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The model problem

� Dead-oil porous media flow with (a lot of) simplifying assumptions

u+ λ(s)∇p = 0, (1a)
divu = q(t)δ0(x), (1b)

φ∂ts+ div(f(s)u) = q(t)δ0(x), (1c)

where Dirac source terms mimick a water injection at x = 0.
� Fractional flux formulation using Bucklet-Leverett’s law

f(s) = µ−1
w s2

µ−1
w s2 + µ−1

o (1− s)2 = Ms2

Ms2 + (1− s)2 ,

λ(s) = µ−1
w s2 + µ−1

o (1− s)2 [total mobility],

M = µo/µw [viscosity ratio].
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The IMPES semi-discretization in time

� The time stepping is implicit w.r.t. pressure, explicit w.r.t. saturation

un+1 + λ(sn)∇pn+1 = 0, (2a)

divun+1 = qn+1δ0(x), (2b)

φ
sn+1 − sn

∆t + div(f(sn)un+1) = qn+1δ0(x). (2c)

� Decoupling into an elliptic problem in pressure (2a)–(2b)

−div(λ(sn)∇pn+1) = qn+1δ0(x),

followed by a hyperbolic transport in saturation (2c).
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The 5-point discretization in space

� The domain Ω is divided into rectangles Ωij of uniform size

� The unknowns at the cell centers (i, j) are sn+1
i,j and pn+1

i,j , while those
at the edges σ = (i+ 1/2, j) and (i, j + 1/2) are fluxes

Fσ ≈ ±
∫
σ

un+1 · nσ
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Solving for pressure

� Equation un+1 + λ(sn)∇pn+1 = 0 is discretized as

Fi+1/2,j = λni+1/2,j
∆y
∆x (pn+1

i,j − p
n+1
i+1,j), (3a)

Fi,j+1/2 = λni,j+1/2
∆x
∆y (pn+1

i,j − p
n+1
i,j+1), (3b)

where λnσ stems from one’s favorite averaging procedure.
� Equation divun+1 = qn+1δ0 is discretized as

Fi+1/2,j − Fi−1/2,j + Fi,j+1/2 − Fi,j−1/2 = qn+1κ0,0(i, j). (4)

Plugging (3) into the flux balances (4) results in a linear system.
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Solving for saturation

� Equation φ s
n+1 − sn

∆t + div(f(sn)un+1) = qn+1δ0 is discretized as

φ
∆x∆y

∆t (sn+1
i,j − s

n
i,j) + (f(s)F )i+1/2,j − (f(s)F )i−1/2,j (5)

+ (f(s)F )i,j+1/2 − (f(s)F )i,j−1/2 = qn+1κ0,0(i, j)

� The fractional fluxes are upwinded by

(f(s)F )i+1/2,j = f(sni,j) [Fi+1/2,j ]+ + f(sni+1,j) [Fi+1/2,j ]−

(f(s)F )i,j+1/2 = f(sni,j) [Fi,j+1/2]+ + f(sni,j+1) [Fi,j+1/2]−

where [·]+ = max(·, 0) and [·]− = min(·, 0).

Karine LAURENT | FV schemes minimizing the GOE | InterPore 2019 - Valencia (SP) 6 / 23



The grid orientation effect

� The computed solution propagates faster along the axes of the grid.

M = 0.8 M = 200

� For M � 1, mathematical instabilities intrinsic to the model will amplify
this numerical error.
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Objectives

� The GOE issue is annoying for predicting production at wells.

� Alleviate the GOE. Make the front round again in an “cheap” way.
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The 9-point scheme: Principle of construction (1)

� Yanosik-McKracken (1979), Coats (1983), Potempa (1985),
Ding (1990) studied a class of schemes involving 4 diagonal cells

� The two diagonal fluxes Gθi+1/2,j+1/2 and Hθ
i+1/2,j+1/2 at vertex

(i+ 1/2, j + 1/2) do not correspond to any actual outgoing flux
±
∫
σ
u · n for any physical “edge” σ.
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The 9-point scheme: Principle of construction (2)

� To further decrease anisotropy, use two parameters instead of one. This
is possible thanks to a “smarter” definition of the diagonal fluxes.

� Every diagonal flux is a linear combination of horizontal and vertical
fluxes arising from the 5-point scheme.
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The 9-point discretization in space

� Horizontal and vertical fluxes

F̃ θ
i+1/2,j = (1− 4θx)Fi+1/2,j (6a)

F̃ θ
i,j+1/2 = (1− 4θy)Fi,j+1/2 (6b)

� Diagonal fluxes

G̃θ
i+1/2,j+1/2 = θyFi,j+1/2 + θxFi+1/2,j+1+θxFi+1/2,j + θyFi+1,j+1/2

H̃θ
i−1/2,j+1/2 = θyFi,j+1/2 − θxFi−1/2,j+1−θxFi−1/2,j + θyFi−1,j+1/2 (6c)

� The free parameters θ = (θx, θy) ∈ [0, 1/4]2 are to be tuned later.

Karine LAURENT | FV schemes minimizing the GOE | InterPore 2019 - Valencia (SP) 11 / 23



Solving for pressure

� Equation −div(λ(sn)∇pn+1) = qn+1δ0 is discretized as

F̃ θ
i+1/2,j − F̃

θ
i−1/2,j + F̃ θ

i,j+1/2 − F̃
θ
i,j−1/2

+ G̃θ
i+1/2,j+1/2 − G̃

θ
i−1/2,j−1/2

+ H̃θ
i−1/2,j+1/2 − H̃

θ
i+1/2,j−1/2 = qn+1κ0,0(i, j). (7)

� Plugging (6) into the flux balances (7) yields a linear system.
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Solving for saturation

� Equation φ s
n+1 − sn

∆t + div(f(sn)un+1) = qn+1δ0 is discretized as

φ
∆x∆y

∆t (sn+1
i,j − s

n
i,j) + (f(s)F̃ )θ

i+1/2,j − (f(s)F̃ )θ
i−1/2,j (8)

+ (f(s)F̃ )θ
i,j+1/2 − (f(s)F̃ )θ

i,j−1/2

+ (f(s)G̃)θ
i+1/2,j+1/2 − (f(s)G̃)θ

i−1/2,j−1/2

+ (f(s)H̃)θ
i−1/2,j+1/2 − (f(s)H̃)θ

i+1/2,j−1/2 = qn+1κ0,0(i, j)

� The fractional fluxes are upwinded by

(f(s)G̃)θ
i+1/2,j+1/2 = f(sni,j) [G̃θ

i+1/2,j+1/2]+ + f(sni+1,j+1) [G̃θ
i+1/2,j+1/2]−

(f(s)H̃)θ
i−1/2,j+1/2 = f(sni,j) [H̃θ

i−1/2,j+1/2]+ + f(sni−1,j+1) [H̃θ
i−1/2,j+1/2]−

Karine LAURENT | FV schemes minimizing the GOE | InterPore 2019 - Valencia (SP) 13 / 23



Principle of optimization

1. Quantify the anisotropy of the numerical error along each direction, by
means of Fourier analysis or equivalent modified equation

2. Introduce an ideal behavior of this angular error, declared to be the
“least anisotropic” one.

3. Minimize the total discrepancy over all direction between the angular
error of the scheme and that of the ideal one.

� Do not seek to achieve higher-order accuracy, but simply to alter the
distribution of angular error.
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Equivalent modified equation

� Neglect the effect of averaging λnσ, focus on the limit ∆t→ 0, carry out
Taylor expansions at (i∆x, j∆y), switch to polar coordinates (r, ϕ).

� The saturation transport scheme is a second-order approximation of

φ∂ts+ div(f(s)u) =
(
r−1∂r(r·), r−1∂ϕ

){
f ′(s)D̃θ

∆x,∆y(ϕ)
(

∂r
r−1∂ϕ

)
s

}
,

where the diffusion matrix in polar coordinates reads

D̃θ
∆x,∆y(ϕ) =

[
Ãθ

∆x,∆y(ϕ) B̃θ
∆x,∆y(ϕ)

B̃θ
∆x,∆y(ϕ) C̃θ

∆x,∆y(ϕ)

]
.

� The first diagonal entry Ãθ
∆x,∆y(ϕ) reflects the longitudinal diffusion in

the direction of the current location.
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Properties of the angular error

� Let ϕθ
• = arctan(θx∆y/θy∆x) be the transition angle, where the stencil

for saturation changes due to upwinding.
� If 0 ≤ ϕ ≤ ϕθ

• ,

Ãθ
∆x,∆y(ϕ) = ∆x

2 cos3 ϕ+ ∆y
2 (1− 4θy) sin3 ϕ

+ 2∆y
(

2θy
∆x
∆y + θx

∆y
∆x

)
cosϕ sin2 ϕ

If ϕθ
• ≤ ϕ ≤ π/2,

Ãθ
∆x,∆y(ϕ) = ∆y

2 sin3 ϕ+ ∆x
2 (1− 4θx) cos3 ϕ

+ 2∆x
(

2θx
∆y
∆x + θy

∆x
∆y

)
sinϕ cos2 ϕ
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Least anistropic behavior

� For all θ ∈ [0, 1/4]2,
� Ãθ

∆x,∆y is a continuous, piecewise differentiable function of ϕ ∈ [0, π/2].
� Ãθ

∆x,∆y(ϕ) is of first-order in ∆x and ∆y.
� Ãθ

∆x,∆y(0) = ∆x/2 and Ãθ
∆x,∆y(π/2) = ∆y/2 do not depend on θ.

� The ideal behavior is declared to be affine in sin2ϕ, i.e.,

A∗∆x,∆y(ϕ) = ∆x
2 cos2ϕ+ ∆y

2 sin2ϕ
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Minimize the total discrepancy

� Exact minimization: find

θ∗ = arg min
θ∈[0,1/4]2

∫ π/2

0
|Ãθ

∆x,∆y(ϕ)−A∗∆x,∆y(ϕ)|2 2 sinϕ cosϕ dϕ.

Optimal but slighlty tedious to compute.
� Approximate minimization: find θ[ = (θ[x, θ[y) ∈ [0, 1/4]2 such that

ϕθ[

• is as close to π/4 as possible,
Ãθ[

∆x,∆y(ϕθ[

• ) = A∗∆x,∆y(ϕθ[

• ).

The closer ϕθ[

• is to π/4, the better.
� For 2/7 ≤ ∆y/∆x ≤ 7/2, it is possible to prescribe ϕθ[

• = π/4 without
violating the constraint θ[ ∈ [0, 1/4]2.
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Choice of suboptimal parameters

Let z = ∆y
∆x . Set

ω(z) =


7
2z if z ≤ 2

7 ,

1 if 2
7 ≤ z ≤

7
2 ,

2
7z if z ≥ 7

2

Then, the recommended values for θ[ are

θ[x =
(1 + ω2(z)z)

√
1 + ω2(z)− (1 + ω3(z)z)

8ω(z)z

θ[y =
(1 + ω2(z)z)

√
1 + ω2(z)− (1 + ω3(z)z)

8ω2(z)
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5-point vs. 9-point (1)

∆y/∆x = 1, M = 200
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5-point vs. 9-point (2)

∆y/∆x = 1/3, M = 200
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5-point vs. 9-point (3)

∆y/∆x = 1/5, M = 200
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Conclusion

� Revisited an old scheme with new insights and proposed a quantitative
approach by clarifying the notion of least anistropic behavior.

� Incorporated more sophisticated physical effects such as heterogeneous
permeabilities, capillary pressure and gravity.

� Extended this optimization strategy to other transport schemes, in
particular that of Keilegavlen-Kozdon-Mallison (2012) where the
tuning degree of freedom is a function.
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