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Abstract—Standard test infrastructures, such as IEEE Std. 

1149.1 (JTAG), IEEE Std. 1500 and IEEE Std. 1687 (IJTAG), 

are widely used in nowadays Integrated Circuits (ICs). 

However, they pose an important security challenge to the 

designers because of the high controllability and observability 

they offer through the Test Access Port (TAP). For instance, 

malicious users can exploit test infrastructures in order to 

access the internal scan chains of crypto-cores and perform 

scan attacks. Moreover, these infrastructures connect all the 

devices of the system to the same network. For this reason, the 

data sent to a target device are potentially visible to all the 

others. Consequently, this poses a threat to the confidentiality 

of data content. The encryption of test data is a 

countermeasure that has been conceived in order to overcome 

these threats. In this paper, we propose a new secure version of 

the JTAG infrastructure, relying on stream-based encryption. 

Keywords—Test and Security; JTAG; Stream Cipher; Scan 

Encryption 

I. INTRODUCTION 

The test standard for board testing is the IEEE Std. 
1149.1, also known as JTAG. The Test Access Port (TAP) 
allows the user to access every device on the board through a 
scan network, which connects them in a daisy-chain fashion. 
The same principle has then been extended to System-on-
Chips (SoC), in order to facilitate the testing of internal 
cores. For this reason, the IEEE Std. 1500 provides that IP 
cores are equipped with standardized test wrappers. More 
recently, the IEEE Std. 1687, also known as IJTAG, has been 
released to facilitate the access to the hundreds of embedded 
instruments that are present in nowadays SoCs. The IJTAG 
is based on a Reconfigurable Scan Network (RSN). This is 
set by the user according to the instruments that must be 
reached. Most devices and IP cores contain scan chains for 
testing purposes. In complex SoCs, the scan network of the 
test infrastructure normally reaches the scan chain interface 
of each core. This avoids connecting each IP core to the 
external pins only for test purposes. 

The access to the SoC test infrastructure by a malicious 
user represents a very serious security threat. The attacker 
can benefit from the enhanced controllability and 
observability offered by the infrastructure to compromise the 
whole system. For instance, having access to the scan chain 
content of a crypto-processor allows the user to retrieve its 
secret key. Several attacks on the hardware implementations 
of crypto-processors have been presented in the literature 
[1]-[4]. The JTAG interface can be exploited in a wide range 
of different attacks. This is the case when the test interface is 
used to access the system memory for debugging purposes, 
or to access the IJTAG reconfigurable network where some 
embedded instruments contain proprietary SoC 
configurations. 

Another important threat is related to the presence of 
potentially malicious devices or IPs inside the system. They 

usually share the same daisy-chain connection with the 
others. Thus, all data sent to a target device can potentially 
be shifted through all the others. If confidential data is 
shifted through the network, malicious devices can observe 
and possibly alter such data [5]. 

 The encryption of test data has been proposed as a 
countermeasure [5][6]. The encryption is performed relying 
on a secret key, which is shared between the user accessing 
the device and the device itself. The primary security feature 
provided by data encryption is the confidentiality of the 
communication. In fact, an attacker eavesdropping the 
exchanged data is not able to extract any useful information 
from the encrypted messages. Moreover, when test data 
encryption is employed, an unauthorized user is not able to 
successfully communicate with the target device. 

Many proposals of test data encryption are based on 
stream ciphers, due to their lower cost compared to block 
ciphers. However, security vulnerabilities are easy to be 
spotted in this kind of implementation. For this reason, a 
secure implementation of the stream cipher for scan chain 
protection has been proposed in [7]. Nevertheless, the 
solution in [7] is limited to the protection of the scan chains. 

In this paper, we propose a protection for the JTAG 
infrastructure, relying on the encryption of test data based on 
the stream cipher. Besides protecting the scan chains, this 
solution secures the IJTAG network, and the access to the 
memory through the test interface (e.g. software update). The 
fundamental of this idea is that the user must engage an 
encrypted communication every time specific confidential 
instructions are executed. 

The remainder of this paper is organized as follows. 
Section II presents the threat model that the proposed 
countermeasure is intended to prevent. Section III lays the 
background on existing countermeasures based on stream 
ciphers. Section IV presents the proposed countermeasure. 
Section V reports the performance of this solution. 
Eventually, Section VI draws some conclusions. 

II. THREAT MODEL 

In this Section, we present the threats related to test 
infrastructures. At first, we provide a description of the 
different standards, which are accessible through the JTAG 
interface. Finally, we detail the attacks and the threats that 
we want to face with the proposed countermeasure. 

A. Test infrastructures 

Fig. 1 shows how the three test standards (i.e. JTAG, 
IEEE 1500 and IJTAG) can be found integrated together in 
the same system. Usually, a JTAG interface, including TDI, 
TDO, TCK and TMS signals is offered to the user at board 
level. Each device contains a TAP controller for internally 
interfacing with the test ports, i.e. an FSM driven by the 
TMS and TCK signals, which are generally distributed to all 
the TAP controllers. Test data are shifted through all the *Institute of Engineering Univ. Grenoble Alpes 



devices using the TDI/TDO signals. The Instruction 
Register (IR) in each device is first loaded with an 
instruction to be executed on each device. Some instructions 
are mandatory in the standard (BYPASS, 
SAMPLE/PRELOAD, EXTEST), but many other custom 
instructions can be added (e.g. INTEST, RUNBIST). Each 
instruction connects a specific Test Data Register (TDR) to 
the external test interface. For example, the BYPASS 
instruction connects one flip-flop, called BYP, between the 
TDI and TDO pins. The EXTEST instruction is used to test 
off-chip circuits and board level-interconnections by 
accessing the Boundary Scan Register (BSR). The INTEST 
instruction allows the tester to shift test patterns into the 
circuit and to collect test responses, potentially by accessing 
the internal scan chains of the device. Each device has a 
proper identification code, accessible with the IDCODE 
instruction and stored into the identification register. 

When the device is a SoC, such as Device 1 in Fig. 1, a 
specific instruction gives access to the IEEE 1500 network 
and thus to the IEEE 1500 compliant test wrappers of the IP 
cores. Another option is to have a specific instruction that 
gives access to an IJTAG reconfigurable network, such as in 
Device 3 (Fig. 1). In this case, the external user configures 
the network by opening the selected SIBs in order to access 
the TDRs related to the specific instruments. Specific TDRs 
can also be integrated and associated to a customizable 
instruction, such as in Device 4 (Fig. 1) where the TDR 
allows updating the firmware in the memory. 

B. Attacks exploiting the test infrastructure 

JTAG provides essential access to on-chip 
instrumentation and facilities for test and debug. Test 
infrastructures can also be exploited to possibly steal critical 
information or to disturb the system operations. One threat 
comes from embedded devices developed by untrusted third-
parties. Moreover, an external attacker can also exploit the 
test infrastructure in order to discover the secret key of a 
crypto-processor. 

1) Untrusted third-party devices 
In the depicted scenario of a typical test infrastructure, 

when the user gains access to an internal feature of the 
target device, the involved data are shifted through the same 
test daisy-chain. As depicted in Fig. 1, TDI/TDO serial 
connection is used to access all embedded devices in the 
system. Consequently, data sent to (or read from) any device 
is propagated through the other chained devices. A 

malicious device connected to the network could easily steal 
confidential data from other devices by intercepting the test 
data issued from other cores or from the external tester [5]. 
For instance, the malicious IP can intercept the critical 
configuration data sent to a device by the user, such as 
firmware content, FPGA configuration, or the configuration 
bits in the IJTAG network. 

2) Malicious users 
A user accessing the test infrastructure can also control 

and observe the internal scan chains of the target device. If 
the target device is a crypto-core and its chain is accessible, 
it is possible to execute a differential scan attack aiming to 
disclose its secret key. The scan attack has been proposed in 
[1] to retrieve the AES secret key. The computation of the 
128-bit AES is performed in ten iterative rounds. Each round 
is composed of several operations based on substitution and 
permutation, resulting on confusion and diffusion of the 
plaintext data on the ciphertext. The result of each round is 
stored into a dedicated round register, which is usually part 
of the scan chain for higher testability. The attack targets the 
result of the first round, when stored into the round register, 
after one cycle of computation. The procedure consists in 
switching the circuit to test mode after the first round, and 
scanning out the partially encrypted result, stored into the 
round register. The attacker carries out the differential scan 
attack by applying chosen plaintext pairs, and then 
calculating the Hamming distance between the two first-
round results. When the result of the Hamming distance 
calculation hits some specific values, the attacker is able to 
identify one byte of the secret key. The attack strategy 
consists in trying several plaintext pairs until the difference 
between two intermediate results allows the attacker to 
determine one key byte. The attacker repeats these steps for 
all the bytes of the key, in order to retrieve the whole secret 
behind the AES crypto-core.  

The test infrastructure can be used to access a large 
amount of sensitive information. The exploitation of the 
debugging features offered by the JTAG, can allow an 
attacker to steal firmware and software configuration data. 
Moreover, the on-chip debugging capabilities can be 
exploited to perform attacks where the memory tampering 
leads to privilege escalation of the user on the system.  

III. STATE-OF-THE-ART 

To protect against the threat model described in the 
previous Section, the encryption of the test communication 

 
Fig. 1 Example of JTAG daisy-chained components: (Device 1) a SoC containing an AES crypto-core and a CPU, (Device 2) a malicious device, 

(Device 3) a device with embedded instruments accessible through an RSN, (Device 4) a memory containing firmware. 



has been proposed in the literature. The encryption scheme 
consists in firstly encrypting off-board the data. The user 
then sends the encrypted data to device. The receiver device 
decrypts them using the same secret key used by the user. 
The device is able at this point to use the data for its internal 
operations. Finally, the responses that have to be sent back to 
the user are encrypted. The user has to decrypt the received 
encrypted responses outside the system to compare them 
with the expected ones. 

This mechanism guarantees that the other devices, 
sharing the same test infrastructure of the target one, are not 
able to understand the data content. Moreover, a user that 
does not know the secret key used by the stream cipher 
inside the circuit, is not able to have a successful 
communication with the target device. 

 The TRIVIUM stream cipher [8] has been preferred so 
far for the encryption of test data. This preference is due to 
its low implementation cost and its easy adaptability to the 
serial interface offered by the TDI/TDO signals of the test 
infrastructure. The TRIVIUM is initialized with a secret key 
and an initialization vector IV.  

In [5], [9] and [10] the JTAG communication is 
encrypted resorting to the TRIVIUM stream cipher. The IV is 
normally hardwired into the device. The secret key is either 
fixed inside the device or provided by the user. Since the 
IV/key couple does not necessarily change between different 
encryption sessions, two-time pad attacks can be performed 
[7], making these countermeasures ineffective. 

The solution proposed in [7], relies on the random 
generation of the IV by the device. This is sent to the user 
that uses it to encrypt data for a single encryption session. 
This way a different IV is used at each encryption session. 
Using this methodology prevents the implementation of two-
time pad attacks, making the encryption secure. However, 
the proposed solution is limited to secure the scan chains, 
and does not protect against all security threats in the JTAG 
interface. 

IV. PROPOSED COUNTERMEASURE 

We propose a modified JTAG infrastructure that deploys 
the encryption of the data when confidential instructions are 
executed. As in [7], the IV of the stream cipher is randomly 
generated in order to ensure a secure implementation of the 
stream cipher. 

A. IV and key management 

In order to never re-use the same keystream to encrypt 
test data, the random IV is generated by a True Random 
Number Generator (TRNG) at every circuit reset. For this 
reason, the stream cipher is not exposed to two-time pad 
attacks. However, the random value of the IV has to be 
known by the external tester/debugger. This way, he/she can 
correctly communicate with the target device. For this 
reason, a specific TDR is added, which contains the IV 
value that the user can read executing a custom instruction, 
called GETIV. With this method, the randomly generated IV 
is shared with the external world, making this value publicly 
known. Even if an attacker can read the IV, the security is 
not compromised, since the key of the stream cipher 
remains secret. 

Concerning the stream cipher key management, we 
assume that the target device embeds at least one crypto-
processor. Therefore, a secure storage and a Secure Key 
Management Unit (SKMU) is usually present inside the 
SoC. We propose to securely store the stream cipher key in 
the secure storage, already containing all the secret keys of 
the circuit. We also propose to re-use the SKMU of the 
crypto-processor to share the secret key of the stream cipher 
with authorized users. The SKMU also performs the key 
generation, activation and revocation during the life cycle of 
the stream cipher key. The re-using of the SKMU, already 
embedded within the circuit, has the advantage of mitigating 
the additional cost due to the key management. 

B. Operating principle  

For the sake of clarity in presenting the principle of the 
solution, we consider a SoC embedding a crypto-processor, 
hence susceptible to be the target of differential scan 
attacks. An attacker can shift in and out the scan content of 
the circuit using the INTEST instruction, provided by the 
JTAG standard. The proposed solution is effective in 
protecting against a malicious use of the INTEST 
instruction. We suppose that, when the INTEST instruction 
is executed, the TDR that is connected between the TDI and 
TDO signals is the internal scan chain. In the proposed 
solution, the content of data, shifted through the device after 
the execution of the INTEST instruction, is encrypted with 
the stream cipher. Since the generation of the IV is 
performed randomly, every single device generates a 
different random value, thus reducing the efficiency of the 
manufacturing test. Indeed, after the production of the ICs, 
many dies are usually tested in parallel, directly probing the 
silicon wafer, using the same test patterns. If the proposed 
scheme is also activated in this phase, parallel testing is not 
possible anymore, since each circuit requires the test 
patterns encrypted with a different keystream. In subsection 
1) we explain how to use the proposed countermeasure to 
easily perform parallel wafer testing, while in subsection 2) 
we explain how the countermeasure is used in mission 
mode. 

1) Wafer testing 
The first test of newly fabricated integrated circuits is 

performed when the dies are still part of the silicon wafer. In 
order to save test time during manufacturing test, several 
dies are tested in parallel by applying the same patterns at 
the same time. As explained above, implementing the 
proposed encryption technique forces the applied test 
patterns to be unique for every single circuit, because they 
must be encrypted resorting to a random number that differs 
from one circuit to the other. Therefore, the proposed 
solution cannot be used for parallel testing of multiple 
circuits. 

To thwart this disadvantage, we propose to disable the 
use of the TRNG during the manufacturing process and to 
use a predefined hardwired IV for all circuits. In this way, 
all keystreams are identical and all test patterns can be 
encrypted in the same way. To bypass the TRNG when the 
circuit is still on the wafer, we propose to use in-wafer 
sensors, able to identify whether the die is still part of the 
wafer. These sensors are either based on OTP (One Time 
Programmable) memories, or on the so-called Saw Bow. 
The latter is based on an electrical connection made by a 
strong pull-up and a weak pull-down elements, which are 



physically interconnected by a metal line across the sawing 
lines of the wafer. The strong pull-up resistance sets a logic 
value on the line when the sawing line is intact. When the 
dies are sawed, the weak pull-down resistance sets the 
opposite value on the line [11]. 

2) Mission mode 
When in mission mode, the circuit can be the target of 

an attack. The principle of the solution is to encrypt the test 
data using the stream cipher, as illustrated in Fig. 2.  

The stream cipher generates two keystreams: 𝑆𝑖𝑛  for 
decrypting test data shifted into the scan network, and 𝑆𝑜𝑢𝑡 
for encrypting test data shifted out of the scan network. We 
have decided not to use a single stream cipher to generate 
the keystreams for both input decryption and output 
encryption in order to avoid any temporal correlation in the 
generated keystreams. The generation of independent 
keystreams can be done in an efficient way for some 
standard stream ciphers. For instance, the TRIVIUM [8] 
requires very few additional logic gates (i.e. 3 AND gates 
and 11 XOR gates) to generate two keystreams at the same 
time. 

The utilization of the proposed countermeasure consists 
in an initialization phase and a successive encryption phase. 
During the initialization phase, the TRNG generates the IV, 
and sends it to the circuit implementing the stream cipher, in 
order to perform its setup. During this phase, the TAP 
controller locks the use of the INTEST instruction. If an 
external user requires this instruction, the TAP controller 
remains set on bypass mode. When the initialization phase 
is completed, the tester can ask for access to the protected 
instruction. The external user has to execute a specific 
instruction, called GETIV. When executed, this instruction 
connects a special register, containing the generated IV 
value, to the TDI/TDO signals. This way, the tester can shift 
out of the device the IV that has been produced by the 
TRNG during the initialization phase. If the GETIV 
instruction is executed before the initialization phase is 
completed, a sequence of all ‘0s’ is returned as response. 

During the encryption phase, the tester knows both the 
secret key (if the tester is authorized) and the IV obtained 
via the GETIV instruction. From this moment, it is possible 
to encrypt off-chip the test patterns using the IV recovered 

from the device. At this point, the test patterns, shifted 
through the TDI for the INTEST instruction, are decrypted 
on-chip before being introduced into the corresponding 
TDR. During the scanning-out operation, the test responses 
are encrypted on-chip. The tester collects encrypted 
responses from the TDO interface that can be decrypted off-
chip, using the same IV and secret key used for the off-chip 
encryption.  

The solution is not limited to classical testing purposes 
with the protection of the INTEST instruction and the scan 
chains, but the countermeasure can be extended to a whole 
set of protected instructions whose involved data can benefit 
from encryption. The designer has to define a set of 
protected instructions. For example, as shown in Fig. 3, in 
addition to the INTEST instruction, the protected 
instructions can include (1) the IJTAG instruction accessing 
the RSN including critical instruments, and (2) any 
instruction accessing a TDR containing confidential data, 
such as firmware updates of the device. Therefore, the 
stream cipher encrypts the data content addressed to these 
TDRs: (1) the RSN is encrypted, making the proper 
configuration of the RSN by unauthorized users more 
difficult, and preventing to read and control the TDRs 
associated to the instruments; (2) the firmware is decrypted 
before being saved into the memory, preventing a malicious 
user to sniff its content during an update process. 

C. Control Unit 

The stream cipher initialization procedure is controlled 
by an FSM, whose state transition graph is given in Fig. 4. 
The FSM is composed of 4 states (i.e. START_TRNG, 
SHIFT_IV, SC_SETUP, SC_ENCRYPT) and it outputs 
three control signals (i.e. enable_reg, start_SC, 
init_completed). All of them are initialized to ‘0’.  

At reset, the TRNG starts the initialization, while in the 
START_TRNG state. TRNGs have usually an initial set-up 
time during which the generated numbers are not random 
enough. They require some time to reach sufficient entropy. 
Therefore, during this period, the generated value cannot be 
used. As soon as the TRNG reaches a good entropy 
(𝑇𝑅𝑁𝐺_𝑟𝑒𝑎𝑑𝑦 = ′1′), the IV generation begins.  

 
Fig. 2 High-level architecture of Secure JTAG 

 
Fig. 3 Detailed architecture of the Secure JTAG 



During the SHIFT_IV state, the shift register (Shift Reg 
in Fig. 3) receives the random bitstream generated by the 
TRNG (𝑒𝑛𝑎𝑏𝑙𝑒_𝑟𝑒𝑔 = ′1′). A counter 𝑐𝑛𝑡  is launched at 
the same time. When 𝑐𝑛𝑡 reaches the value N, the TRNG 
stops generating the random bitstream. N is equal to the 
number of bits of the IV. When the N bits of the random IV 
are generated, the TRNG is no longer used and it becomes 
available to other applications, if needed. Otherwise, it can 
be turned off.  

Once the counter have reached the value N, the control 
unit goes to the SC_SETUP state and starts the stream 
cipher initialization (𝑠𝑡𝑎𝑟𝑡_𝑆𝐶 = ′1′). The FSM stays in this 
state for a time equal to 𝑇𝑆𝐶_𝑠𝑒𝑡𝑢𝑝 , needed for the stream 

cipher setup. 

Once the counter reaches N + 𝑇𝑆𝐶_𝑠𝑒𝑡𝑢𝑝, the initialization 

process is completed (𝑖𝑛𝑖𝑡_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 = ′1′). The stream 
cipher encrypts the data passing through the TDI and TDO 
terminals of the protected TDRs. The keystreams are 
generated only in the case in which the TAP controller is in 
the Shift-DR state and a protected TDR is selected by the 
instruction under execution. In the other cases, the 
encryption is not needed and the stream cipher is 
deactivated and it generates no keystream. 

During the SC_ENCRYPT state, when the tester wants 
to write into a protected TDR, at first it executes the GETIV 
instruction to read the IV, in order to encrypt data using the 
shared secret. After that, the tester executes the protected 
instruction, in order to access the corresponding TDR. The 
tester places the IC into Shift-DR state where the stream 
cipher generates the keystream. The tester shifts in the 
encrypted data, which are decrypted before being sent to the 
TDR. The tester places then the IC into the Exit-DR state, in 
which the stream cipher stops the keystream generation. At 
the end of the operations, the TDR contains the plaintext 
data.   

The initialization process cannot be interrupted. The 
control unit ensures the setup completion before any 
possible operations on the protected TDRs. If a circuit reset 
occurs, the control unit is reinitialized and the TRNG 
generates a new IV for the stream cipher. 

V. PERFORMANCE ANALYSIS  

In this section, we evaluate the security of the proposed 
solution and the implementation costs, measured employing 
the TRIVIUM [8] stream cipher. 

A. Security analysis 

Since the test communication is encrypted, the solution 
ensures that an untrusted third-party device in the test daisy-

chain is not able to sniff confidential data or to send 
undesired data to another device.  

Concerning the scan attacks, the stream cipher encrypts 
the scan chain content when the instruction INTEST is 
executed. The decryption of the scanned-in test data 
prevents to set desired values in the scan network without 
knowing the secret key. The encryption of the scanned-out 
test responses prevents to observe the internal states of the 
circuit under test without first performing the decryption. 
The stream cipher is initialized with a random IV preventing 
the exploitation of the two-time pad to perform a differential 
scan attack on encrypted test data, as is the case for the 
state-of-the-art stream-based countermeasures [5][9][10].  

When the encryption is performed on an IJTAG 
network, an attacker without the knowledge of the RSN 
configuration faces troubles to open or close the SIBs, due 
to the keystream XORed with the test data at the RSN input. 
Even if the attacker is able to configure the RSN in a chosen 
configuration, he or she is not able to send and read data 
related to confidential instruments, since the data shifted 
through the RSN go through the input decryption and the 
output encryption.  

When the test interface is used to configure a memory 
(e.g. for firmware updates), the encryption ensures that the 
content cannot be readable without knowing the secret key. 
Moreover, an attacker cannot update the firmware with a 
corrupted version due to the decryption performed on the 
data sent through the test interface. 

B. Implementation costs  

We have chosen to implement the TRIVIUM stream 
cipher in the proposed solution due to the low area 
overhead. The level of security that it guarantees is high 
enough for the target application. However, other stream 
ciphers can be used instead of TRIVIUM in the proposed 
infrastructure, especially if better stream ciphers will be 
developed in the future.  

We do not consider the cost of the TRNG in the 
experimental results. In the case where a TRNG is already 
implemented in the original circuit, the proposed 
countermeasure can exploit this TRNG during the 
initialization process, implying no cost overhead for the 
random number generation. As previously shown in Section 
IV, after the generation of the IV, the TRNG is no longer 
useful for the proposed solution, and it can be used by 
another application. On the other hand, if no TRNG is 
available in the circuit, the implementation implies an 
additional area cost. This is evaluated as 15 000 Gate 
Equivalents (GEs), as is the case of the TRNG from the 
Synopsys DesignWare IP library [12]. 

1) Area and test time overheads 
To evaluate the area overhead, we have considered a 

simple JTAG wrapper implementing a TAP controller, the 
IR, the BYP, and the IDCODE registers. As described in 
Section IV, the JTAG wrapper is modified to include the 
GETIV instruction and its associated register. Moreover, 
some modules are added in addition to the modified JTAG 
wrapper: the TRIVIUM stream cipher, the shift register 
containing the random IV and the control unit. Tab. 1 
reports the area cost of the proposed solution compared to 
the original JTAG wrapper, representing an area overhead 

 
Fig. 4 Finite State Machine controlling the initialization procedure 



of 500%. The solution is dedicated to large devices, such as 
SoC designs. For instance, the solution implemented on a 
LEON3 processor, whose area is 1 902 095 μm², increases 
the total area of 7 794 μm², i.e. a 0.41% overhead. 

Concerning the test time cost, the proposed solution 
introduces only an overhead due to the initialization process. 
This process takes 80 clock cycles to shift the random IV 
into the shift register, and 1152 clock cycles for the 
TRIVIUM setup. After this initialization process, the tester 
has to recover the IV executing the GETIV instruction before 
starting the encrypted test communication with the device. 
This corresponds to 80 clock cycles to shift out the content 
of the IV register. In addition to the time required to 
generate a random number, the solution implies a test time 
overhead of 1312 clock cycles at the beginning of a test 
procedure. This test time overhead has to be compared with 
the whole test sequence of the circuit. For instance, in the 
LEON3 processor, 11 612 051 clock cycles are needed to 
achieve a test coverage of 70%. Thus, the stream-based 
countermeasure introduces an overhead of only 0.01%, 
without considering the time to initialize the TRNG. 

2) Test coverage 
The stream cipher encryption of the JTAG interface does 

not affect the testing of the original circuit through the 
protected INTEST instruction. The test coverage of the 
whole circuit is not reduced. However, the architecture of 
the proposed solution must also be tested, without the help 
of scan chains that would expose the stream cipher to scan 
attacks. We propose to functionally test the cipher using the 
test data targeting the circuit under test.  

Stream ciphers based on shift registers, such as 
TRIVIUM, are easily testable, since all the states of the 
stream cipher are shifted out the circuit as a keystream. The 
consequence is that the errors generated by possible faults 
are easily propagated to the circuit outputs during the 
encryption. To validate this assumption, we have evaluated 
the test coverage on the TRIVIUM stream cipher using the 
test sequences of several original circuits. At scan-input, test 
patterns are processed by the input keystream generated by 
the stream cipher, and the test responses are processed by 
the output keystream. We have performed experiments with 
the test sequences targeting several cores (Pipelined AES-
256, Triple-DES, Pipelined AES-128, RSA 1024 and 
LEON3 processor). In all cases, the fault coverage for stuck-
at faults in the proposed architecture is 100%. 

VI. CONCLUSION 

Test interface gives the access to unauthorized users, 
enabling them to perform attacks. Moreover, malicious 

devices connected to the test daisy-chain can sniff and 
tamper test data. To prevent these threats, several solutions 
based on stream cipher encryption have been proposed. In 
this paper, we have present a secure JTAG interface based 
on stream cipher encryption. The stream cipher used for the 
encryption is initialized with a different random IV at each 
reset, preventing the generation of the same keystream 
twice. The content is encrypted with a secret key developed 
for the current activity, and shared with the authorized users 
employing the key management system already present in 
the circuit. The encryption is performed on the TDR content 
of a set of protected instructions, established by the 
designer. The protected instructions can include the ones 
accessing the scan chains, the IJTAG network, or updating 
the memory. This solution presents a marginal overhead on 
area and test time, and can be integrated in a SoC, without 
causing issues in testing the other cores connected to the test 
daisy-chain. 
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Modules Original JTAG 

(GEs) 

Proposed solution 

(GEs) 

JTAG wrapper 625  1 147 

TRIVIUM / 2 048 

IV Shift Register / 300 

Control Unit / 252 

Total 625 3 747 

Tab. 1 Area cost of the proposed countermeasure compared to the 

original JTAG wrapper 

 


