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a b s t r a c t 

The flow of shear-thinning fluids through unconsolidated porous media is present in a number of impor- 

tant industrial applications such as soil depollution, Enhanced Oil Recovery or filtration of polymeric liq- 

uids. Therefore, predicting the pressure drop–flow rate relationship in model porous media has been the

scope of major research efforts during the last decades. Although the flow of Newtonian fluids through

packs of spherical particles is well understood in most cases, much less is known regarding the flow of

shear-thinning fluids as high molecular weight polymer aqueous solutions. In particular, the experimen- 

tal data for the non-Darcian flow of shear-thinning fluids are scarce and so are the current approaches

for their prediction. Given the relevance of non-Darcian shear-thinning flow, the scope of this work is to

perform an experimental study to systematically evaluate the effects of fluid shear rheology on the flow

rate–pressure drop relationships for the non-Darcian flow through different packs of glass spheres. To do

so, xanthan gum aqueous solutions with different polymer concentrations are injected through four packs

of glass spheres with uniform size under Darcian and inertial flow regimes. A total of 1560 experimen- 

tal data are then compared with predictions coming from different methods based on the extension of

widely used Ergun’s equation and Forchheimer’s law to the case of shear thinning fluids, determining the

accuracy of these predictions. The use of a proper definition for Reynolds number and a realistic model to

represent the rheology of the injected fluids results in the porous media are shown to be key aspects to

successfully predict pressure drop–flow rate relationships for the inertial shear-thinning flow in packed

beads.

1. Introduction

Diverse industrial applications involve the flow of shear- 

thinning fluids in porous media, including soil remediation, filtra- 

tion of polymeric liquids and slurries, oil recovery and CO 2 un- 

derground storage ( Fourar et al., 2004; Fayed et al., 2016 ). In par- 

ticular, shear-thinning fluids are commonly injected in Enhanced 

Oil Recovery (EOR) to reduce the amount of unrecovered oil af- 

ter waterflooding by reducing mobility in high-permeability layers 

and creating a transverse pressure gradient that promotes fluid mi- 

gration into less permeable layers ( Silva et al., 2012 ). Most of the 

heavy oil reservoirs belong to unconsolidated formations ( Pang and 

Liu, 2013 ). Therefore, predicting the relationships between flow 
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rate and pressure drop for shear-thinning fluids flow in unconsoli- 

dated porous media is of vital importance and has been the scope 

of major research efforts ( Chhabra and Srinivas, 1991; Rao and 

Chhabra, 1993; Smit and du Plessis, 1997; Tiu et al., 1997; Machac 

et al., 1998; Chhabra et al., 2001 ). The flow of shear-thinning flu- 

ids through beds of spherical particles represents an idealization 

of many industrially important processes as those mentioned be- 

fore ( Tiu et al., 1997 ). For this reason, most of the experimental 

works have been conducted with beds of spherical particles ( Rao 

and Chhabra, 1993; Tiu et al., 1997; Machac et al., 1998 ). 

The objective of this work is to experimentally assess the ef- 

ficiency of the commonly used Forchheimer’s law and Ergun’s 

equation to predict pressure drop–flow rate relationship for non- 

Darcian flow regime in the case of shear-thinning fluids injected 

through model unconsolidated porous media. In order to achieve 

this goal, xanthan gum biopolymer aqueous solutions were in- 

jected through different packs of spherical glass beads covering 
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Darcian and non-Darcian flow regimes. The effect of polymer con- 

centration and the beads size on the importance of inertial effects 

and the accuracy of these predictions is evaluated and discussed. 

It should be noted that elongational flows during the injection 

of solutions of polymers presenting a certain degree of flexibility 

through porous media are known to induce extra pressure losses 

with respect to pure shear flow ( Rodríguez et al., 1993; Müller 

and Sáez, 1999; Nguyen and Kausch, 1999; Seright et al., 2011; 

Amundarain et al., 2009 ). These extra pressure losses were at- 

tributed to the formation of transient entanglements of polymer 

molecules due to the action of the extensional component of the 

flow. In the present work, we first hypothesize that the devia- 

tion of the experimentally measured pressure drop with respect 

to the linear pressure drop predicted from the shear viscosity of 

the fluid can be explained in terms of inertial effects generated in 

the porous medium flow. This hypothesis is then validated through 

analysis of the experimental results. 

2. Background

Single-phase flow of incompressible Newtonian fluids through 

porous media is governed by Darcy’s law ( Darcy, 1856 ). Never- 

theless, this law is only valid when inertial forces are negligi- 

ble compared to viscous forces ( Schneebeli, 1955; Hubbert, 1956; 

Scheidegger, 1960; Chauveteau and Thirriot, 1967 ). This is not 

the case of many situations where the inertial effects are impor- 

tant, e.g. prediction of well performance ( Zen and Grigg, 2006 ) 

and flow through fractured media ( Radilla et al., 2013 ). In the 

post-Darcy regime, two equations are invariably used to describe 

pressure drop as a function of flow rate ( Dukhan et al., 2014 ): 

Forcheimer’s equation ( Forchheimer, 1901 ) and Ergun’s equation 

( Ergun, 1952 ). Forchheimer’s empirical law is commonly used to 

model the strong inertial regime through addition of a quadratic 

flow rate term to Darcy’s law to describe the deviations from lin- 

earity and. This law has been experimentally validated ( Dullien and 

Azzam, 1973; Geertsma, 1974; MacDonald et al., 1979; Rasoloari- 

jaona and Auriault, 1994 ) and has found some theoretical justifica- 

tions ( Cvetkovic, 1986; Giorgi, 1997; Chen et al., 2001 ). This law is 

often expressed in terms of the form-and-inertia drag coefficient F , 

also known as the Forchheimer coefficient ( Dukhan et al., 2014 ): 

∇P = 

�P

L 
= 

μ

K 

u + 

ρF √ 

K 

u 

2 = 

μ

K 

u + ρβu 

2 (1)

where ∇P = 

�P 
L is the pressure gradient, �P is the absolute value 

of the pressure drop over a distance L , μ the viscosity of the in- 

jected fluid, K is the intrinsic permeability, ρ is the fluid density, 

β is the inertial coefficient, u = Q / S is the average velocity, Q is the 

volumetric flow rate and S is the cross-sectional area. 

F depends on the internal structure of the porous medium and 

was reported to be universal for a given class of porous media 

( Hwang et al., 2002; Liu et al., 2006; Dukhan and Patel, 2011 ), 

which is not in agreement with the experimental results of some 

researchers ( Beavers et al., 1973 ; Antohe et al., 1996 ; Lage and 

Antohe, 20 0 0; Dukhan et al., 2014 ). Also, the ratio β = 

F √ 

K 
de- 

pends on the structure and may contain information on tortuosity 

( Dukhan et al., 2014 ). 

Fourar et al. (2004) performed numerical simulations to ex- 

amine the viscous and pressure drags exerted by the solid grain 

on the fluid and their contribution to the deviation from Darcy’s 

law in 2D and 3D porous media, identifying three laminar flow 

regimes: Darcy, transition and strong inertia. These authors found 

that the transition regime is narrower in the case of 3D porous me- 

dia, which explains that the non-Darcy 3D-flow is correctly mod- 

eled by Forchheimer’s equation in most cases without addition of 

a cubic deviation to represent the transition regime where cross 

viscous-inertia effects are significant ( Fourar et al., 2004 ). 

Ergun’s equation is also widely used to link the relationship be- 

tween pressure drop and flow rate to the structural characteristics 

of porous media ( Ergun, 1952 ): 

�P 

L 
= A 

( 1 − ε ) 2 μ

ε 3 d 2 s 

u + B 

( 1 − ε ) ρ

ε 3 d s 
u 

2 (2) 

where ε is porosity, d s is the diameter of the packed particles, and 

A and B are empirical constants. In the case of spherical parti- 

cles, the two most commonly used values for A are 150 and 180 

( Rao and Chhabra, 1993 ). B = 1.75 was originally proposed by Ergun 

( Ergun, 1952 ), but other values ranging from 1.8 to 4, depending on 

the roughness of the packed particles were subsequently reported 

( MacDonald et al., 1979 ). The construction of Ergun’s equation was 

based on modeling the space between packed spheres as parallel 

capillaries, including multipliers to account for the geometrical dif- 

ferences ( Klumpp et al., 2014; Dukhan et al., 2014 ). The range of 

applicability of this equation covers from creeping (Darcy) to tur- 

bulent flows. Both Forcheimer’s law and Ergun equation are widely 

used to correlate pressure drop data. They both have a viscous lin- 

ear term and a form/inertia quadratic term, but differ by multipli- 

ers. Dukhan et al. (2014) explored this difference and reconciled 

both equations in the case of Newtonian flow. 

On the basis of the hydraulic radius theory, Kozeny–Carman 

equation provides the following relation between permeability and 

structural parameters in packed beds of spheres: 

K = 

ε 3 d 2 s 

36 κ( 1 − ε ) 2 
(3) 

where κ is the Kozeny–Carman constant, which is commonly taken 

as identically 5 for spherical particles ( Kaviany, 1995 ). K can be 

predicted from ε and d s using Eq. (3) . 

The relationships between �P and Q data are often presented 

in a non-dimensional form involving two non-dimensional groups: 

friction factor f and Reynolds number Re . The square root of the 

permeability determined in the Darcy regime was shown to be 

the most appropriate length scale for the definition of Re and f 

( Dybbs and Edwards, 1984; Kececioglu and Jiang, 1994; Boomsma 

and Poulikakos, 2002; Dukhan et al., 2014 ), giving the following 

expressions: 

f = 

�P

L 

√ 

K 

ρu 

2 
(4) 
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ρu
√ 

K 

μ
(5) 

Dybbs and Edwards (1984) obtained the following expression 

through correlation of experimental data for packed beads: 

f = a 

(
1 

Re 

)
+ b (6) 

with a and b being constants. From Eqs. (2) and ( 3 ) the values of 

a = A /(36 κ) and b = B /(6 ε3/2 
√ 

κ) are obtained, whereas the follow- 

ing expression is obtained from Forchheimer’s law ( Eq. (1 )): 

f = 

(
1 

Re 

)
+ F (7) 

The flow of Newtonian fluids through packed beads is well 

understood and allows process design calculations with accept- 

able levels of accuracy in most cases ( Chhabra et al., 2001 ). How- 

ever, much less is known about the flow of non-Newtonian flu- 

ids as high molecular weight polymer solutions. A review of non- 

Newtonian fluid flow and heat transfer in porous media was pre- 

sented by Shenoy (1994 ), revealing that most concerned studies 

were restricted to Darcian flow. Also, Chhabra et al. (2001) re- 

viewed the voluminous literature available on the flow of com- 

plex fluids through unconsolidated fixed and fluidized beds. More- 

over, Sochi (2010) presented a review of continuum models, bun- 

dle of tubes models, numerical methods and pore-scale network 
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modeling in the context of single-phase flow of non-Newtonian 

fluids in porous media. 

It can be deduced from the literature that considerable con- 

fusion exists regarding the definition of Re and f for the flow of 

shear-thinning fluids in porous media ( Chhabra and Srinivas, 1991; 

Rao and Chhabra, 1993 ; Sabiri and Comiti, 1995 ; Tiu et al., 1997; 

Machac et al., 1998; Chhabra et al., 2001, Broniarz-Press et al., 

20 07; Amundarain et al., 20 09, Fayed et al., 2016 ). In this respect, 

some researchers have highlighted the importance of using the ac- 

tual shear viscosity of the fluid, which depends on the injection 

flow rate in the case of shear-thinning fluids, in the definition of 

Re ( Chhabra et al., 2001; Broniarz-Press et al., 2007; Fayed et al., 

2016 ). 

Another significant challenge consisted in extending the exist- 

ing macroscopic laws originally developed for Newtonian fluids to 

the case of non-Newtonian fluids flow. In this regard, Christopher 

and Middleman (1965) extended the Blake–Kozeny model to the 

flow of power-law fluids. Furthermore, Bird et al. (1987) used 

the single-capillary model to demonstrate that Darcy’s law is also 

valid in the case of non-Newtonian fluids and Chhabra and Srini- 

vas (1991) concluded from their experiments that Ergun’s equation 

successfully predicts the pressure loss through packed beads for 

the creeping flow of shear-thinning fluids. Also, Shah and Yortsos 

(1995) used homogenization theory to show that a macroscopic 

law based on the single-capillary model applies to the single- 

phase flow of power-law fluids in porous media at low values 

of Reynolds number. Later, using stochastic homogenization, Fadili 

et al. (2002) presented a formula for up-scaling isotropic Darcy’s 

flows of power-law fluids to heterogeneous Darcy’s flows through. 

This formula expressed the importance of both rheological and 

porous medium related parameters on the mean flow and was in 

good agreement with numerical experiments. The same authors 

also proved the validity of the use of pore network models to de- 

scribe flow of power-law fluids and used numerical simulations to 

validate the obtained expressions. 

Other relevant issues concerning shear-thinning creeping flow 

in packed beds have also been addressed in the literature. On this 

subject, Rao and Chhabra (1993) studied the effects of column 

walls and particle size distribution on the flow rate–pressure drop 

relationship, proposing a wall correction method and confirming 

the applicability of the mean hydraulic radius of the particles to 

characterize a bed of mixed size spheres. Also, shear-thinning flow 

through non-spherical beads was successfully predicted by Machac 

et al. (1998) using two methods based on modifications of the 

capillary model. The impact of heterogeneity in porous medium 

properties is particularly relevant for non-Newtonian flow ( Fadili 

et al., 2002; Longo et al., 2013; Di et al., 2014; Longo et al., 2015a; 

Longo et al., 2015b; Ciriello et al., 2016 ). In this respect, Gravity- 

driven non-Newtonian creeping flows were theoretically analyzed 

using self-similar solutions (backed by experiments) in the cases 

of radial flow in homogeneous ( Longo et al., 2013 ) and stratified 

packed beds ( Di et al., 2014 ), and two-dimensional flows in strati- 

fied packed beds ( Ciriello et al., 2016 ). 

Some shear-thinning fluids present other complex rheologi- 

cal behaviors such as yield stress or viscoelasticity, affecting flow 

through packed beds. Viscoelastic effects during the flow of shear- 

thinning polymer solutions in beds of particles was experimentally 

studied by Tiu et al. (1997) , finding that the surface-mean parti- 

cle diameter allows the correlation of pressure loss data using the 

existing equations for non-Newtonian purely viscous fluids. The 

creeping flow through packed beads of shear-thinning fluids hav- 

ing a yield stress was investigated by Chevalier et al. (2013) . These 

authors obtained a general expression for the pressure drop vs. 

flow rate curve as a function of the rheological parameters of the 

fluid and the structural parameters of the porous medium. Then, 

by means of NMR measurements, Chevalier et al. (2014) provided 

insight into the physical origin of the coefficients involved in this 

general expression. 

Only a few works have specifically addressed non-Darcian flow 

of shear-thinning fluids in packed beds. In this regard, some the- 

oretical models were proposed that successfully predict the creep- 

ing and inertial flow of shear-thinning fluid through packed beds 

and granular media ( Sabiri and Comiti, 1995 ; Smit and du Plessis, 

1997 ), but the covered range of Reynolds number was limited. 

Other proposed models ( Woudberg et al., 2006 ) showed impor- 

tant differences with the available experimental results at high 

Reynolds numbers, due to secondary order effects such as addi- 

tional normal stresses that were not taken into account. Creep- 

ing and inertial flow experiments of shear-thinning fluids through 

beads of particles were conducted by Broniarz-Press et al. (2007) , 

but the focus was on determining the minimum fluidization veloc- 

ities for the beds. It should be noted that all the preceding studies 

involving non-Darcian fluid flow used the power-law model to rep- 

resent the shear viscosity of the fluid. In this model, viscosity tends 

to zero at very high shear rate. Therefore, in spite of its practical 

interest in a number of applications, the power-law model does not 

provide a realistic value of viscosity at high shear rates as those in- 

volved in non-Darcian flow. 

As can be deduced from the literature, the number of exper- 

imental works involving shear-thinning flow in which inertial ef- 

fects are non-negligible is rather limited ( Sabiri and Comiti, 1995 ; 

Chhabra et al., 2001; Broniarz-Press et al., 2007 ). Therefore, ad- 

ditional systematically performed experimental work is needed 

( Rao and Chhabra, 1993; Broniarz-Press et al., 2007 ), covering a 

wide range of Re , and specifically treating the shear-thinning flow 

through packed beads. 

3. Materials and methods

3.1. Experimental setup and procedure 

A set of experiments was conducted injecting aqueous poly- 

mer solutions through four packed beds formed by mono-size 

glass spheres. The diameter of the glass spheres d s was 1 mm, 

3 mm, 4 mm and 5 mm in each case. The spheres were packed in- 

side transparent Plexiglas columns with inner diameter D = 5 cm. 

Compact packings were achieved by shaking using vibratory sieve 

shaker. 

The fluid was injected from a tank situated upstream of the 

porous column using a volumetric pump (EcoMoineau M Series, 

PCM, France), and its flow rate was measured with a positive dis- 

placement flow meter (Model LSM45, Oval, Japan). A differential 

pressure sensor (DP15 Variable Reluctance Pressure Sensor, Vali- 

dyne, USA) was used to measure the pressure drop through the 

porous medium over a distance of L = 20 cm. The pump was able 

to provide flow rates ranging from 0 to 300 L/h, the range of the 

flow meter was from 7 to 500 L/h with an accuracy of ±1% and 

the range of the pressure sensor was adjusted by installing differ- 

ent membranes from 0–1400 Pa to 0–56,0 0 0 Pa with an accuracy 

of ±0.3% of the full scale. The injected fluid was continuously recir- 

culated to the upstream tank after passing through the porous col- 

umn. A photo showing the experimental setup is provided as Sup- 

plementary material. The columns were saturated with CO 2 (more 

water-miscible gas than air) prior to saturation with aqueous poly- 

mer solutions in order to avoid air trapping during the experi- 

ments. Once saturated with polymer solution, a set of twenty-six 

different flow rates ranging from 9 to 250 L/h were imposed for 

the flow through the porous medium and the corresponding pres- 

sure drops were measured. For each step, a fixed flow rate was 

maintained until the steady state pressure drop was reached. Each 

step was repeated four times and the uncertainty related to the 

repeatability of the pressure drop was calculated as ± 2 σ , with σ
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= 2% being an estimate of the relative standard deviation of the 

measurements (95% confidence interval). The room temperature 

during the experiments was 18 °C ± 1. 

It can be observed that the range of Q used in this work is sig- 

nificantly wider than those used in some preceding works ( Sabiri 

and Comiti, 1995 ). This permits a better assessment of inertial ef- 

fects, given that higher values of u are involved. 

3.2. Fluid properties 

Filtered water (polymer concentration C p = 0 ppm) and three 

xanthan gum aqueous solutions with C p =200 ppm, C p = 500 ppm 

and C p = 700 ppm were used as injected fluids in the present ex- 

periments. Xanthan gum is a polysaccharide obtained through fer- 

mentation of Xanthomonas campestris bacteria. This biopolymer is 

widely used as viscosity-enhancing additive in the food and cos- 

metics industries, as zerovalent iron for groundwater remediation 

and as part of the formulation of drilling muds in EOR ( Garcia- 

Ochoa et al., 20 0 0; Amundarain et al., 2009; Palarinaj and Javar- 

man, 2011; Wadhai and Dixit, 2011; Xin et al., 2015 ). Isolated xan- 

than macromolecules are known to be more or less rigid in solu- 

tion state, with a contour length of typically 1 μm ( Mongruel and 

Cloitre, 2003 ) and a transverse size of approximately 2 nm. Details 

on its chemical composition, structure and other physico-chemical 

properties can be found in Song (2007) . 

Sixty liters of each solution were prepared by progressively 

dissolving xanthan gum powders in filtered water containing 

400 ppm of NaN 3 as a bactericide while gently mixing with a 

custom-made overhead device. Then, a stress controlled rheometer 

(ARG2, TA Instruments) equipped with cone-plate geometry was 

used to characterize the effective shear viscosity of the bulk flu- 

ids at a constant temperature of 18 °C ± 1, following a proce- 

dure previously presented in the literature ( Rodríguez et al., 2014, 

2016a, 2016b ). A viscosity of 0.0011 Pa s was measured for the sol- 

vent (water) and the density ρ of all injected fluids was taken 

as 10 0 0 kg/m 

3 . The polymer solutions used herein were checked 

for possible mechanical degradation by collecting a set of efflu- 

ent samples at the outlet of the porous media after injection at 

the highest flow rate. The rheograms of the effluents showed no 

significant difference with respect to those of the inflowing fluid, 

so polymer mechanical degradation was proved to be negligible. 

Moreover, no air macro bubbles were observed in the injected 

fluid. Also, the rheograms of a degassed fluid sample and an un- 

degassed fluid sample were measured and compared in order to 

evaluate the influence of residual air micro bubbles, showing no 

significant difference. 

The two-parameter power law model used in most of the pre- 

ceding works ( Chhabra and Srinivas, 1991; Rao and Chhabra, 1993 ; 

Sabiri and Comiti, 1995 ; Smit and du Plessis, 1997; Tiu et al., 

1997; Machac et al., 1998; Chhabra et al., 2001; Broniarz-Press 

et al., 2007 ) is not appropriate to study non-Darcian flow as the 

involved shear rates are high and close to the upper Newtonian 

plateau of viscosity ( Woudberg et al., 2006; Fayed et al., 2016 ). 

In contrast, the empirical Carreau model ( Carreau, 1972 ) can ac- 

curately predict the variation in the viscosity at all shear rates and 

is known to successfully represent the shear-thinning behavior of 

xanthan gum semi-dilute solutions ( Sorbie et al., 1989; López et 

al., 2003; Rodríguez et al., 2016a, 2016b ). The Carreau equation 

is based on molecular network theory and is often presented as 
μ−μ∞ 

μ0 −μ∞ 

= [ 1 + ( λ ˙ γ ) 2 ] 
n −1

2 ,where μ is the viscosity at a given shear

rate ˙ γ , μ0 and μ∞ 

are the zero shear rate and infinite shear 

rate viscosities, respectively, n is the power-law index, and λ is the 

time constant. The values of μ0 , μ∞ 

, n and λ are determined by 

the polymer concentration under given pressure and temperature 

conditions. In the region far from the low shear viscosity plateau, 

i.e. when ˙ γ � 1 
λ

, Carreau’s law leads to the following expression 

( Rodríguez de Castro and Radilla, 2016 ): 

μ ≈ μ∞ 

+ ( μ0 − μ∞ 

) λn −1 ˙ γ n −1 = μ∞ 

+ a ˙ γ n −1 (8) 

with a = ( μ0 −μ∞ 

) λn −1 . The flow experiments presented in the 

preceding subsection were conducted for all four polymer con- 

centrations. For each value of C p , a hundred and four measure- 

ments (four repetitions for each of the twenty-six flow rates) were 

carried out. The hundred and four measures for a given polymer 

concentration-porous column pair were considered to be an exper- 

imental set. All fluids were injected through the four packed beds, 

apart from the 700 ppm solution which was not injected through 

the porous column with d s = 1 mm given that the high pressures 

generated were not adapted to the experimental setup. Therefore, a 

total of 1560 measurements (15 experimental sets) were executed. 

4. Results and discussions

4.1. Non-Darcian flow of a Newtonian fluid: obtaining K, γ and β
from experiments 

The porosity ε of each porous medium was measured from 

the difference in mass between the water-saturated column and 

the air-saturated column, excluding the dead volumes, and the ob- 

tained values are listed in Table 1 . The uncertainty in the proce- 

dure of measuring the porosity was of ± 0.1%. It can be observed 

that the porosities of all used columns were close to the average 

value of 0.35, which is in good agreement with the values reported 

by Dukhan et al. (2014) and indicates that the glass spheres were 

compactly packed. The experimental sets of pressure gradient as 

a function of average velocity for water injection ( C p = 0 ppm) 

through each porous column are presented in Fig. 1 . Permeabil- 

ity was calculated following a two-step procedure. First, the val- 

ues of K j minimizing the sum 

j ∑ 

i =1

( ∇ P i − u i 
μ
K j

) 2 were calculated for 

j = 1…N with N being the number of experimental data and μ
being the dynamic viscosity of water. Then, the value of s ( s = 

1…N ) minimizing the quantity 

∑ s 
i =1 | ∇ P i −u i

μ
K s ∇ P i |

s was determined and 

the corresponding K s value was selected as the permeability of the 

porous column. The obtained values of K are presented in Table 1 . 

As expected from Eq. (3) , permeability increased for higher values 

of d s . 

Once permeability was determined, a standard least squares 

method was used to fit the (u i , ∇P i , ) data to Forchheimer’s law

( Eq. (1 )) and the values for β were obtained. Then, the coefficients 

A and B of Ergun’s equation ( Eq. (2 )) were determined by identify- 

ing the linear and quadratic terms of Eqs. (1) and ( 2 ), respectively. 

From K and β , the value of F was calculated in each case. The 

values of β , A, B and F are also presented in Table 1 . It is noted 

that the obtained values for the drag coefficient F are very close 

to those reported by Dukhan et al. (2014) . These values of F are 

not unique, which suggest a dependence of F on d s . This is in con- 

trast to the existence of universal values for a given class of porous 

medium which was defended in some previous works ( Hwang et 

al., 2002; Liu et al., 2006; Dukhan and Patel, 2011 ) and subse- 

quently refuted ( Dukhan et al., 2014 ). Although F represents iner- 

tial effects and is sensitive to the roughness of the porous medium 

( Liu et al., 2006 ), significant variability in terms of roughness is not 

expected between the glass beads used in our work as they are all 

made of the same material. However, the relative roughness as re- 

ported to d s may change and have effect on F . 

Fig. 1 shows that all the ( u i , ∇P i , ) data sets are well fitted by

Forchheimer’s law. Therefore, it can be deduced that viscous ef- 

fects dominate the flow at the lowest flow rates while extra pres- 

sure losses due to inertial effects become important at moderate 

and high flow rates. Higher values of β were found for smaller d s . 



A. Rodríguez de Castro, G. Radilla / Advances in Water Resources

Table 1

Porosity, permeability, Ergun parameters and inertial coefficients for the four packed beds. The expressed uncertainties

correspond to 95% confidence interval.

d s (mm) ε K β F A B

1 0.36 ± 0.1% 5.9 × 10 −10 m 

2 ± 2% 2.3 × 10 4 m 

−1 ± 1% 0.55 ± 2% 1.9 × 10 2 ± 3% 1.6 ± 2% 

3 0.34 ± 0.1% 5.1 × 10 −9 m 

2 ± 6% 6.3 × 10 3 m 

−1 ± 1% 0.45 ± 4% 1.7 × 10 2 ± 7% 1.2 ± 2% 

4 0.35 ± 0.1% 9.5 × 10 −9 m 

2 ± 7% 4.1 × 10 3 m 

−1 ± 1% 0.40 ± 5% 1.7 × 10 2 ± 8% 1.1 ± 2 % 

5 0.34 ± 0.1% 1.3 × 10 −8 m 

2 ± 6% 2.9 × 10 3 m 

−1 ± 2% 0.33 ± 4% 1.8 × 10 2 ± 6% 0.9 ± 2% 

Fig. 1. Pressure gradient vs. average velocity for water injection through the packs of glass beads with (a) d s = 1 mm, (b) d s =3 mm, (c) d s = 4 mm and (d) d s = 5 mm. 

Symbols represent experimental data, black solid lines represent their fit to Forchheimer’s law, red dotted lines represent the linear term (Darcy’s law), blue dashed lines

represent the contribution of the quadratic term to the total pressure loss. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

Table 2

Parameters used in Eq. (8) for the shear rate–viscosity relations

of the injected fluids. Uncertainties correspond to 95% confidence

interval.

C p (ppm) a (Pa s n ) n μ∞ (Pa s)

200 4.8 × 10 −3 ±4% 6.6 × 10 −1 ±1% 1 .1 × 10 −3 

500 2.4 × 10 −2 ±5% 5.8 × 10 −1 ±2% 1 .1 × 10 −3 

700 4.2 × 10 −2 ±4% 5.2 × 10 −1 ±1% 1 .1 × 10 −3 

Nonetheless, the relative importance of the quadratic term of pres- 

sure loss increased as d s increased. Indeed, the Reynolds number 

at a given u is higher for more permeable media, which explains 

that the inertial deviations from Darcy’s law are more pronounced. 

The average values of A and B obtained for our experiments 

were 170 and 1.2, respectively. The value of A is comprised be- 

tween the most commonly used values of 150 and 180. However, 

significant differences are found for B with respect to the usual 

value of 1.75 ( Ergun, 1952 ) and the range 1.8–4 proposed by Mac 

et al. (1979) . These discrepancies were also reported by Dukhan et 

al. (2014) and may be the consequence of the wide range of Re 

used in both studies. 

4.2. Equivalent and shear viscosity relations 

Eq. (8) was used to fit the experimental viscosity–shear rate 

data ( Rodríguez et al., 2014, 2016a ), which are presented as sup- 

plementary material, and the obtained values for a and n are pre- 

sented in Table 2 . On the basis of previously presented works , μ∞ 

was assumed to be that of the solvent ( Bird et al., 1987; Pauchard 

et al., 1999; López, 20 04; Saggin et Coupland, 20 04; Auradou et al., 

2008; Comba et al., 2011; Wengeler, 2014; Fang et al., 2015 ). The 

relative standard deviation of the shear rate measurements carried 

out with the rheometer for the determination of Carreau law pa- 

rameters was ±1.5%. 

As expected, higher viscosities were obtained for the most con- 

centrated solutions used in the present study and the experimen- 

tal data were well described by Eq. (8) using the parameters pre- 

sented in Table 2 . This table illustrates that a more pronounced 

shear-thinning behavior was obtained at high C p , as reflected by 

the lower values of n . 

Two approaches are commonly used to represent pressure loss 

data for the flow of non-Newtonian fluids through packed beads 

( Tiu et al., 1997 ). The first possibility involves the definition of ap- 

parent viscosity and shear rate in the porous medium. The sec- 

ond possibility lies in representing the correlation between f and a 

properly defined Re . In this subsection, we will focus on the first 

approach while the second one will be treated in Section 4.5 . 

The inertial effects in the porous medium can be evaluated by 

comparing the shear viscosity calculated from effective viscosity 

measurements (using a rheometer) to the actually observed equiv- 

alent viscosity. The equivalent viscosity in the porous medium μeq , 

in which both inertial and shear-thinning effects are included, can 

be defined from Darcy’s law as ( Tosco et al., 2013 ): 

μeq = −∇P 

u 

K (9) 

Prior to calculation of the “in situ” apparent shear viscosity μpm 

in the porous medium, the apparent shear rate has to be deter- 

mined. In the case of shear-thinning fluids, this apparent shear rate 

˙ γpm 

can be defined by dividing the mean velocity u by a charac- 

teristic microscopic length of the porous media ( Chauveteau, 1982; 

Sorbie et al., 1989 ; Perrin et al., 2006; Tosco et al., 2013; Rodríguez 

et al., 2016a ). This microscopic length is usually taken as 
√ 

Kε with 
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Fig. 2. μeq and μpm for the polymer concentrations of the injected fluid as a func- 

tion of the glass beads diameter ( d s = 1 mm with purple filled diamonds, d s = 

3 mm with blue filled squares, d s = 4 mm with red filled triangles and d s = 5 mm 

in black empty circles). Symbols represent μeq and solid lines represent μpm . (a) C p
= 200 ppm, (b) C p = 500 ppm, (c) C p = 700 ppm. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this

article.)

ε being the porosity of the porous medium. Consequently, ˙ γpm 

can 

be defined as: 

˙ γpm 

= α
u√ 

εK 

(10) 

where α is a empirical shift factor. In the particular case of Carreau 

fluids, μpm 

can be obtained from Eqs. (8) and ( 10 ) as: 

μpm 

= μ∞ 

+ a 

(
α

u√ 

Kε 

)n −1

(11) 

In our experiments, α was determined for each porous 

medium-fluid pair by following the procedure proposed by Sor- 

bie et al. (1988) and subsequently used by other authors ( González 

et al., 2005; Amundarain et al., 2009 ). The procedure consisted in 

overlaying the porous media μeq vs. ˙ γpm 

curves with the bulk μpm 

vs. ˙ γ curves as closely as possible and noting the scale change in 

shear rate required to obtain the best fit. The results are shown in 

Fig. 2 . It is noticed that overlaying μeq with μpm 

is more challeng- 

ing at C p = 200 ppm, given that important inertial effects occur at 

lower shear rates as shown in this figure. Also, it should be noted 

that a good overlay between μeq and μpm 

curves is only possi- 

ble in the low shear rates region where no significant inertial ef- 

fects occur. This good overlay obtained at low shear rates shows 

that the effect of fluid-solid interactions (e.g. polymer mechani- 

cal degradation and apparent wall slip) on the relationship be- 

tween viscosity and shear rate is negligible ( González et al., 2005; 

Amundarain et al., 2009; Rodríguez et al., 2016a ). This was ex- 

pected given the small size of the polymer macromolecules (typi- 

cally 1 μm) with respect to pore size. Moreover, all the computed 

values of α (see Table 3 ) lie in the interval 1–4.5, in agreement 

with literature data ( Chauveteau, 1982; Sorbie et al., 1989; López, 

2004; Comba et al., 2011 ). The average value obtained for α is 

2, which is close to the universal value of 1.7 for packs of large 

spheres presented by Meurant (1981) . However, a dependence of 

α on d s is observed in the present experiments in agreement with 

the results of Amundarain et al. (2009) . Also, it should be noted 

that some previously reported correlations for the prediction of α
were specifically developed for power-law fluids ( Christopher and 

Middleman, 1965; Hirasaki and Pope, 1974; Cannella et al., 1988 ), 

so direct comparison is not possible as the impact of μ∞ 

was not 

taken into account. 

Fig. 2 shows that μeq vs. ˙ γpm 

curves are not monotonic in con- 

trast to μpm 

vs. ˙ γpm 

curves. A decrease in μeq as ˙ γpm 

increases 

is observed at low shear rates, i.e. in the shear-thinning Darcy 

regime. However, the shear-thinning behaviur is compensated by 

inertial effects above a critical value of ˙ γpm 

in most cases, result- 

ing in an increase in μeq as ˙ γpm 

increases in good agreement with 

the numerical experiments conducted by Tosco et al. (2013) . A dif- 

ferent behavior is remarked at the highest polymer concentration 

C p = 700 ppm, for which the increase in μeq at high shear rates 

is significantly less pronounced. In this case, a constant plateau of 

μeq is observed, which is explained by a strong shear-thinning be- 

havior of the fluid even under high flow rates. These results sug- 

gest that μeq vs. ˙ γpm 

curves may be monotonically decreasing for 

greater values of C p in spite of the inertial effects within the con- 

sidered range of shear rates. A similar behavior is observed in the 

cases C p = 700 ppm and C p = 500 ppm for d s = 1 mm. Neverthe- 

less, in these cases the observed plateau is explained by the less 

significant inertial effects in the porous column with d s = 1 mm. 

Consequently, it can be concluded that the inertial effects can be 

successfully compensated by shear-thinning effects for some com- 

binations of C p and d s . Moreover, it is highlighted that the inertial 

regime occurs at high flow rates that lie in the region close to the 

upper Newtonian plateau of viscosity where the shear-thinning be- 

havior is moderate. 

From Eqs. (1) and (9) , the following expression can be deduced: 

μeq = μpm 

+ βKρu = μpm 

+ 

βK 

3 / 2 ε 1 / 2 ρ ˙ γ

α
(12) 

Fig. 2 shows that in the case C p =200 ppm, μeq increases from 

d s = 1 mm to d s = 3 mm and from d s = 4 mm to d s = 5 mm, while 

it remains practically unchanged from d s = 4 mm to d s = 5 mm. 

This may be explained by observing from Eq. (12) that the fac- 

tor βK 3 / 2

α determines the deviation of μeq with respect to μpm 

. It 

is noted that the higher values of α obtained for high values of 

d s attenuate the increase in inertial effects for the most concen- 

trated polymer solutions. Indeed, this factor βK 3 / 2

α increases from 

d s = 1 mm to d s = 4 mm but does not significantly change from d s 
= 4 mm to d s = 5 mm (see Tables 2 and 3 ). For the same reason, 

no significant difference was found in terms of μeq between d s = 

3 mm and d s = 5 mm for C p = 500 ppm and C p = 700 ppm. 

The range of variation of μeq increases as C p increases for 

all porous columns. This is a consequence of the higher degree 

of shear-thinning presented by the most concentrated solutions. 

However, the high levels of μeq observed at low shear rates in the 

particular case of C p = 200 ppm and d s = 4 mm may be related 

to inaccuracies in the measurements due to proximity to the range 

limits of the used pressure sensors and will need further study. 

4.3. Polymer concentration effects on Reynolds number 

It is known that Reynolds numbers is directly proportional to 

injection flow rate for Newtonian fluids. However, a different be- 

havior occurs when using shear-thinning fluids. Indeed, accord- 

ing to Eq. (11) , increasing the flow rate implies a decrease in 
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Table 3

Apparent-to-effective viscosity shift factor α for the shear rate–viscosity relations

shown in Fig. 2 .

C p (ppm) α ( d s = 1 mm) α ( d s = 3 mm) α ( d s = 4 mm) α ( d s = 5 mm) 

200 0 .7 1 .7 1 .8 2 .1

500 1 .1 2 3 .1 4 .5

700 – 1 .1 1 .9 1 .9

Fig. 3. (a) Re vs. u as a function of C p for the packs of glass beads with (a) d s = 1 mm, (b) d s =3 mm, (c) d s = 4 mm and (d) d s = 5 mm. Different colors represent different 

polymer concentrations: C p =0 ppm in purple, C p = 200 ppm in blue, C p = 500 ppm in red and C p = 700 ppm in black. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.)

Table 4

Average relative errors E resulting from the fit of Re as a function of u using a linear

model.

C p (ppm) d s = 1 mm (%) d s = 3 mm (%) d s = 4 mm (%) d s = 5 mm (%) 

0 0 0 0 0

200 8 9 9 9

500 23 27 26 24

700 − 46 43 45

μpm 

which implies in turn an extra increase in Reynolds number 

( Eq. (5 )). This behavior can be observed in Fig. 3 , where Re is 

presented as a function of u. Indeed, one can remark that while 

Reynolds number is a linear function of u for C p = 0 ppm, this is 

not the case for higher concentrations. The average relative errors 

E resulting from the fit of Reynolds as a function of u using a lin- 

ear model were calculated in each case as E = 

∑ N 
j=1 

| f it( u j ) −R e j | 
R e j 

N ,with 

N being the number of experimental data. These average errors are 

shown in Table 4 for the four porous media. 

In Fig. 3 , it can also be observed that Re decreases as C p in- 

creases for a given flow rate. Also, the range of Re corresponding 

to the range of imposed flow rates is narrower as C p increases, due 

to the higher viscosities of the most concentrated solutions. In con- 

trast, the ranges and values of Re increase as d s increases, given the 

higher values of u . 

Depending on the value of the interstitial Reynolds number de- 

fined as R e i = 

ρu d s 
μpm ε 

, Dybbs and Edwards (1984) postulated the ex- 

istence of four different flow regimes: (1) the Darcy or creeping 

flow regime for Re i < 1 where viscous forces dominate and the ve- 

locity distribution is determined by local geometry. (2) The inertial 

regime beginning at 1 < Re i < 10 and extending up to Re i ∼150 char- 

acterized by a more pronounced boundary layer and the existence 

of an “inertial core” . (3) The unsteady laminar flow regime for 

Table 5

Range of interstitial Reynolds numbers Re i covered in each experiment as a func- 

tion of d s and C p .

d s (mm) C p = 0 ppm C p = 200 ppm C p =500 ppm C p = 700 ppm 

1 3 .3–90.3 1 .5–60.8 0 .8–50.6 –

3 10 .1–281 4 .7–205.1 2 .1–143.2 1 .3–116.5

4 13 .2–367.2 5 .8–261.3 2 .8–192.4 1 .8–162

5 16 .9–469.8 7 .5–334.2 3 .9–257.2 2 .2–198.6

150 < Re i < 300, characterized by the formation of waves. (4) The 

highly unsteady and chaotic flow regime for Re i > 300, analogous 

to turbulent flow in pipes and dominated by eddies. However, dis- 

agreement exists regarding the criteria for transition among flow 

regimes ( Chhabra et al., 2001 ; Dukhan et al., 2014 ). 

The range of Re i explored by the present experiments are listed 

in Table 5 , showing that all flow regimes are covered according to 

the criteria presented by Dybbs and Edwards (1984) , in contrast to 

previously presented experimental studies for shear-thinning flow 

in packed beads (e.g. Chhabra and Srinivas, 1991; Rao and Chhabra, 

1993 ). Therefore, the efficiency of Forchheimer’s law and Ergun’s 

equation to represent the flow rate–pressure drop relationships in 

all regimes can be better assessed with the present experimental 

data. 
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Table 6

Average errors, median errors and standard deviation of the errors obtained for the

three methods used to predict �P as a function of u from Ergun’s equation.

Prediction

method

Average error

(%)

Median error

(%)

Standard deviation

error (%)

Method 1 19 18 12

Method 2 11 8 14

Method 3 5 4 9

4.4. Predicting the relationship between u and �P for shear-thinning 

fluids using Ergun’s equation 

Predicting the pressure drop for the inertial flow of shear- 

thinning fluids through unconsolidated porous media is of vital 

importance in several applications, as mentioned in the introduc- 

tion of this article. To do so, three different approaches are used in 

this subsection and their results are compared to the experimental 

data. The choice of a particular approach will be motivated by the 

amount of available information at the preliminary stage and the 

expected accuracy for the prediction. 

4.4.1. Predicting the relationship between u and �P using Ergun’s 

equation with universal empirical constants for a and b and a unique 

shift factor α
In this first approach (Method 1), only the effective shear rheol- 

ogy of the fluid ( μ∞ 

, a, n ), the porosity of the porous medium and 

the sphere size are needed for the calculation. In the original form 

of Ergun’s equation ( Ergun, 1952 ), universal values of A = 150 and 

B = 1.75 were used in Eq. (2) . Moreover, Meurant (1981) proposed 

a unique shift factor α = 1.7 for packs of large spheres having the 

same diameter. If the preceding values are used in Eqs. (2) and 

( 11 ), the following relationship between u and �P is obtained: 

�P = 150 

( 1 − ε ) 2 
[
μ∞ 

+ a 

(
1 . 7 

6 
√ 

5 ( 1 −ε ) u
ε 2 d s

)n −1 

ε 3 d 2 s 

uL 

+ 

1 . 75 

ε 3 
( 1 − ε ) ρ

d s 
u 

2 L (13) 

To evaluate the accuracy of the proposed methods for the pres- 

sure drop predictions, the average relative deviations of predicted 

data with respect to experimental data δ were calculated as δ = 

1
N

N ∑ 

i =1

δi with δi = | 1 − ( �P calc ) i 
( �P exp ) i 

| ( Sabiri and Comiti, 1995 ; Machac 

et al., 1998 ). The resulting average and mean errors for this first 

method are summarized in Table 6 together with the standard de- 

viations. Also, the comparison between the predictions made using 

this approach and the experimental data obtained from our exper- 

iments is presented in Fig. 4 . As can be observed in this figure, im- 

portant differences exist between predicted and experimental val- 

ues. These differences may be explained, in part, by the universal 

value of B = 1.75 used in the calculations, which differs from the 

average value of B = 1.18 obtained by fitting the present experimen- 

tal data as mentioned in Section 4.1 . In fact, if the universal value 

of B = 1.18 is used instead of B = 1.75, the resulting average error is 

reduced from 18.5% to 12.0%. 

4.4.2. Predicting the relationship between u and �P from 

non-Darcian water flow experiments using Ergun’s equation and a 

unique shift factor α
This second approach (Method 2) consists in using the values 

of A and B obtained from water injection experiments in each 

porous medium (listed in Table 2 ) instead of the universal values 

mentioned in the preceding section. No information from shear- 

thinning fluid injection is needed in this approach and a unique 

value of α= 1.7 ( Meurant, 1981 ) is used for the shift factor. The 

resulting expression for the calculation of �P is: 

�P = A 

( 1 − ε ) 2 
[
μ∞ 

+ a 

(
1 . 7 

6 
√

5 ( 1 −ε ) u
ε 2 d s

)n −1 

ε 3 d 2 s 

uL + B 

( 1 − ε ) ρ

ε 3 d s 
u 

2 L 

(14) 

Experimental and predicted data using this method (Method 

2) are also presented in Fig. 4 , showing good agreement in most

cases. A worse agreement is obtained in those cases in which the 

value of α is not close to 1.7 (see Table 3 ). The resulting errors are 

also summarized in Table 6 . These errors are considerably lower 

than those obtained by using the preceding approach and may be 

acceptable in many cases. 

4.4.3. Predicting the relationship between u and �P from 

non-Darcian water flow and Darcian shear-thinning flow experiments 

using Ergun’s equation 

This last approach (Method 3) to predict the relationship be- 

tween u and �P does not involve the use of any universal value. 

Indeed the used values for A and B are obtained from non-Darcian 

flow experiments with water ( Table 2 ) and the values of α are ob- 

tained from the Darcian flow region of the shear-thinning flow ex- 

periments ( Table 3 ). The preceding inputs can be used in the fol- 

lowing expression to predict pressure drop of shear-thinning flow 

at any flow rate: 

�P = A 

( 1 − ε ) 2 
[
μ∞ 

+ a 

(
α 6 

√ 

5 ( 1 −ε ) u
ε 2 d s

)n −1 

ε 3 d 2 s 

uL + B 

( 1 − ε ) ρ

ε 3 d s 
u 

2 L 

(15) 

The obtained predictions are compared to the experimental 

data in Fig. 5 , showing good agreement. Also in the case of this 

Method 3, the resulting errors were calculated and are presented 

in Table 6 , showing a reduction of more than 50% with respect to 

Method 2. The errors obtained from Method 3 are lower than those 

presented by Sabiri and Comiti (1995 ) and Machac et al. (1998) . 

Also, these results are in sharp contrast with the conclusions of 

the work presented by Mac et al. (1979) , which stated that Ergun’s 

equation predicts the values of pressure drop with an uncertainty 

of ±50% for unconsolidated media in most cases of practical inter- 

est. It is worth noting that the calculated errors must not be com- 

pletely attributed to inaccuracies in the prediction methods, but 

they may be explained in part by the uncertainties inherent to the 

performed measurements and the fitting process to experimental 

data, as explained above. Also, it is remarked that wall effects in 

the porous column have not been taken into account. However, 

these have been shown to be less significant in the case of shear- 

thinning fluids ( Rao and Chhabra, 1993 ). 

It is reminded that Ergun’s equation empirical parameters were 

obtained in Section 4.1 . through identification from Forchheimer’s 

equation. Therefore, all the results presented in this section for Er- 

gun’s equation also apply for Forchheimer’s equation. An important 

consequence of these findings is that Forchheimer’s law can be ex- 

tended to the case of shear-thinning fluids. Also, elongational vis- 

cosity effects have been shown to be negligible in the case of the 

present experiments, given that the total pressure drop can be fully 

explained in terms of the addition of shear and inertial effects. 

4.5. Effects of polymer concentration on the inertial contribution to 

total pressure loss and on the relationship between f and 1/ Re 

The total pressure loss can be presented as the sum of the in- 

ertial and shear contributions, �P inertial and �P shear , respectively 



A. Rodríguez de Castro, G. Radilla / Advances in Water Resources

Fig. 4. ∇P as a function of u for all the values of d s and C p involved in the present experiments. (a) d s = 1 mm, (b) d s = 3 mm, (c) d s = 4 mm and (d) d s = 5 mm. Symbols 

represent experimental data. Dot-dashed lines represent predictions using Method 1 and solid lines represent predictions using Method 2. Different colors represent different

polymer concentrations: C p = 200 ppm in blue, C p = 500 ppm in black and C p = 700 ppm in red. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.)

Fig. 5. ∇P vs. u as a function of C p for the packs of glass beads with (a) d s = 1 mm, (b) d s = 3 mm, (c) d s = 4 mm and (d) d s = 5 mm. Symbols represent experimental data 

and solid lines represent predictions using Method 3. Different colors represent different polymer concentrations: C p = 200 ppm in blue, C p = 500 ppm in black and C p = 

700 ppm in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

( González et al., 2005; Tosco et al., 2013; Fourar et al., 2004 ): 

�P total = �P shear + �P inertial (16) 

Forchheimer number F 0 is defined ( Ruth and Ma, 1992; Dukhan 

et al., 2014 ) as the ratio between �P inertial and �P shear predicted by 

Forchheimer’s law ( Eq. (1 )): 

F 0 = F 
ρu 

√ 

K 

μ
= F Re (17) 

It is reminded here that F is the experimentally determined 

inertial coefficient in Forchheimer’s equation ( Eq. (1 )). F 0 is pre- 

sented as a function of Re for each porous column in Fig. 6 . This 

figure shows that for all packed beds, the data points correspond- 

ing to all values of C p collapse on the same master curve. There- 

fore, it can be deduced that C p does not affect the importance of 

inertial pressure loss for a given value of Re . Moreover, these re- 

sults illustrate that higher values of β (see Table 2 ) do not nec- 

essarily entail more significant inertial effects in relative terms as 

mentioned in Section 4.1 . 

Two types of criteria, the critical Re number and the critical F 0 , 

have been proposed in the literature to identify the onset of non- 

Darcian flow. A review on these criteria was presented by Zeng and 

Grigg (2006) . In the present study, inertial effects will be consid- 

ered to be significant only above F 0 = 0.1, i.e. when �P inertial is 

higher than 10% of �P shear . It can be observed in Fig. 6 that the 

value of Re for which F 0 = 0.1 does not depend on C p and is close 

to 0.2 in all cases (comprised between 0.1 and 0.3 depending on 

the porous medium). Comparison with the literature in terms crit- 

ical Re is challenging due to the different definitions and criteria 

used by different researchers. For this reason the choice of a crit- 

ical value of F 0 instead of a critical value of Re for the transition 

between Darcian and non-Darcian regime was preferred, in agree- 

ment with Zeng and Grigg (2006) . 

The values of 1/ Re and f ( Eq. 4 ) corresponding to each exper- 

imental ( Q i , ∇P i , ) data set were calculated and are provided as

Supplementary material. Moreover, the water injection experimen- 

tal data were fitted to Eq. (6) and the obtained values for the coef- 

ficients a and b were named a w 

and b w 

, respectively, and are listed 

in Table 7 as a function of d s . The values of a w 

are very close to 
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Fig. 6. F 0 vs. Re for the packs of glass beads with (a) d s = 1 mm, (b) d s = 3 mm, (c) d s = 4 mm and (d) d s = 5 mm. Symbols represent experimental data corresponding to 

all values of C p .

Table 7

Values of the coefficients obtained by fitting the experimental data of f vs. 1/ Re to Eq. (6) . The coefficients

corresponding to the fit of water data are named a w and b w . The coefficients resulting from the fit of

the whole data set encompassing all C p for a given d s are named a all and b all . The last row shows the

values obtained by fitting together the experimental data of the four porous columns. The values of F for

each porous column are also listed for comparison between Eqs. (6) and ( 7 ). The expressed uncertainties

correspond to 95% confidence interval.

d s (mm) a w b w a all b all F

1 9.8 × 10 −1 ± 2% 5.5 × 10 −1 ± 8% 9.9 × 10 −1 ± 1% 5.1 × 10 −1 ± 8% 0.55 ± 2% 

3 7.7 × 10 −1 ± 5% 5.8 × 10 −1 ± 7% 9.0 × 10 −1 ± 2% 4.9 × 10 −1 ± 5% 0.45 ± 4% 

4 7.8 × 10 −1 ± 3% 4.9 × 10 −1 ± 3% 8.7 × 10 −1 ± 3% 4.6 × 10 −1 ± 7% 0.40 ± 5% 

5 7.7 × 10 −1 ± 1% 4.0 × 10 −1 ± 2% 8.7 × 10 −1 ± 3% 3.8 × 10 −1 ± 6% 0.33 ± 4% 

All 9.0 × 10 −1 ± 4% 4.1 × 10 −1 ± 8% 9.3 × 10 −1 ± 2% 3.9 × 10 −1 ± 4% 

those reported by Dukhan et al. (2014) for their experiments with 

d s = 1 mm ( a w 

= 1) and d s = 3 mm ( a w 

= 0.7692). However, this is 

not the case for the values of b w 

, possibly due to differences in the 

roughness of the used porous media. The fits obtained by Dukhan 

et al. (2014) are also shown in the supplementary figure for com- 

parison. 

It is noted that only the results corresponding to d s = 1 mm are 

well fitted by Eq. (7) , and values of a w 

smaller than unit are ob- 

tained in the other cases. This remark is not trivial and can be 

explained by the fact that the f- Re data corresponding to Darcian 

and non-Darcian flow regimes were fitted together. By doing so, a 

contribution to f is artificially attributed to inertial effects in the 

Darcian region, which results in underestimation of coefficient a. 

Rigorously speaking, the value of coefficient a in Eq. (6) should be 

obtained by fitting the f –Re data in Darcian region to the relation- 

ship f = a / Re , which results in values of parameter a close to unit. 

However, the present approach was followed in order to facilitate 

comparison with previously published data. This underestimation 

of parameter a in Eq. (6) leads to overestimation of parameter b . 

Consequently, the obtained values of b w 

are greater than b w 

=F 

predicted by Eq. (7) . Also, the experimental f –Re data correspond- 

ing to all C p were fitted together to Eq. (6) , obtaining the values 

a = a all and b = b all listed in Table 7 . It is observed that a all > a w 

and b all > b w 

in all cases, which is explained by the higher concen- 

tration of experimental data in the Darcian region for C p > 0 ppm 

which reduce the underestimation of the parameter a. 

The whole experimental data of f vs. 1/ Re encompassing all val- 

ues of C p and d s used in this work are presented together in Fig. 7 . 

It can be observed that all data sets collapse on the same master 

curve, which shows that the relationship between f and Re does 

Fig. 7. Friction factor vs.1/ Re for all the fluid-packed bed combinations used in this

work. Symbols represent experimental data. Solid lines represent the fit of all ex- 

perimental data to Ergun’s equation: ( Eq. (2 ) using a = 9.3 × 10 −1 and b = 3.9 ×
10 −1 ). 

not depend either on d s or C p for the fluids and porous media used 

in this work. Therefore, the value of f can be predicted through 

Eq. (6) by using the values of a = 9.3 × 10 −1 and b = 3.9 ×
10 −1 ( a all and b all in the last row of Table 7 ) whatever the fluid

and the porous media. Also, it is highlighted that even if some 

of the present experimental data would correspond to turbulent 

regime according to the criteria presented by Dybbs and Edwards 

(1984) (see Table 5 ), no constant plateau of F (characteristic of tur- 

bulent regime) is observed at high values of Re in Fig. 7 . This sug- 

gests that turbulent regime is not fully developed in any of the 

present experiments. 

Comparison of our Re –f results with other works previously 

presented in the literature is challenging for two reasons. First, 

the characteristic length used in the definition of Re differs from 

one work to another ( 
√ 

K instead of, for example d s , is used here). 
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Second, the previously presented definitions often rely on power 

law rheological model, while a Carreau model is used here. There- 

fore, it is tricky to compare the range of Re involved in each study. 

However, it is noticed that most previous works involve only the 

viscous flow without inertial effects. Also, as can be observed in 

Fig. 7 , Ergun’s equation successfully predicts the relationship be- 

tween f and Re for the full range of Re used in this work, in con- 

trast to some works previously presented ( Broniarz-Press et al., 

2007 ). Moreover, in contrast to previously presented results for 

viscoelastic polymer solutions ( Tiu et al., 1997 ), the total pressure 

drop can be attributed to addition of shear and inertial contribu- 

tions. As mentioned in the preceding subsection, elongational vis- 

cosity did not produce any significant effect in the present experi- 

ments in contrast to the works of Amundarain et al. (2009) . How- 

ever, comparison of the results is not evident given the different 

definition of Re used by the latter authors. 

5. Summary and conclusions

The main goal of this article is to assess the efficiency of the 

most popular equations used to predict pressure drop–flow rate 

relationship for non-Darcian flow regime in the case of shear- 

thinning fluids injected through unconsolidated porous media. To 

do so, a realistic model to represent the rheology of commonly 

encountered shear-thinning fluids such as aqueous polymer solu- 

tions is combined with Forchheimer’s law and Ergun’s equation 

and three different approaches are proposed to predict pressure 

drop during inertial flow in packed beds of glass spheres. Each 

of these approaches requires a different number of inputs which 

determine the accuracy of the obtained predictions. A set of 1560 

experimental flow rate–pressure drop measurements is then used 

to systematically evaluate the accuracy of the proposed prediction 

methods as a function of the rheology of the injected fluids (de- 

termined by the polymer concentration) and the size of the glass 

spheres. 

In our study, the permeability and inertial coefficients of each 

porous medium were first determined from inertial flow experi- 

ments with water (Newtonian fluid). Then, the shift factors α be- 

tween apparent and effective viscosities were obtained from Dar- 

cian flow of shear-thinning fluids. At this stage, the deviations of 

the predicted shear viscosity from the actually observed viscos- 

ity during the flow in the porous media allowed us to evaluate 

the importance of inertial effects. In contrast to the monotoni- 

cally decreasing μpm 

vs. ˙ γpm 

curves, μeq was found to increase 

above a critical value of ˙ γpm 

for the lowest values of C p . A μeq 

plateau was observed for the highest C p . This results from com- 

petition between the shear-thinning viscosity of the injected fluids 

and the extra pressure losses arising from inertial effects. Based in 

our results, we have shown that a macroscopic law including rhe- 

ological parameters of the fluid and structural parameters of the 

porous medium ( Eqs. (13 )–( 15 ) can be used to predict non-Darcian 

flow of Carreau fluids in packed beds, analogously to the results 

of Chevalier et al. (2014) for yield stress and power-law fluids. As 

mentioned above, the use of power-law model is not convenient 

in the present study, given that this model predicts that viscosity 

tends to zero at very high shear rates as those involved in our ex- 

periments. 

In the first proposed method, only ε, d s and the effective shear 

rheology of the fluid ( μ∞ 

, a, n ) were used as inputs for the �P 

predictions, obtaining an average relative error of 18.5%, which was 

reduced to 11.2% by adding the inertial coefficients coming from 

water injection in the second method. As expected, the most accu- 

rate predictions (relative error of 5.4%) were obtained by the third 

method in which the α shift factor determined through Darcian 

shear-thinning flow experiments was also used as input. These re- 

sults prove that Ergun’s equation successfully predicts the pressure 

drop for the injection of shear-thinning fluids in packed beads as 

well as the applicability of Forchheimer’s law to shear-thinning flu- 

ids as long as a realistic model for shear viscosity is used. 

An experimental protocol to predict flow rate–pressure drop 

relationships for the non-Darcian flow of shear-thinning fluids 

through packs of glass spheres is proposed: 

(1) Determine the porosity of the porous medium and measure the 

effective shear rheology of the fluid ( μ∞ 

, a , n ). 

(2) Determine the accuracy goal for the prediction flow rate–

pressure drop relationships. 

2.1 If a relative error of the order of 20% is acceptable for the 

considered application, use Eq. (13) . 

2.2 If a relative error smaller than 20% is necessary, perform wa- 

ter injection experiments to determine the values of A and 

B . 

2.2.3 If a relative error of the order of 10% is acceptable, use 

Eq. (14) . 

2.2.4 If a relative error of the order of 5% is needed, perform 

Darcian flow experiments with the involved fluid in or- 

der to determine the value of α and then use Eq. (15) . 

It has to be remarked that the expected accuracy levels are only 

based on the average values obtained in the present experiments, 

so they should be reassessed in the case of different experimental 

setups or working conditions. The proposed methods, each of them 

having a variable number of inputs, can be implemented in chemi- 

cal flood simulation software for soil remediation and EOR in order 

to improve the accuracy of the Q vs. �P predictions at the pilot 

plant and reservoir scales. Indeed, the obtained results can provide 

guidance on the choice of the preliminary laboratory experiments 

needed to obtain the inputs for the prediction of �P with a given 

accuracy. 

It has been shown that addition of xanthan gum biopolymer 

to water reduces the relative importance of the inertial contribu- 

tion to total pressure loss. This suggests that the inertial pressure 

loss may be neglected without leading to important errors in the 

predictions of total pressure loss for the injection of highly con- 

centrated polymer solutions. Also, all the experimental data were 

found to collapse on the same f vs. 1/ Re master curve, indepen- 

dently of the fluid’s shear rheology and the value of d s , provided 

that a proper definition of Reynolds number and friction factor are 

used. 

Moreover, criteria for the choice of the fluid’s shear rheology 

can also be deduced from the present work. Our findings must 

now be extended to other types of porous media, such as bisized 

and consolidated porous media. Also, fully developed turbulent 

regime should be covered in future works and the case of com- 

monly encountered viscoelastic shear-thinning fluids has to be in- 

vestigated. 
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