Design of finite volume schemes minimizing the grid orientation effect in reservoir simulation

InterPore 2019 - Valencia (SP)

 $\label{eq:constraint} \frac{\text{Karine LAURENT}^{\dagger}, \text{ Quang Huy TRAN}^{\dagger}, \text{ Christophe BERTHON}^{\ddagger}, \\ \text{Eric FLAURAUD}^{\dagger}, \text{ Christophe PREUX}^{\dagger}$

The model problem

Dead-oil porous media flow with (a lot of) simplifying assumptions

$$\boldsymbol{u} + \lambda(s)\boldsymbol{\nabla} p = \boldsymbol{0},\tag{1a}$$

$$\operatorname{div} \boldsymbol{u} = q(t)\delta_{\boldsymbol{0}}(\boldsymbol{x}), \tag{1b}$$

$$\phi \,\partial_t s + \operatorname{div}(f(s)\boldsymbol{u}) = q(t)\delta_{\boldsymbol{0}}(\boldsymbol{x}),\tag{1c}$$

where Dirac source terms mimick a water injection at x = 0.
Fractional flux formulation using Bucklet-Leverett's law

$$\begin{split} f(s) &= \frac{\mu_w^{-1} s^2}{\mu_w^{-1} s^2 + \mu_o^{-1} (1-s)^2} = \frac{M s^2}{M s^2 + (1-s)^2},\\ \lambda(s) &= \mu_w^{-1} s^2 + \mu_o^{-1} (1-s)^2 \qquad \text{[total mobility]},\\ M &= \mu_o / \mu_w \qquad \text{[viscosity ratio]}. \end{split}$$

The IMPES semi-discretization in time

The time stepping is *implicit* w.r.t. pressure, *explicit* w.r.t. saturation

$$\boldsymbol{u}^{n+1} + \lambda(s^n) \boldsymbol{\nabla} p^{n+1} = \boldsymbol{0}, \tag{2a}$$

$$\operatorname{div} \boldsymbol{u}^{n+1} = q^{n+1} \delta_{\boldsymbol{0}}(\boldsymbol{x}), \qquad (2\mathsf{b})$$

$$\phi \, \frac{s^{n+1} - s^n}{\Delta t} + \operatorname{div}(f(s^n)\boldsymbol{u}^{n+1}) = q^{n+1}\delta_{\boldsymbol{0}}(\boldsymbol{x}). \tag{2c}$$

Decoupling into an elliptic problem in pressure (2a)–(2b)

$$-\operatorname{div}(\lambda(s^n)\boldsymbol{\nabla}p^{n+1}) = q^{n+1}\delta_{\mathbf{0}}(\boldsymbol{x}),$$

followed by a hyperbolic transport in saturation (2c).

The 5-point discretization in space

The domain Ω is divided into rectangles Ω_{ij} of *uniform* size

The unknowns at the cell centers (i, j) are $s_{i,j}^{n+1}$ and $p_{i,j}^{n+1}$, while those at the edges $\sigma = (i + 1/2, j)$ and (i, j + 1/2) are fluxes

$$F_{\sigma} \approx \pm \int_{\sigma} u^{n+1} \cdot n_{\sigma}$$

Solving for pressure

Equation $u^{n+1} + \lambda(s^n) \nabla p^{n+1} = 0$ is discretized as

$$F_{i+1/2,j} = \lambda_{i+1/2,j}^n \frac{\Delta y}{\Delta x} (p_{i,j}^{n+1} - p_{i+1,j}^{n+1}),$$
(3a)

$$F_{i,j+1/2} = \lambda_{i,j+1/2}^{n} \frac{\Delta x}{\Delta y} \left(p_{i,j}^{n+1} - p_{i,j+1}^{n+1} \right), \tag{3b}$$

where λ_{σ}^{n} stems from one's favorite averaging procedure. Equation div $u^{n+1} = q^{n+1}\delta_{0}$ is discretized as

$$F_{i+1/2,j} - F_{i-1/2,j} + F_{i,j+1/2} - F_{i,j-1/2} = q^{n+1} \kappa_{0,0}(i,j).$$
(4)

Plugging (3) into the flux balances (4) results in a linear system.

Solving for saturation

• Equation
$$\phi \frac{s^{n+1} - s^n}{\Delta t} + \operatorname{div}(f(s^n)\boldsymbol{u}^{n+1}) = q^{n+1}\delta_0$$
 is discretized as

$$\phi \frac{\Delta x \Delta y}{\Delta t} (s_{i,j}^{n+1} - s_{i,j}^n) + (f(s)F)_{i+1/2,j} - (f(s)F)_{i-1/2,j}$$

$$+ (f(s)F)_{i,j+1/2} - (f(s)F)_{i,j-1/2} = q^{n+1} \kappa_{0,0}(i,j)$$
(5)

The fractional fluxes are upwinded by

$$(f(s)F)_{i+1/2,j} = f(s_{i,j}^n) [F_{i+1/2,j}]^+ + f(s_{i+1,j}^n) [F_{i+1/2,j}]^-$$
$$(f(s)F)_{i,j+1/2} = f(s_{i,j}^n) [F_{i,j+1/2}]^+ + f(s_{i,j+1}^n) [F_{i,j+1/2}]^-$$

where $[\cdot]^+ = \max(\cdot, 0)$ and $[\cdot]^- = \min(\cdot, 0)$.

The grid orientation effect

The computed solution propagates faster along the axes of the grid.

M = 200

Water_saturation 0,00 0,25 0,5 0,75 1,00

For $M \gg 1$, mathematical instabilities intrinsic to the model will amplify this numerical error.

Objectives

The GOE issue is annoying for predicting production at wells.

Alleviate the GOE. *Make the front round again* in an "cheap" way.

The 9-point scheme: Principle of construction (1)

YANOSIK-MCKRACKEN (1979), COATS (1983), POTEMPA (1985), DING (1990) studied a class of schemes involving 4 diagonal cells

The two diagonal fluxes $G_{i+1/2,j+1/2}^{\theta}$ and $H_{i+1/2,j+1/2}^{\theta}$ at vertex (i+1/2, j+1/2) do not correspond to any actual outgoing flux $\pm \int_{\sigma} \boldsymbol{u} \cdot \boldsymbol{n}$ for any physical "edge" σ .

The 9-point scheme: Principle of construction (2)

To further decrease anisotropy, use two parameters instead of one. This is possible thanks to a "smarter" definition of the diagonal fluxes.

• Every diagonal flux is a linear combination of horizontal and vertical fluxes arising from the 5-point scheme.

The 9-point discretization in space

Horizontal and vertical fluxes

$$\widetilde{F}_{i+1/2,j}^{\theta} = (1 - 4\theta_x)F_{i+1/2,j}$$
(6a)
$$\widetilde{F}_{i,j+1/2}^{\theta} = (1 - 4\theta_y)F_{i,j+1/2}$$
(6b)

Diagonal fluxes

$$\widetilde{G}_{i+1/2,j+1/2}^{\theta} = \theta_y F_{i,j+1/2} + \theta_x F_{i+1/2,j+1} + \theta_x F_{i+1/2,j} + \theta_y F_{i+1,j+1/2}$$

$$\widetilde{H}_{i-1/2,j+1/2}^{\theta} = \theta_y F_{i,j+1/2} - \theta_x F_{i-1/2,j+1} - \theta_x F_{i-1/2,j} + \theta_y F_{i-1,j+1/2}$$
(6c)

• The free parameters $\theta = (\theta_x, \theta_y) \in [0, 1/4]^2$ are to be tuned later.

Solving for pressure

Equation $-\operatorname{div}(\lambda(s^n) \nabla p^{n+1}) = q^{n+1} \delta_0$ is discretized as

$$\widetilde{F}_{i+1/2,j}^{\theta} - \widetilde{F}_{i-1/2,j}^{\theta} + \widetilde{F}_{i,j+1/2}^{\theta} - \widetilde{F}_{i,j-1/2}^{\theta} + \widetilde{G}_{i+1/2,j+1/2}^{\theta} - \widetilde{G}_{i-1/2,j-1/2}^{\theta} + \widetilde{H}_{i-1/2,j+1/2}^{\theta} - \widetilde{H}_{i+1/2,j-1/2}^{\theta} = q^{n+1} \kappa_{0,0}(i,j).$$
(7)

Plugging (6) into the flux balances (7) yields a linear system.

Solving for saturation

• Equation
$$\phi \frac{s^{n+1} - s^n}{\Delta t} + \operatorname{div}(f(s^n)u^{n+1}) = q^{n+1}\delta_0$$
 is discretized as

$$\phi \frac{\Delta x \Delta y}{\Delta t} (s_{i,j}^{n+1} - s_{i,j}^{n}) + (f(s)\widetilde{F})_{i+1/2,j}^{\theta} - (f(s)\widetilde{F})_{i-1/2,j}^{\theta}$$

$$+ (f(s)\widetilde{F})_{i,j+1/2}^{\theta} - (f(s)\widetilde{F})_{i,j-1/2}^{\theta}$$

$$+ (f(s)\widetilde{G})_{i+1/2,j+1/2}^{\theta} - (f(s)\widetilde{G})_{i-1/2,j-1/2}^{\theta}$$

$$+ (f(s)\widetilde{H})_{i-1/2,j+1/2}^{\theta} - (f(s)\widetilde{H})_{i+1/2,j-1/2}^{\theta} = q^{n+1}\kappa_{0,0}(i,j)$$
(8)

The fractional fluxes are upwinded by

$$\begin{split} (f(s)\widetilde{G})^{\theta}_{i+1/2,j+1/2} &= f(s^n_{i,j}) \, [\widetilde{G}^{\theta}_{i+1/2,j+1/2}]^+ + f(s^n_{i+1,j+1}) \, [\widetilde{G}^{\theta}_{i+1/2,j+1/2}]^- \\ (f(s)\widetilde{H})^{\theta}_{i-1/2,j+1/2} &= f(s^n_{i,j}) \, [\widetilde{H}^{\theta}_{i-1/2,j+1/2}]^+ + f(s^n_{i-1,j+1}) \, [\widetilde{H}^{\theta}_{i-1/2,j+1/2}]^- \end{split}$$

Principle of optimization

- 1. Quantify the anisotropy of the numerical error along each direction, by means of Fourier analysis or equivalent modified equation
- 2. Introduce an ideal behavior of this angular error, declared to be the "least anisotropic" one.
- 3. Minimize the total discrepancy over all direction between the angular error of the scheme and that of the ideal one.
 - Do not seek to achieve higher-order accuracy, but simply to alter the distribution of angular error.

Equivalent modified equation

- Neglect the effect of averaging λ_{σ}^n , focus on the limit $\Delta t \to 0$, carry out Taylor expansions at $(i\Delta x, j\Delta y)$, switch to polar coordinates (r, φ) .
- The saturation transport scheme is a second-order approximation of

$$\phi\partial_t s + \operatorname{div}(f(s)\boldsymbol{u}) = \left(r^{-1}\partial_r(r\cdot), r^{-1}\partial_\varphi\right) \left\{ f'(s)\widetilde{\mathbf{D}}^{\boldsymbol{\theta}}_{\Delta x, \Delta y}(\varphi) \begin{pmatrix} \partial_r \\ r^{-1}\partial_\varphi \end{pmatrix} s \right\},\$$

where the diffusion matrix in polar coordinates reads

$$\widetilde{\mathbf{D}}_{\Delta x,\Delta y}^{\boldsymbol{\theta}}(\varphi) = \begin{bmatrix} \widetilde{A}_{\Delta x,\Delta y}^{\boldsymbol{\theta}}(\varphi) & \widetilde{B}_{\Delta x,\Delta y}^{\boldsymbol{\theta}}(\varphi) \\ \widetilde{B}_{\Delta x,\Delta y}^{\boldsymbol{\theta}}(\varphi) & \widetilde{C}_{\Delta x,\Delta y}^{\boldsymbol{\theta}}(\varphi) \end{bmatrix}.$$

The first diagonal entry $\widetilde{A}^{\theta}_{\Delta x, \Delta y}(\varphi)$ reflects the longitudinal diffusion in the direction of the current location.

Properties of the angular error

Let φ^θ_• = arctan(θ_xΔy/θ_yΔx) be the transition angle, where the stencil for saturation changes due to upwinding.
 If 0 ≤ φ ≤ φ^θ_•,

$$\widetilde{A}^{\boldsymbol{\theta}}_{\Delta x,\Delta y}(\varphi) = \frac{\Delta x}{2} \cos^3 \varphi + \frac{\Delta y}{2} (1 - 4\theta_y) \sin^3 \varphi + 2\Delta y \left(2\theta_y \frac{\Delta x}{\Delta y} + \theta_x \frac{\Delta y}{\Delta x} \right) \cos \varphi \sin^2 \varphi$$

If $\varphi_{\bullet}^{\theta} \leq \varphi \leq \pi/2$,

$$\widetilde{A}^{\boldsymbol{\theta}}_{\Delta x,\Delta y}(\varphi) = \frac{\Delta y}{2} \sin^3 \varphi + \frac{\Delta x}{2} (1 - 4\theta_x) \cos^3 \varphi + 2\Delta x \left(2\theta_x \frac{\Delta y}{\Delta x} + \theta_y \frac{\Delta x}{\Delta y} \right) \sin \varphi \cos^2 \varphi$$

Least anistropic behavior

For all $\boldsymbol{\theta} \in [0, 1/4]^2$,

- $\widetilde{A}^{\boldsymbol{\theta}}_{\overset{\sim}{\sim} x, \Delta y}$ is a continuous, piecewise differentiable function of $\varphi \in [0, \pi/2]$.
- $\widetilde{A}^{\theta}_{\Delta x, \Delta y}(\varphi)$ is of first-order in Δx and Δy .
- $\widetilde{A}^{\boldsymbol{\theta}}_{\Delta x,\Delta y}(0) = \Delta x/2$ and $\widetilde{A}^{\boldsymbol{\theta}}_{\Delta x,\Delta y}(\pi/2) = \Delta y/2$ do *not* depend on $\boldsymbol{\theta}$.
- **The ideal behavior is declared to be affine in \sin^2 \varphi, i.e.,**

$$A^*_{\Delta x,\Delta y}(\varphi) = \frac{\Delta x}{2} \mathrm{cos}^2 \varphi + \frac{\Delta y}{2} \mathrm{sin}^2 \varphi$$

Minimize the total discrepancy

Exact minimization: find

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta} \in [0, 1/4]^2} \int_0^{\pi/2} |\widetilde{A}^{\boldsymbol{\theta}}_{\Delta x, \Delta y}(\varphi) - A^*_{\Delta x, \Delta y}(\varphi)|^2 \ 2 \sin\varphi \cos\varphi \ \mathrm{d}\varphi.$$

Optimal but slighlty tedious to compute.

Approximate minimization: find ${m heta}^{\flat}=(heta_x^{\flat}, heta_y^{\flat})\in [0,1/4]^2$ such that

$$\begin{split} \varphi_{\bullet}^{\theta^{\flat}} & \text{is as close to } \pi/4 \text{ as possible}, \\ \widetilde{A}_{\Delta x,\Delta y}^{\theta^{\flat}}(\varphi_{\bullet}^{\theta^{\flat}}) = A_{\Delta x,\Delta y}^{*}(\varphi_{\bullet}^{\theta^{\flat}}). \end{split}$$

The closer $\varphi_{\bullet}^{\theta^{\flat}}$ is to $\pi/4$, the better.

For $2/7 \le \Delta y / \Delta x \le 7/2$, it is possible to prescribe $\varphi_{\bullet}^{\theta^{\flat}} = \pi/4$ without violating the constraint $\theta^{\flat} \in [0, 1/4]^2$.

Choice of suboptimal parameters

Let
$$z = \frac{\Delta y}{\Delta x}$$
. Set

$$\omega(z) = \begin{cases} \frac{7}{2}z & \text{if } z \leq \frac{2}{7}, \\ 1 & \text{if } \frac{2}{7} \leq z \leq \frac{7}{2}, \\ \frac{2}{7}z & \text{if } z \geq \frac{7}{2} \end{cases}$$

Then, the recommended values for ${m heta}^{lat}$ are

$$\theta_x^{\flat} = \frac{(1+\omega^2(z)z)\sqrt{1+\omega^2(z)} - (1+\omega^3(z)z)}{8\omega(z)z}$$
$$\theta_y^{\flat} = \frac{(1+\omega^2(z)z)\sqrt{1+\omega^2(z)} - (1+\omega^3(z)z)}{8\omega^2(z)}$$

5-point vs. 9-point (1)

 $\Delta y/\Delta x = 1, M = 200$

0,00 0,25 0,5 0,75 1,

5-point vs. 9-point (2)

 $\Delta y/\Delta x = 1/3, M = 200$

5-point vs. 9-point (3)

 $\Delta y/\Delta x = 1/5, M = 200$

Conclusion

- Revisited an old scheme with new insights and proposed a quantitative approach by clarifying the notion of least anistropic behavior.
- Incorporated more sophisticated physical effects such as heterogeneous permeabilities, capillary pressure and gravity.
- Extended this optimization strategy to other transport schemes, in particular that of KEILEGAVLEN-KOZDON-MALLISON (2012) where the tuning degree of freedom is a function.