
HAL Id: hal-02149061
https://hal.science/hal-02149061

Submitted on 11 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Encryption-Based Secure JTAG
Emanuele Valea, Mathieu da Silva, Marie-Lise Flottes, Giorgio Di Natale,

Bruno Rouzeyre

To cite this version:
Emanuele Valea, Mathieu da Silva, Marie-Lise Flottes, Giorgio Di Natale, Bruno Rouzeyre.
Encryption-Based Secure JTAG. DDECS 2019 - 22nd International Symposium on Design and
Diagnostics of Electronic Circuits and Systems, Apr 2019, Cluj-Napoca, Romania. pp.1-6,
�10.1109/DDECS.2019.8724654�. �hal-02149061�

https://hal.science/hal-02149061
https://hal.archives-ouvertes.fr

Encryption-Based Secure JTAG

Emanuele Valea1, Mathieu Da Silva1, Marie-Lise Flottes1, Giorgio Di Natale2, Bruno Rouzeyre1

1LIRMM (Université de Montpellier – CNRS), Montpellier, France
2Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA, Grenoble, France

Abstract—Standard test infrastructures, such as IEEE Std.

1149.1 (JTAG), IEEE Std. 1500 and IEEE Std. 1687 (IJTAG),

are widely used in nowadays Integrated Circuits (ICs).

However, they pose an important security challenge to the

designers because of the high controllability and observability

they offer through the Test Access Port (TAP). For instance,

malicious users can exploit test infrastructures in order to

access the internal scan chains of crypto-cores and perform

scan attacks. Moreover, these infrastructures connect all the

devices of the system to the same network. For this reason, the

data sent to a target device are potentially visible to all the

others. Consequently, this poses a threat to the confidentiality

of data content. The encryption of test data is a

countermeasure that has been conceived in order to overcome

these threats. In this paper, we propose a new secure version of

the JTAG infrastructure, relying on stream-based encryption.

Keywords—Test and Security; JTAG; Stream Cipher; Scan

Encryption

I. INTRODUCTION

The test standard for board testing is the IEEE Std.
1149.1, also known as JTAG. The Test Access Port (TAP)
allows the user to access every device on the board through a
scan network, which connects them in a daisy-chain fashion.
The same principle has then been extended to System-on-
Chips (SoC), in order to facilitate the testing of internal
cores. For this reason, the IEEE Std. 1500 provides that IP
cores are equipped with standardized test wrappers. More
recently, the IEEE Std. 1687, also known as IJTAG, has been
released to facilitate the access to the hundreds of embedded
instruments that are present in nowadays SoCs. The IJTAG
is based on a Reconfigurable Scan Network (RSN). This is
set by the user according to the instruments that must be
reached. Most devices and IP cores contain scan chains for
testing purposes. In complex SoCs, the scan network of the
test infrastructure normally reaches the scan chain interface
of each core. This avoids connecting each IP core to the
external pins only for test purposes.

The access to the SoC test infrastructure by a malicious
user represents a very serious security threat. The attacker
can benefit from the enhanced controllability and
observability offered by the infrastructure to compromise the
whole system. For instance, having access to the scan chain
content of a crypto-processor allows the user to retrieve its
secret key. Several attacks on the hardware implementations
of crypto-processors have been presented in the literature
[1]-[4]. The JTAG interface can be exploited in a wide range
of different attacks. This is the case when the test interface is
used to access the system memory for debugging purposes,
or to access the IJTAG reconfigurable network where some
embedded instruments contain proprietary SoC
configurations.

Another important threat is related to the presence of
potentially malicious devices or IPs inside the system. They

usually share the same daisy-chain connection with the
others. Thus, all data sent to a target device can potentially
be shifted through all the others. If confidential data is
shifted through the network, malicious devices can observe
and possibly alter such data [5].

 The encryption of test data has been proposed as a
countermeasure [5][6]. The encryption is performed relying
on a secret key, which is shared between the user accessing
the device and the device itself. The primary security feature
provided by data encryption is the confidentiality of the
communication. In fact, an attacker eavesdropping the
exchanged data is not able to extract any useful information
from the encrypted messages. Moreover, when test data
encryption is employed, an unauthorized user is not able to
successfully communicate with the target device.

Many proposals of test data encryption are based on
stream ciphers, due to their lower cost compared to block
ciphers. However, security vulnerabilities are easy to be
spotted in this kind of implementation. For this reason, a
secure implementation of the stream cipher for scan chain
protection has been proposed in [7]. Nevertheless, the
solution in [7] is limited to the protection of the scan chains.

In this paper, we propose a protection for the JTAG
infrastructure, relying on the encryption of test data based on
the stream cipher. Besides protecting the scan chains, this
solution secures the IJTAG network, and the access to the
memory through the test interface (e.g. software update). The
fundamental of this idea is that the user must engage an
encrypted communication every time specific confidential
instructions are executed.

The remainder of this paper is organized as follows.
Section II presents the threat model that the proposed
countermeasure is intended to prevent. Section III lays the
background on existing countermeasures based on stream
ciphers. Section IV presents the proposed countermeasure.
Section V reports the performance of this solution.
Eventually, Section VI draws some conclusions.

II. THREAT MODEL

In this Section, we present the threats related to test
infrastructures. At first, we provide a description of the
different standards, which are accessible through the JTAG
interface. Finally, we detail the attacks and the threats that
we want to face with the proposed countermeasure.

A. Test infrastructures

Fig. 1 shows how the three test standards (i.e. JTAG,
IEEE 1500 and IJTAG) can be found integrated together in
the same system. Usually, a JTAG interface, including TDI,
TDO, TCK and TMS signals is offered to the user at board
level. Each device contains a TAP controller for internally
interfacing with the test ports, i.e. an FSM driven by the
TMS and TCK signals, which are generally distributed to all
the TAP controllers. Test data are shifted through all the *Institute of Engineering Univ. Grenoble Alpes

devices using the TDI/TDO signals. The Instruction
Register (IR) in each device is first loaded with an
instruction to be executed on each device. Some instructions
are mandatory in the standard (BYPASS,
SAMPLE/PRELOAD, EXTEST), but many other custom
instructions can be added (e.g. INTEST, RUNBIST). Each
instruction connects a specific Test Data Register (TDR) to
the external test interface. For example, the BYPASS
instruction connects one flip-flop, called BYP, between the
TDI and TDO pins. The EXTEST instruction is used to test
off-chip circuits and board level-interconnections by
accessing the Boundary Scan Register (BSR). The INTEST
instruction allows the tester to shift test patterns into the
circuit and to collect test responses, potentially by accessing
the internal scan chains of the device. Each device has a
proper identification code, accessible with the IDCODE
instruction and stored into the identification register.

When the device is a SoC, such as Device 1 in Fig. 1, a
specific instruction gives access to the IEEE 1500 network
and thus to the IEEE 1500 compliant test wrappers of the IP
cores. Another option is to have a specific instruction that
gives access to an IJTAG reconfigurable network, such as in
Device 3 (Fig. 1). In this case, the external user configures
the network by opening the selected SIBs in order to access
the TDRs related to the specific instruments. Specific TDRs
can also be integrated and associated to a customizable
instruction, such as in Device 4 (Fig. 1) where the TDR
allows updating the firmware in the memory.

B. Attacks exploiting the test infrastructure

JTAG provides essential access to on-chip
instrumentation and facilities for test and debug. Test
infrastructures can also be exploited to possibly steal critical
information or to disturb the system operations. One threat
comes from embedded devices developed by untrusted third-
parties. Moreover, an external attacker can also exploit the
test infrastructure in order to discover the secret key of a
crypto-processor.

1) Untrusted third-party devices
In the depicted scenario of a typical test infrastructure,

when the user gains access to an internal feature of the
target device, the involved data are shifted through the same
test daisy-chain. As depicted in Fig. 1, TDI/TDO serial
connection is used to access all embedded devices in the
system. Consequently, data sent to (or read from) any device
is propagated through the other chained devices. A

malicious device connected to the network could easily steal
confidential data from other devices by intercepting the test
data issued from other cores or from the external tester [5].
For instance, the malicious IP can intercept the critical
configuration data sent to a device by the user, such as
firmware content, FPGA configuration, or the configuration
bits in the IJTAG network.

2) Malicious users
A user accessing the test infrastructure can also control

and observe the internal scan chains of the target device. If
the target device is a crypto-core and its chain is accessible,
it is possible to execute a differential scan attack aiming to
disclose its secret key. The scan attack has been proposed in
[1] to retrieve the AES secret key. The computation of the
128-bit AES is performed in ten iterative rounds. Each round
is composed of several operations based on substitution and
permutation, resulting on confusion and diffusion of the
plaintext data on the ciphertext. The result of each round is
stored into a dedicated round register, which is usually part
of the scan chain for higher testability. The attack targets the
result of the first round, when stored into the round register,
after one cycle of computation. The procedure consists in
switching the circuit to test mode after the first round, and
scanning out the partially encrypted result, stored into the
round register. The attacker carries out the differential scan
attack by applying chosen plaintext pairs, and then
calculating the Hamming distance between the two first-
round results. When the result of the Hamming distance
calculation hits some specific values, the attacker is able to
identify one byte of the secret key. The attack strategy
consists in trying several plaintext pairs until the difference
between two intermediate results allows the attacker to
determine one key byte. The attacker repeats these steps for
all the bytes of the key, in order to retrieve the whole secret
behind the AES crypto-core.

The test infrastructure can be used to access a large
amount of sensitive information. The exploitation of the
debugging features offered by the JTAG, can allow an
attacker to steal firmware and software configuration data.
Moreover, the on-chip debugging capabilities can be
exploited to perform attacks where the memory tampering
leads to privilege escalation of the user on the system.

III. STATE-OF-THE-ART

To protect against the threat model described in the
previous Section, the encryption of the test communication

Fig. 1 Example of JTAG daisy-chained components: (Device 1) a SoC containing an AES crypto-core and a CPU, (Device 2) a malicious device,

(Device 3) a device with embedded instruments accessible through an RSN, (Device 4) a memory containing firmware.

has been proposed in the literature. The encryption scheme
consists in firstly encrypting off-board the data. The user
then sends the encrypted data to device. The receiver device
decrypts them using the same secret key used by the user.
The device is able at this point to use the data for its internal
operations. Finally, the responses that have to be sent back to
the user are encrypted. The user has to decrypt the received
encrypted responses outside the system to compare them
with the expected ones.

This mechanism guarantees that the other devices,
sharing the same test infrastructure of the target one, are not
able to understand the data content. Moreover, a user that
does not know the secret key used by the stream cipher
inside the circuit, is not able to have a successful
communication with the target device.

 The TRIVIUM stream cipher [8] has been preferred so
far for the encryption of test data. This preference is due to
its low implementation cost and its easy adaptability to the
serial interface offered by the TDI/TDO signals of the test
infrastructure. The TRIVIUM is initialized with a secret key
and an initialization vector IV.

In [5], [9] and [10] the JTAG communication is
encrypted resorting to the TRIVIUM stream cipher. The IV is
normally hardwired into the device. The secret key is either
fixed inside the device or provided by the user. Since the
IV/key couple does not necessarily change between different
encryption sessions, two-time pad attacks can be performed
[7], making these countermeasures ineffective.

The solution proposed in [7], relies on the random
generation of the IV by the device. This is sent to the user
that uses it to encrypt data for a single encryption session.
This way a different IV is used at each encryption session.
Using this methodology prevents the implementation of two-
time pad attacks, making the encryption secure. However,
the proposed solution is limited to secure the scan chains,
and does not protect against all security threats in the JTAG
interface.

IV. PROPOSED COUNTERMEASURE

We propose a modified JTAG infrastructure that deploys
the encryption of the data when confidential instructions are
executed. As in [7], the IV of the stream cipher is randomly
generated in order to ensure a secure implementation of the
stream cipher.

A. IV and key management

In order to never re-use the same keystream to encrypt
test data, the random IV is generated by a True Random
Number Generator (TRNG) at every circuit reset. For this
reason, the stream cipher is not exposed to two-time pad
attacks. However, the random value of the IV has to be
known by the external tester/debugger. This way, he/she can
correctly communicate with the target device. For this
reason, a specific TDR is added, which contains the IV
value that the user can read executing a custom instruction,
called GETIV. With this method, the randomly generated IV
is shared with the external world, making this value publicly
known. Even if an attacker can read the IV, the security is
not compromised, since the key of the stream cipher
remains secret.

Concerning the stream cipher key management, we
assume that the target device embeds at least one crypto-
processor. Therefore, a secure storage and a Secure Key
Management Unit (SKMU) is usually present inside the
SoC. We propose to securely store the stream cipher key in
the secure storage, already containing all the secret keys of
the circuit. We also propose to re-use the SKMU of the
crypto-processor to share the secret key of the stream cipher
with authorized users. The SKMU also performs the key
generation, activation and revocation during the life cycle of
the stream cipher key. The re-using of the SKMU, already
embedded within the circuit, has the advantage of mitigating
the additional cost due to the key management.

B. Operating principle

For the sake of clarity in presenting the principle of the
solution, we consider a SoC embedding a crypto-processor,
hence susceptible to be the target of differential scan
attacks. An attacker can shift in and out the scan content of
the circuit using the INTEST instruction, provided by the
JTAG standard. The proposed solution is effective in
protecting against a malicious use of the INTEST
instruction. We suppose that, when the INTEST instruction
is executed, the TDR that is connected between the TDI and
TDO signals is the internal scan chain. In the proposed
solution, the content of data, shifted through the device after
the execution of the INTEST instruction, is encrypted with
the stream cipher. Since the generation of the IV is
performed randomly, every single device generates a
different random value, thus reducing the efficiency of the
manufacturing test. Indeed, after the production of the ICs,
many dies are usually tested in parallel, directly probing the
silicon wafer, using the same test patterns. If the proposed
scheme is also activated in this phase, parallel testing is not
possible anymore, since each circuit requires the test
patterns encrypted with a different keystream. In subsection
1) we explain how to use the proposed countermeasure to
easily perform parallel wafer testing, while in subsection 2)
we explain how the countermeasure is used in mission
mode.

1) Wafer testing
The first test of newly fabricated integrated circuits is

performed when the dies are still part of the silicon wafer. In
order to save test time during manufacturing test, several
dies are tested in parallel by applying the same patterns at
the same time. As explained above, implementing the
proposed encryption technique forces the applied test
patterns to be unique for every single circuit, because they
must be encrypted resorting to a random number that differs
from one circuit to the other. Therefore, the proposed
solution cannot be used for parallel testing of multiple
circuits.

To thwart this disadvantage, we propose to disable the
use of the TRNG during the manufacturing process and to
use a predefined hardwired IV for all circuits. In this way,
all keystreams are identical and all test patterns can be
encrypted in the same way. To bypass the TRNG when the
circuit is still on the wafer, we propose to use in-wafer
sensors, able to identify whether the die is still part of the
wafer. These sensors are either based on OTP (One Time
Programmable) memories, or on the so-called Saw Bow.
The latter is based on an electrical connection made by a
strong pull-up and a weak pull-down elements, which are

physically interconnected by a metal line across the sawing
lines of the wafer. The strong pull-up resistance sets a logic
value on the line when the sawing line is intact. When the
dies are sawed, the weak pull-down resistance sets the
opposite value on the line [11].

2) Mission mode
When in mission mode, the circuit can be the target of

an attack. The principle of the solution is to encrypt the test
data using the stream cipher, as illustrated in Fig. 2.

The stream cipher generates two keystreams: 𝑆𝑖𝑛 for
decrypting test data shifted into the scan network, and 𝑆𝑜𝑢𝑡
for encrypting test data shifted out of the scan network. We
have decided not to use a single stream cipher to generate
the keystreams for both input decryption and output
encryption in order to avoid any temporal correlation in the
generated keystreams. The generation of independent
keystreams can be done in an efficient way for some
standard stream ciphers. For instance, the TRIVIUM [8]
requires very few additional logic gates (i.e. 3 AND gates
and 11 XOR gates) to generate two keystreams at the same
time.

The utilization of the proposed countermeasure consists
in an initialization phase and a successive encryption phase.
During the initialization phase, the TRNG generates the IV,
and sends it to the circuit implementing the stream cipher, in
order to perform its setup. During this phase, the TAP
controller locks the use of the INTEST instruction. If an
external user requires this instruction, the TAP controller
remains set on bypass mode. When the initialization phase
is completed, the tester can ask for access to the protected
instruction. The external user has to execute a specific
instruction, called GETIV. When executed, this instruction
connects a special register, containing the generated IV
value, to the TDI/TDO signals. This way, the tester can shift
out of the device the IV that has been produced by the
TRNG during the initialization phase. If the GETIV
instruction is executed before the initialization phase is
completed, a sequence of all ‘0s’ is returned as response.

During the encryption phase, the tester knows both the
secret key (if the tester is authorized) and the IV obtained
via the GETIV instruction. From this moment, it is possible
to encrypt off-chip the test patterns using the IV recovered

from the device. At this point, the test patterns, shifted
through the TDI for the INTEST instruction, are decrypted
on-chip before being introduced into the corresponding
TDR. During the scanning-out operation, the test responses
are encrypted on-chip. The tester collects encrypted
responses from the TDO interface that can be decrypted off-
chip, using the same IV and secret key used for the off-chip
encryption.

The solution is not limited to classical testing purposes
with the protection of the INTEST instruction and the scan
chains, but the countermeasure can be extended to a whole
set of protected instructions whose involved data can benefit
from encryption. The designer has to define a set of
protected instructions. For example, as shown in Fig. 3, in
addition to the INTEST instruction, the protected
instructions can include (1) the IJTAG instruction accessing
the RSN including critical instruments, and (2) any
instruction accessing a TDR containing confidential data,
such as firmware updates of the device. Therefore, the
stream cipher encrypts the data content addressed to these
TDRs: (1) the RSN is encrypted, making the proper
configuration of the RSN by unauthorized users more
difficult, and preventing to read and control the TDRs
associated to the instruments; (2) the firmware is decrypted
before being saved into the memory, preventing a malicious
user to sniff its content during an update process.

C. Control Unit

The stream cipher initialization procedure is controlled
by an FSM, whose state transition graph is given in Fig. 4.
The FSM is composed of 4 states (i.e. START_TRNG,
SHIFT_IV, SC_SETUP, SC_ENCRYPT) and it outputs
three control signals (i.e. enable_reg, start_SC,
init_completed). All of them are initialized to ‘0’.

At reset, the TRNG starts the initialization, while in the
START_TRNG state. TRNGs have usually an initial set-up
time during which the generated numbers are not random
enough. They require some time to reach sufficient entropy.
Therefore, during this period, the generated value cannot be
used. As soon as the TRNG reaches a good entropy
(𝑇𝑅𝑁𝐺_𝑟𝑒𝑎𝑑𝑦 = ′1′), the IV generation begins.

Fig. 2 High-level architecture of Secure JTAG

Fig. 3 Detailed architecture of the Secure JTAG

During the SHIFT_IV state, the shift register (Shift Reg
in Fig. 3) receives the random bitstream generated by the
TRNG (𝑒𝑛𝑎𝑏𝑙𝑒_𝑟𝑒𝑔 = ′1′). A counter 𝑐𝑛𝑡 is launched at
the same time. When 𝑐𝑛𝑡 reaches the value N, the TRNG
stops generating the random bitstream. N is equal to the
number of bits of the IV. When the N bits of the random IV
are generated, the TRNG is no longer used and it becomes
available to other applications, if needed. Otherwise, it can
be turned off.

Once the counter have reached the value N, the control
unit goes to the SC_SETUP state and starts the stream
cipher initialization (𝑠𝑡𝑎𝑟𝑡_𝑆𝐶 = ′1′). The FSM stays in this
state for a time equal to 𝑇𝑆𝐶_𝑠𝑒𝑡𝑢𝑝 , needed for the stream

cipher setup.

Once the counter reaches N + 𝑇𝑆𝐶_𝑠𝑒𝑡𝑢𝑝, the initialization

process is completed (𝑖𝑛𝑖𝑡_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 = ′1′). The stream
cipher encrypts the data passing through the TDI and TDO
terminals of the protected TDRs. The keystreams are
generated only in the case in which the TAP controller is in
the Shift-DR state and a protected TDR is selected by the
instruction under execution. In the other cases, the
encryption is not needed and the stream cipher is
deactivated and it generates no keystream.

During the SC_ENCRYPT state, when the tester wants
to write into a protected TDR, at first it executes the GETIV
instruction to read the IV, in order to encrypt data using the
shared secret. After that, the tester executes the protected
instruction, in order to access the corresponding TDR. The
tester places the IC into Shift-DR state where the stream
cipher generates the keystream. The tester shifts in the
encrypted data, which are decrypted before being sent to the
TDR. The tester places then the IC into the Exit-DR state, in
which the stream cipher stops the keystream generation. At
the end of the operations, the TDR contains the plaintext
data.

The initialization process cannot be interrupted. The
control unit ensures the setup completion before any
possible operations on the protected TDRs. If a circuit reset
occurs, the control unit is reinitialized and the TRNG
generates a new IV for the stream cipher.

V. PERFORMANCE ANALYSIS

In this section, we evaluate the security of the proposed
solution and the implementation costs, measured employing
the TRIVIUM [8] stream cipher.

A. Security analysis

Since the test communication is encrypted, the solution
ensures that an untrusted third-party device in the test daisy-

chain is not able to sniff confidential data or to send
undesired data to another device.

Concerning the scan attacks, the stream cipher encrypts
the scan chain content when the instruction INTEST is
executed. The decryption of the scanned-in test data
prevents to set desired values in the scan network without
knowing the secret key. The encryption of the scanned-out
test responses prevents to observe the internal states of the
circuit under test without first performing the decryption.
The stream cipher is initialized with a random IV preventing
the exploitation of the two-time pad to perform a differential
scan attack on encrypted test data, as is the case for the
state-of-the-art stream-based countermeasures [5][9][10].

When the encryption is performed on an IJTAG
network, an attacker without the knowledge of the RSN
configuration faces troubles to open or close the SIBs, due
to the keystream XORed with the test data at the RSN input.
Even if the attacker is able to configure the RSN in a chosen
configuration, he or she is not able to send and read data
related to confidential instruments, since the data shifted
through the RSN go through the input decryption and the
output encryption.

When the test interface is used to configure a memory
(e.g. for firmware updates), the encryption ensures that the
content cannot be readable without knowing the secret key.
Moreover, an attacker cannot update the firmware with a
corrupted version due to the decryption performed on the
data sent through the test interface.

B. Implementation costs

We have chosen to implement the TRIVIUM stream
cipher in the proposed solution due to the low area
overhead. The level of security that it guarantees is high
enough for the target application. However, other stream
ciphers can be used instead of TRIVIUM in the proposed
infrastructure, especially if better stream ciphers will be
developed in the future.

We do not consider the cost of the TRNG in the
experimental results. In the case where a TRNG is already
implemented in the original circuit, the proposed
countermeasure can exploit this TRNG during the
initialization process, implying no cost overhead for the
random number generation. As previously shown in Section
IV, after the generation of the IV, the TRNG is no longer
useful for the proposed solution, and it can be used by
another application. On the other hand, if no TRNG is
available in the circuit, the implementation implies an
additional area cost. This is evaluated as 15 000 Gate
Equivalents (GEs), as is the case of the TRNG from the
Synopsys DesignWare IP library [12].

1) Area and test time overheads
To evaluate the area overhead, we have considered a

simple JTAG wrapper implementing a TAP controller, the
IR, the BYP, and the IDCODE registers. As described in
Section IV, the JTAG wrapper is modified to include the
GETIV instruction and its associated register. Moreover,
some modules are added in addition to the modified JTAG
wrapper: the TRIVIUM stream cipher, the shift register
containing the random IV and the control unit. Tab. 1
reports the area cost of the proposed solution compared to
the original JTAG wrapper, representing an area overhead

Fig. 4 Finite State Machine controlling the initialization procedure

of 500%. The solution is dedicated to large devices, such as
SoC designs. For instance, the solution implemented on a
LEON3 processor, whose area is 1 902 095 μm², increases
the total area of 7 794 μm², i.e. a 0.41% overhead.

Concerning the test time cost, the proposed solution
introduces only an overhead due to the initialization process.
This process takes 80 clock cycles to shift the random IV
into the shift register, and 1152 clock cycles for the
TRIVIUM setup. After this initialization process, the tester
has to recover the IV executing the GETIV instruction before
starting the encrypted test communication with the device.
This corresponds to 80 clock cycles to shift out the content
of the IV register. In addition to the time required to
generate a random number, the solution implies a test time
overhead of 1312 clock cycles at the beginning of a test
procedure. This test time overhead has to be compared with
the whole test sequence of the circuit. For instance, in the
LEON3 processor, 11 612 051 clock cycles are needed to
achieve a test coverage of 70%. Thus, the stream-based
countermeasure introduces an overhead of only 0.01%,
without considering the time to initialize the TRNG.

2) Test coverage
The stream cipher encryption of the JTAG interface does

not affect the testing of the original circuit through the
protected INTEST instruction. The test coverage of the
whole circuit is not reduced. However, the architecture of
the proposed solution must also be tested, without the help
of scan chains that would expose the stream cipher to scan
attacks. We propose to functionally test the cipher using the
test data targeting the circuit under test.

Stream ciphers based on shift registers, such as
TRIVIUM, are easily testable, since all the states of the
stream cipher are shifted out the circuit as a keystream. The
consequence is that the errors generated by possible faults
are easily propagated to the circuit outputs during the
encryption. To validate this assumption, we have evaluated
the test coverage on the TRIVIUM stream cipher using the
test sequences of several original circuits. At scan-input, test
patterns are processed by the input keystream generated by
the stream cipher, and the test responses are processed by
the output keystream. We have performed experiments with
the test sequences targeting several cores (Pipelined AES-
256, Triple-DES, Pipelined AES-128, RSA 1024 and
LEON3 processor). In all cases, the fault coverage for stuck-
at faults in the proposed architecture is 100%.

VI. CONCLUSION

Test interface gives the access to unauthorized users,
enabling them to perform attacks. Moreover, malicious

devices connected to the test daisy-chain can sniff and
tamper test data. To prevent these threats, several solutions
based on stream cipher encryption have been proposed. In
this paper, we have present a secure JTAG interface based
on stream cipher encryption. The stream cipher used for the
encryption is initialized with a different random IV at each
reset, preventing the generation of the same keystream
twice. The content is encrypted with a secret key developed
for the current activity, and shared with the authorized users
employing the key management system already present in
the circuit. The encryption is performed on the TDR content
of a set of protected instructions, established by the
designer. The protected instructions can include the ones
accessing the scan chains, the IJTAG network, or updating
the memory. This solution presents a marginal overhead on
area and test time, and can be integrated in a SoC, without
causing issues in testing the other cores connected to the test
daisy-chain.

ACKNOWLEDGMENT

This project has been partially funded by the French

Government (BPI-OSEO) under grant FUI#20 TEEVA

(Trusted Execution EVAluation) and by the French

government under the framework of the PENTA HADES

(“Hierarchy-Aware and secure embedded test infrastructure

for Dependability and performance Enhancement of

integrated Systems”) European project.

REFERENCES

[1] B. Yang, K. Wu, and R. Karri. Secure scan: a design-for-test
architecture for crypto chips. In DAC, pp 135-140. ACM, 2005.

[2] J. Da Rolt, G. Di Natale, M.-L. Flottes, and B. Rouzeyre. Scan
Attacks and Countermeasures in Presence of Scan Response
Compactors. In ETS, pp 19-24, 2011

[3] J. Da Rolt, G. Di Natale, M.-L. Flottes, and B. Rouzeyre. Are
advanced DfT structures sufficient for preventing scan-attacks? In
VTS, pp 246-251. 2012.

[4] J. Da Rolt, G. Di Natale, M.-L. Flottes, B. Rouzeyre, A Novel
Differential Scan Attack on Advanced DFT Structures, In ACM
TODAES, Volume 18, Issue 4, October 2013, Article No. 58,

[5] K. Rosenfeld & R. Karri (2010). Attacks and defenses for JTAG.
IEEE Design and Test of Computers, 27(1), 36–47.

[6] M. Da Silva, M. Flottes, G. Di Natale and B. Rouzeyre (2018).
Preventing Scan Attacks on Secure Circuits Through Scan Chain
Encryption. In IEEE TCAD.

[7] M. Da Silva, E. Valea, M. l. Flottes, S. Dupuis, G. Di Natale and B.
Rouzeyre (2018). A new secure stream cipher for scan chain
encryption. In IVSW 2018.

[8] C. De Canniere & B. Preneel (2005). TRIVIUM Specifications.
ECRYPT Stream Cipher Project, Report, 30, 2005.

[9] K. Rosenfeld & R. Karri (2011). Security-aware SoC test access
mechanisms. In VTS, 100–104.

[10] S. Kan, J. Dworak & J. G. Dunham (2017). Echeloned IJTAG data
protection. In AsianHOST 2016.

[11] Di Natale, G., Flottes, M.-L., Rouzeyre, B., & Pugliesi-Conti, P.-H.
(2017). Manufacturing Testing and Security Countermeasures. In N.
Sklavos, R. Chaves, G. Di Natale, & F. Regazzoni (Eds.), Hardware
Security and Trust: Design and Deployment of Integrated Circuits in
a Threatened Environment (pp. 127–148). Cham: Springer
International Publishing.

[12] Synopsys. (2015). DesignWare True Random Number Generator
Core.

Modules Original JTAG

(GEs)

Proposed solution

(GEs)

JTAG wrapper 625 1 147

TRIVIUM / 2 048

IV Shift Register / 300

Control Unit / 252

Total 625 3 747

Tab. 1 Area cost of the proposed countermeasure compared to the

original JTAG wrapper

