is insufficient to allow evaluating
their characteristic parameters accurately.
In future works, two main aspects will be investigated; firstly,
elliptical possibility distributions of higher dimensions will be
considered for the sake of higher multivariate data analysis,
and secondly, other divergences will be studied to propose
useful analytical forms in application of continuous process-
ing.

APPENDIX A
KULLBACK-LEIBLER DIVERGENCE

A. positivity & symmetry
Considering the following equality we have for 0 < x ≤ 1:

log(x) ≤ x− 1 ⇔ log

(
1

x

)
≤ 1

x
− 1

⇔ log(x) ≥ 1− 1

x
.

then, by replacing x by x
y with 0 < y ≤ 1, and by multiplying

the whole expression by x we obtain

x log

(
x

y

)
≥ x− y.
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Let’s now replace x and y by any classical continuous possi-
bility distribution π1 and π2, which have values in the interval
]0, 1]. Thus, it can become

π1 log

(
π1

π2

)
≥ π1 − π2

or

π2 log

(
π2

π1

)
≥ π2 − π1.

Finally by adding the two expressions together we have

π1 log

(
π1

π2

)
+ π2 log

(
π2

π1

)
≥ 0.

And so ΠD(π1, π2) ≥ 0.
The symmetry property is direct. Indeed by setting π1 = π2,
we find ΠD(π1, π1) = 0.

B. analytical form

First, let’s consider the first term in (18) that we will call A
and B will be the second term. Then replace π1(x) and π2(x)
by their respective expressions given in (15). We then obtain
the following form with
∀X ∈ R2 π1(x) = e−

1
2 (x−µ1)TΣ−1

1 (x−µ1)

and π2(x) = e−
1
2 (x−µ2)TΣ−1

2 (x−µ2):

A =

∫
R
π1(x) log

(
π1(x)

π2(x)

)
dx

=

∫
R
π1(x)log (π1(x)) dx−

∫
R
π1(x)log (π2(x)) dx

=

∫
R

1

2
(x− µ2)TΣ−1

2 (x− µ2)π1(x)dx

−
∫
R

1

2
(x− µ1)TΣ−1

1 (x− µ1)π1(x)dx.

From (16) we can then rewrite it as

A = 2π
√
|Σ1|(

∫
R

1

2
(x− µ2)TΣ−1

2 (x− µ2) p1(x)dx

−
∫
R

1

2
(x−µ1)

TΣ−1
1 (x−µ1) p1(x)dx). (22)

Let’s call α and β the two scalars such as

• α =

∫
R

1

2
(x− µ2)TΣ−1

2 (x− µ2)p1(x)dx

• β =

∫
R

1

2
(x− µ1)TΣ−1

1 (x− µ1)p1(x)dx.

By noting E(x) the expected value of the random variable
X ∈ R2, we have:

β =

∫
R

1

2
(x− µ1)TΣ−1

1 (x− µ1)p1(x)dx

= E1

[
tr

(
1

2
(x− µ1)TΣ−1

1 (x− µ1)

)]
=

1

2
E1

[
tr
(
(x− µ1)(x− µ1)TΣ−1

1

)]
=

1

2
tr
[
E1

(
(x− µ1)(x− µ1)T

)
Σ−1

1

]
=

1

2
tr
(
Σ1Σ−1

1

)
=

1

2
tr (I2)

= 1 .

and

α =

∫
R

1

2
(x− µ2)TΣ−1

2 (x− µ2)p1(x)dx

=

∫
R

1

2
[(x−µ1)(µ1−µ2)]

T
Σ−1

2 (x− µ1)(µ1 − µ2)p1(x)dx

=

∫
R

1

2
((x− µ1)TΣ−1

2 (x− µ1) + 2(x− µ1)TΣ−1
2 (µ1 − µ2)

+ (µ1 − µ2)TΣ−1
2 (µ1 − µ2))p1(x)dx

=
1

2
(E1[(x−µ1)

TΣ−1
2 (x−µ1)] + E1[2(x−µ1)

TΣ−1
2 (µ1−µ2)]

+ E1[(µ1 − µ2)TΣ−1
2 (µ1 − µ2)])

=
1

2

[
tr(Σ−1

2 Σ1) + (µ1 − µ2)TΣ−1
2 (µ1 − µ2)

]
The analytical expression of the first term of (18) then be-
comes:

A =π
√
|Σ1|

[
tr(Σ

−1

2 Σ1)+(µ1−µ2)
T

Σ
−1

2 (µ1−µ2)−2
]

(23)

Finally, we obtain (19) by adding A and B where B is
calculated in the same way as A.
NB: Note that the term β is actually similar to a Shanon
entropy of a 2D-joint possibility distribution, such as:

β =

∫
1

2
(x− µ1)TΣ−1

1 (x− µ1)p1(x)dx

= − 1

2π
√
|Σ1|

∫
π1(x)ln (π1(x)) dx

Since β = 1, we then have:

−
∫
π1(x)ln (π1(x)) dx = 2π

√
|Σ1|. (24)

Moreover, we also have:∫
π1(x)dx = 2π

√
|Σ1|

∫
p1(x)dx = 2π

√
|Σ1| (25)

Since
∫
p1(x)dx = 1.

Thus, an invariance property appears and can be written as:∫ +∞

−∞
π(x) (1 + ln (π(x) )) dx = 0 (26)
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