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Abstract

This paper presents a new regularization scheme for Digital Image Correlation

(DIC) and Digital Volume Correlation (DVC) techniques based on the equi-

librium gap method with reference to a linear elastic behavior. This scheme

constitutes a unique framework for performing the so-called mechanical regu-

larization for any problem dimension. “Complete regularization” refers to the

fact that a specific treatment of boundaries (surfaces) is introduced here on the

same footing as the bulk, independently of the complexity of their shape. The

proposed treatment distinguishes the roles that different boundaries (Neumann

or Dirichlet) play in mechanical tests. Numerical cases on synthetic data and a

real experimental test validate the robustness and accuracy of the method. The

analyzed experiment shows that only the use of (complete) regularization en-

sures convergence. Even in the cases where such regularization is not employed

but convergence is achieved, it is at much higher cost. These results reveal the

benefit of regularization on the convergence rate of DVC.

Keywords: digital image correlation, digital volume correlation, mechanical

regularization, equilibrium gap

1. Introduction

Digital Image Correlation (DIC) and Digital Volume Correlation (DVC) are

popular techniques to measure displacement fields from image pairs in respec-

tively 2D and 3D settings [1, 2]. As a true three-dimensional technique, DVC
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measures the internal displacement fields from a pair of reconstructed volumes

(3D images). These image registration techniques face a considerable challenge,

namely, their ill-posedness [1, 3, 4]. The limited available information (i.e., in-

tensity levels) leads to an unavoidable compromise between the measurement

uncertainty and the spatial resolution [5, 6]. Hence, small scale displacement

resolutions are hardly accessible.

However, different approaches have been designed to overcome this limita-

tion. For instance, the displacement field can be assumed continuous over the

entire Region Of Interest (ROI). Thus, it can be decomposed over basis func-

tions that fulfill this constraint. A convenient choice is offered by meshes used

in the Finite Element (FE) method [7–9]. It is worth mentioning that meshless

techniques have also been proposed in the context of DIC [10]. Since the so-

lution is determined through the solution to a problem coupling all degrees of

freedom, such techniques are referred to as global DIC and DVC [9, 11]. These

approaches differ from their “local” counterparts [1, 2, 12, 13], which do not

assume any continuity in the sought displacement fields.

One of the advantages of this approach is that it allows for a straightfor-

ward connection between experiments and simulations [9, 14]. The same FE

mesh used for measuring the displacement field, can also be used in numerical

analyses. For example, the measurement of “real” boundary conditions using

DVC can be used for guiding micromechanical simulations without the need for

additional multiscale schemes [15].

Next, given that the studied images are discretized using pixels or voxels,

quadrangle and cube elements are a natural choice. Yet, those elements have

been shown to lead to “soft modes” with poor conditioning, thereby leading to

specific diagonal patterns either when the small element size or the poor texture

challenge noise sensitivity [16].

Alternatively, current meshing tools are capable of meshing objects with

arbitrary complex boundaries using tetrahedral / triangular elements [17]. The

use of such meshes for DVC opens many possibilities. For instance, the analysis

would no longer be limited to ROIs with flat straight surfaces, or at the interior
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of the sample. Even if the sample has a complex shape, or simply because it

has been slightly tilted during image acquisition, the ROI could conform to the

actual boundary.

Additionally, regularization techniques [18] are employed to further circum-

vent the ill-posedness of the registration [3], or to limit ill-conditioning of in-

cremental corrections, and therefore mitigate noise sensitivity [19, 20]. Often,

some a priori information on the mechanical behavior of the studied material

is available. Then, it is natural to seek a displacement field that best registers

the images while also being mechanically admissible. That is the goal of the

so-called mechanical regularization based on the equilibrium gap method [21].

This type of regularization can be seen as a specialized filter that only acts on

spurious displacements if they are inconsistent with equilibrium.

This regularization constrains the displacement field to one that locally fol-

lows a linear elastic behavior. It allows displacements to be measured on meshes

with elements of size comparable to the voxel size [22]. Elastic regularization

has proven useful even when the actual behavior is more complex. For instance,

the study of plastic flow was reported for a controlled crack propagation in alu-

minum alloy sheets [23]. The proper tuning of the elastic regularization helps

enforcing the isochoric constraint, and freeing the direction of easy slip.

Even though this approach is valid independently of the type of mesh, it

is not capable of applying the adequate regularization to each type of surface

present in the analysis. In fact, the guiding principle is only valid for the bulk

and free-surfaces of the studied sample. In reference [20], the authors proposed

an approach that mimics the bulk, as if those surfaces had an elasticity of their

own in addition to the bulk (as a kind of “surface tension”). However, the link

between both models (bulk and surfaces) is poor (apart from using common

nodes). Moreover, the technique is only applicable to 2D cases, and only admits

regions of interest with straight boundaries.

This paper presents an extension of the mechanical regularization to a low-

pass filtering of surface tractions. In this context, Saint-Venant’s principle may

be invoked, namely, harmonically modulated surface tractions applied to the
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surface of an elastic medium only affect a boundary layer whose thickness is

equal to the wavelength [24]. Consequently, filtering out high frequency modes

has a very limited effect, and remains in a confined region. Moreover, the

resulting surface tractions over long wavelengths are to be preserved with no

alteration. This is precisely what is achieved by the proposed regularization of

Dirichlet surfaces. Furthermore, while the present application is 3D, the method

can be easily applied to 2D configurations.

The implementation details are given in Section 2. Numerical tests are

performed in Section 3, and an actual test case is presented in Section 4. These

results will show the superiority of the proposed method in comparison with

established DVC approaches.

2. Regularization Method

The present section addresses the methodology in general terms so as to be

applicable to DVC (3D) and DIC (2D) analyses.

2.1. Image Correlation

The registration of the image in the reference configuration f(x), and de-

formed configuration g(x) is based on the brightness conservation assump-

tion [1, 4]

f(x) = g(x+ u(x)) , (1)

where u(x) is the sought displacement field that minimizes the L2 norm of the

so-called “correlation residuals”, η(x),

η(x) = g(x+ u(x))− f(x) , (2)

which is evaluated at each voxel (or pixel) location x of the entire ROI Ω,

Φc =
∑
Ω

η(x)2 . (3)

The minimization of Φc is an ill-posed problem [3]. Thus, a weak formulation is

chosen so as to decompose the displacement field u over a set of a priori chosen
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kinematics fields ψi, such as those used in the framework of the finite element

(FE) method [25]

u(x) =
∑

i uiψi(x) . (4)

The registration problem then consists in minimizing Φc with respect to all the

unknown amplitudes ui. A Gauss-Newton scheme [26, 27] leads to the following

linear system [4]

[M c] {δu} = {b} , (5)

in terms of the corrections {δu} to the sought degrees of freedom ui during the

iterations, and

M c
ij =

∑
Ω

(ψi(x) ·∇f(x)) (ψj(x) ·∇f(x)) , (6)

bi =
∑
Ω

(ψi(x) ·∇f(x)) η(x) , (7)

where the vector {b} accounts for the current image residuals η(x), and the Hes-

sian [M c] is built from the shape functions ψi and the image gradient ∇f(x),

thus computed only once.

2.2. Mechanical Regularization

Many regularization techniques are possible for this ill-posed problem [28].

For example, a classical “soft” Tikhonov regularization [18] can be used to en-

sure smoothness of the solution. Furthermore, it can be argued that the cor-

relation procedure embeds a natural form of regularization, namely, the FE

mesh. Therefore, using bigger element sized meshes also constitutes a “hard”

regularization scheme. That is the philosophy behind the pyramidal multiscale

approaches [9, 11]. Here, the kinematic degrees of freedom are reduced so as

to avoid local minima trapping in the intermediate stages of the algorithm.

Since, at each scale, the converged field is used as an initialization for the finer

scale, this multiscale driving provides both robustness and low measurement

uncertainties. However, such a procedure is not easily implemented with an un-

structured mesh decomposition unless the mesh is endowed with a hierarchical
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structure. An alternative soft regularization that does not interfere with the

mesh structure is needed.

2.2.1. Equilibrium Gap

In the spirit of what was introduced earlier, an ideal regularization would

be based on the actual mechanical behavior of the studied specimen. Yet, in

order to provide a general approach that does not need to be tailored to each

individual case, a “simplification” of the aforementioned behavior is in order.

That is, to acknowledge that locally, unless a localization instability occurs, the

sought displacement may often be well described by an elastic problem. This is

the spirit of the proposed regularization based on the equilibrium gap, namely,

the “distance” between the current solution and that which locally satisfies the

equilibrium equation for linear elasticity [19, 20, 22, 23]. It is worth noting that

an alternative approach is based on the Laplacian operator [29, 30]. However,

such regularization is not rotationally invariant and hence risks to alter the true

kinematics.

The material deformation is measured via the infinitesimal strain tensor, ε,

ε =
1

2
(∇u+ ∇uᵀ) , (8)

which, in conjunction with the elasticity tensor C, provide the stress tensor σ

through the constitutive equation

σ = C : ε . (9)

The equilibrium equation then satisfies

∇ · σ + f = 0 , (10)

where f is the distribution of body forces. In the context of the FE method [25,

31], the combination of the above three equations assumes a discretized form

[K] {u} = {f} , (11)

where [K] is the stiffness matrix, {f} the vector of nodal forces, and {u} collects
the nodal displacements associated with the discretized displacement field u.
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At this point, it is useful to recall the concept of “Neumann” and “Dirichlet”

degrees of freedom (DOFs). These terms (Neumann and Dirichlet) are usually

employed to denote the DOFs for which externally applied traction or displace-

ment, respectively, are known, and where conversely displacement or traction

are to be computed.

It should be noted that under this FE discretization, the studied DOFs can

be classified into different groups. In order to better introduce each of them,

let us use the binary diagonal projection matrices D. These square matrices

are valued 1 for the DOFs that pertain to the corresponding group and valued

0 otherwise. Then, given the identity matrix I that accounts for all the DOFs

in the mesh, they can be categorized into

I = DB +DS , (12)

where DS represents all the DOFs of surface nodes (i.e., those defined on the

boundaries of the domain), and DB all the remaining (bulk) DOFs. Addition-

ally, the surface DOFs are subdivided into

DS = DSN +DSD , (13)

whereDSN andDSD denote the DOFs belonging to the Neumann and Dirichlet

boundaries, respectively. While the former correspond to the DOFs whose force

is known, the latter correspond to those for which the force is unknown (but

displacements are prescribed). In particular, the Dirichlet boundary DOFs are

listed as

DSD =
∑

iDSi , (14)

where DSi is the projection matrix associated with the (Dirichlet) surface Si.
It is worth mentioning that for the sake of readability, the 2D surfaces of

a 3D mesh (for DVC cases) and the 1D boundaries of a 2D mesh (for DIC

analyses) are both being referred to as “surfaces.” Moreover, these boundaries

can take any shape and are not limited to straight lines (as 1D boundaries) or

flat planes (as 2D surfaces). The corresponding projection matrices DSi only

require that the connectivity be obeyed.
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2.2.2. Regularization Principle

Mechanical regularization consists in minimizing the L2 norm of the unbal-

anced nodal forces for all bulk and Neumann DOFs. For the latter it is assumed

that they correspond to traction-free surfaces. This is written as

Φm({u}) = ({u}ᵀ[Km]
ᵀ − {f}ᵀ) ([Km] {u} − {f}) , (15)

where Φm corresponds to the equilibrium gap for the bulk and Neumann surfaces

DOFs, as given by the partial stiffness matrix

[Km] =
(
[DB ] +

[
DSN

])
[K] . (16)

However, the same argument cannot be made for the remaining DOFs (i.e.,

those belonging to the Dirichlet surfaces) because the external forces are un-

known. Since the nodal forces for these DOFs do not vanish, it is proposed to

introduce a new penalization term that tends toward a common local orienta-

tion and similar magnitude. Hence, a penalty is introduced on the quadratic

norm of the gradient along each surface Si of each component of the normal

traction. Rapid variations of the unbalanced forces along the Dirichlet surfaces

are discouraged. However, in order to obtain a global force that balances the re-

sultant forces, the long wavelength components (including torques as moments

of externally applied forces) are preserved without (or with a very low) penalty.

This point is important in order not to prevent reaching the proper solution

because of a heuristic smoothness assumption, which does not intend to reflect

reality. Under a continuous setting, this surface regularization cost function is

written as

ΦSi =

∫
Si
‖∇ (σ · n)‖2 dx , (17)

where n is the outward surface normal.

The surface gradient operator with the proposed FE discretization is denoted

by [G]. The L2 norm of the gradient of (surface) tractions involves

[L] = [G]
ᵀ

[G] , (18)
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which can be recognized as the discrete Laplace-Beltrami operator acting on

such surface. This Laplacian can be computed, in a variational formulation [32–

34], as the product of two symmetric matrices

[L] = [A] [B] , (19)

where the mass matrixAij = 〈ϕi,ϕj〉−1 and the sparse matrixBij = 〈∇ϕi,∇ϕj〉
are defined using the L2-inner product 〈 , 〉 and the shape functions ϕi.

It is worth noting that the shape functions ϕ(x) are not the same as those

employed earlier (i.e., ψ(x)); ϕ(x) are the “restriction” of ψ(x) on the boundary.

While the latter ones provide the kinematic decomposition for the complete

mesh, the former ones define the “skin” of the mesh and thus only exist on the

mesh boundaries. As such, the “original” finite elements with shape functions

ψ(x) will generate “boundary” finite elements with shape functions ϕ(x) by

simple “decomposition.” For example, from a (3D) tetrahedral element will

originate four (2D) triangular elements, and a (2D) triangular element will lead

to three (1D) line elements. This procedure defines the corresponding (Dirichlet)

surfaces Si and their associated projection matrices DSi .

With the proposed FE discretization, the surface regularization consists in

adding the following cost function for each surface Si

ΦSi({u}) = ‖[G] [KSi ] {u}‖2 , (20)

= {u}ᵀ[KSi ]
ᵀ

[L] [KSi ] {u} , (21)

where ΦSi corresponds to the penalization for DOFs belonging to the (Dirichlet)

surface Si, as given by the partial stiffness matrix

[KSi ] = [DSi ] [K] . (22)

Let us stress that the bulk regularization is physically founded, and quite

generic; although setting the elastic properties is a point that deserves discus-

sions. Conversely, along the surfaces Si, the above suggested regularization is

heuristic and aims at producing smooth fields. It is to be emphasized that no

extraneous elasticity or surface tension is introduced as surface tractions are
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computed from bulk elasticity. As such, the proposed approach is readily ap-

plicable without the need for additional constraints, such as the “boundary”

elements being shell elements instead of the simpler linear ones being used.

Moreover, filtering out high frequency modes of surface tractions only smooths

out a boundary layer close to the regularized surface, and leaves low frequency

resultant force/torque unaffected.

2.3. Weighting Scheme

The minimization of residuals from the registration Φc, the equilibrium gap

Φm, and the “loaded” surfaces ΦSi requires the introduction of a total functional

Φt, whose weights are discussed hereafter [20–22]. Let us define

Φt({u}) =
ωc

ωt
Φ̂c({u}) +

ωm

ωt
Φ̂m({u}) +

∑
i

ωSi
ωt

Φ̂Si({u}) , (23)

with

Φ̂c({u}) = Φc({u})/Ec ,

Φ̂m({u}) = Φm({u})/Em , (24)

Φ̂Si({u}) = ΦSi({u})/ESi .

The values of the weights ω and normalization “energies” E are found with the

help of a trial displacement field, v(x) in the form of a pure shear wave

v(x) = sin(2πk · x) , (25)

with displacement orthogonal to the wavevector k. The latter is oriented along

the largest dimension in the considered region of interest, and defined so that a

few wave periods are captured (for a proper statistical sampling of Ec, and yet

no mesh size dependence in Em or ESi). The proposed trial field has the benefit

of providing an isochoric deformation field. Any other choice would involve a

dependence with the Poisson’s ratio.
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The normalizing energies are set so that Φ̂c(v) = 1, hence

Ec = Φc({v}) = {v}ᵀ [M c] {v} ,

Em = Φm({v}) (26)

ESi = ΦSi({v}) ,

where {v} collects the nodal displacements associated with the trial displace-

ment field v. It should be noted that while Ec is wavelength independent, the

wavelength dependence of Em and ESi are of fourth order, as identified by di-

mensional analysis (see Appendix A ). The last two terms work as low-pass

filters that locally dampen out abrupt displacement gradients and are tuned by

means of characteristic lengths ξ. Moreover, since the normalization comes from

the global energy, and not the maximum density, the wavevector does not play

any role once the image texture is well sampled.

These characteristic lengths ξ are introduced as different parameters for each

of the regularizing terms, so as to provide the corresponding weighting terms

ωc = 1 ,

ωm = (ξm |k|)4
, (27)

ωSi = (ξSi |k|)4
,

and

ωt = ωc + ωm +
∑

i ωSi . (28)

The higher a regularization length ξ, the more weight is put on the associated

functional. These weights can be intuitively tuned thanks to the normalization

procedure. The regularization lengths ξ have the same units as the characteristic

length scale 1/|k| of the trial field v(x), which usually is expressed in pixels or

voxels. When the supporting FE mesh is built using the same units, for any ξ

being smaller than the characteristic element length, the associated functional

is naturally “deactivated.” Conversely, the regularization will take place for

any ξ greater than the characteristic element length. This effect can be seen as

a filter of size ξ that locally dampens out high spatial frequencies.
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2.4. Implementation

The minimization of Φt follows the same procedure as the minimization of

Φc. The incremental solution is given by the new linear system

([M c] + [M reg]) {δu} = {b} − [M reg] {u} , (29)

with the regularization matrices

[M reg] = [Mm] +
∑

i

[
MSi

]
, (30)

and

[Mm] = ωm
Ec

Em
[Km]

ᵀ
[Km] , (31)[

MSi
]

= ωSi
Ec

ESi
[KSi ]

ᵀ
[L] [KSi ] . (32)

The regularized DVC code was implemented within the Correli 3.0 frame-

work [35]. The DVC terms (correlation matrix [M c] and nodal residual vector

{b}) are computed using (compiled) C++ kernels. These are called into the

MATLAB environment so as to iteratively solve equation (29).

3. Numerical Test Cases

The goal of these numerical test cases is to observe the impact of the me-

chanical regularization on a surface and the benefits of using an unstructured

mesh.

3.1. Setup of Test Cases

First, a numerical material with a rich texture and contrast is created. The

sample has “voids” of random sizes and randomly placed in the volume. The

size of the created volume is Lx × Ly × Lz, with Lx = 75 vx, Ly = 35 vx and

Lz = 25 vx (vx as in voxel). This virtual sample is considered as the reference

image in the following analyses. A 3D rendering is shown in figure 1.
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Figure 1: Reference (synthetic) image used in the numerical test cases

Second, two types of meshes are used, namely, a structured and an unstruc-

tured mesh. Both meshes are built using tetrahedral elements of length ` = 5 vx

and encompass the same ROI. The structured (resp. unstructured) mesh has

3150 (resp. 2626) elements. Then, a surface (with normal aligned with the

y-axis and placed at the origin) is selected for the regularization analysis. This

surface of interest will be referred to as Sy, and is highlighted in figure 2.

(a) (b)

Figure 2: Structured (a) and unstructured (b) meshes composed of tetrahedral

elements. The surface of interest is highlighted

Third, two types of displacement fields are considered for the analysis. The

first one has a discontinuity (of 1-voxel amplitude) representative of a crack,

and the second is sinusoidal (of 1-voxel amplitude). Using ı̂ as the unit vector

along the x-direction, the crack-like displacement field is defined as

uref
crack(x) = 0.5 · sign (x · ı̂− Lx/2) · ı̂ , (33)
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so that a crack appears at the center of the ROI and each half of the specimen

moves outward. The sinusoidal displacement is defined via an elastic simulation

of an isotropic material with the following boundary conditions applied on the

surface Sy

uref
sine(x) = 0.5 · cos (2π · x · ı̂/Lx) · ̂ for x ∈ Sy , (34)

where ̂ is the unit vector along the y-direction. For each field, its relevant scalar

component is shown in figure 3.

−0.5 −0.25 0 0.25 0.5

(a) Crack type (along x) (b) Sine type (along y)

Figure 3: Displacement fields (expressed in voxel) used for the test case, which

is magnified for visualization purposes. The directions refer to those shown

in figure 1

Once the displacement fields are determined (i.e., they are chosen on the sur-

face and computed in the bulk using a homogeneous linear elastic model), they

are employed for generating the virtually deformed images. This is achieved by

linearly interpolating the reference image at voxel (pixel) coordinates advected

by the appropriate displacement (as given by the fields). Obtaining such appro-

priate displacements involves transforming the fields expressed in an Lagrangian

frame to an Eulerian one (i.e., performing a pull-back of coordinates), which,

for case of small displacement gradients, are identical.
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3.2. Analysis of the Results

Each of the four available cases are analyzed using different regularization

lengths ξSy for the surface of interest. These values are chosen with respect to

the element length, namely, five values are sampled between 0.2` and 4`. No

other regularization was included (bulk or free-surfaces).

The computed displacement fields ucor are compared to the reference ones.

The relevant components are extracted for the nodes belonging to the surface

Sy and averaged along the z dimension

Ucrack(x) =
1

Lz

∑
(ucor

crack(x) · ı̂) , (35)

and

Usine(x) =
1

Lz

∑
(ucor

sine(x) · ̂) for x ∈ Sy . (36)

They are shown in figure 4 with the notations U struct and Uunstruct for the

structured and unstructured meshes, respectively. Additionally, since for regu-

larization lengths ξSy < ` the regularization is not activated, all corresponding

curves should behave similarly and hide beneath each other.
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Figure 4: Comparison of reference and averaged displacement fields for all four

studied cases. The dashed line shows the reference solution.

First, let us discuss the different displacement types, regardless of the mesh.

The crack-like displacement has a discontinuity, that is, it cannot be explained

by means of a continuous displacement field locally obeying linear elasticity.

Thus, the shorter the regularization length ξSy is, the closer Ucrack should re-

semble the step function (i.e., an immediate transition). Conversely, the longer

ξSy is, the closer Ucrack should resemble the sigmoid function (i.e., a slow tran-

sition). Similarly, the prescribed displacement field Usine has a well defined

characteristic length (Lx in the present case). As stated before, the regulariza-
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tion scheme works as a low-pass filter with a cut-off frequency defined by the

regularization length ξSy . Hence, when the regularization length ξSy is less than

the characteristic length of the original sinusoid, regularization should have no

effect. Conversely, for larger values, this test case should simply dampen out

the amplitude of the prescribed field, and should not alter its frequency and

phase. Both of these features are validated in figure 4 for both types of meshes.

Second, let us discuss the effect of both meshes. The unstructured mesh

provides a better discretization of the studied fields. That is, in spite of having

a lesser number of nodes, their “random” arrangement helps to better capture

the considered displacement fields. This is, in spirit, similar to the advantage

of random search versus classical search of hyper-parameters for optimization

problems [36].

4. Experimental Case

The goal of this section is to present the advantages of the technique for a

real tensile test performed on a pre-cracked sample made of spheroidal graphite

cast iron.

4.1. Analysis Preparation

A region of interest of 4.2× 1.9× 1.6mm is imaged using a micro-CT scanner

(North Star Imaging X50+) with a resolution of 7µm. This sample was cut out

of a bigger specimen that was pre-fatigued with a load shedding technique in

order to avoid having a large plastic zone around the crack front [37, 38]. The

objective of the present test was to analyze ductile tearing in a cracked sample.

Seven tomographic scans were acquired at increasingly loading stages (the

load is kept constant while the sample is being scanned). These 3D reconstructed

volumes will be referred to as S0, S1, S2, S3, S4, S5 and S6. A 2D slice of each

scan is shown in figure 5 alongside the load at which each scan was acquired.

Scans S0, S1 and S2 are obtained in the elastic regime of the sample, thus the

crack does not open very much. This observation allows scans S0 and S1 to be
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used for assessing baseline levels and measurement uncertainties. Conversely,

crack opening is more pronounced in scans S3 and S4 when the sample has

yielded. Last, ductile tearing occurs for scans S5 and S6.
x

y

(a) S0, 61N (b) S1, 196N (c) S2, 282N

(d) S3, 646N (e) S4, 720N (f) S5, 805N (g) S6, 730N

Figure 5: (x-y) mid-thickness sections for all scans showing the test history

(crack opening and tearing) with the respective applied loads

The first scan S0, whose 3D rendering is shown in figure 6a, is chosen as

the reference for the correlation procedure. Thus, it is used for constructing the

support of the FE mesh. A first mesh that roughly aligns with the image is

created, it needs to be adjusted onto the image. The adjustment [39] is based

on two binary masks, namely, one created from the reference scan and a second

created from the domain of the FE mesh. DVC is performed between both

masks [40] with a reduced kinematics. Applying the obtained displacement field

to the FE mesh, provides the necessary geometry for the mesher [17]. As such,

the obtained unstructured tetrahedral FE mesh fits very precisely to the sample

surfaces. It should be noted that, while faintly perceptible, none of the lateral
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surfaces are aligned with the image axes. The mesh is constructed so that the

characteristic element length is ` = 25 vx. While it could be considered small (as

compared to the material microstructure), it was chosen so that unregularized

DVC would encounter difficulties for converging (i.e., 3
√
VT ≈ 14 vx, where VT

the volume of each tetrahedral element).

It is noteworthy that the presence of the crack is not taken into account,

and hence regularization will tend to bridge the two crack faces by smearing

out the displacement discontinuity over a region controlled by the regulariza-

tion length (as was observed in the previous test case). While the strategy of

introducing a discontinuity in the mesh would have been a better suited op-

tion [41, 42], the model “error” of ignoring the kinematic discontinuity allows

the role of regularization to be better highlighted.

Moreover, in order to illustrate the versatility of the proposed regularization

scheme for Dirichlet boundaries, a more complex geometry of the top boundary

is considered. A new “cropped” mesh is created by removing the uppermost

layer of elements from the original “complete” FE mesh. This leads to a new

mesh with a very uneven (jagged) upper surface. Since the lateral surfaces

are traction-free, they are considered of Neumann type. On the contrary, the

upper and bottom surfaces cut through the sample, thus they are considered

of Dirichlet type. Both meshes and the corresponding Dirichlet surfaces Sx are

shown in figure 6.
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Figure 6: (a) Volume rendering of the reference scan S0. Visualization of the (b)

“complete” and (c) “cropped” meshes with the corresponding Dirichlet surfaces

being highlighted

Using both meshes, it is proposed to study three regularization scenarios:

• none: with no regularization

• bulk: using only bulk regularization

• all: using bulk and surface regularization

All three cases are based on global DVC, and two are complemented by

the corresponding regularization. For this reason, the so-called “none” case,

which corresponds to the standard version of global DVC [43], may already be

considered as a “regularized” version of the more common (i.e., local) DVC ap-

proaches [1, 2, 12, 13] since displacement continuity is enforced over the whole

ROI. Thus, when convergence reveals difficult without regularization, most of

the existing local DVC codes would encounter even more obstacles for converg-

ing.

DVC is to be carried out between the reference configuration and each one of

the remaining six scans (these constitute all the deformed configurations). This

set of correlations will be performed in a direct manner, that is, the displacement

field found for the previous scan is used as an initialization for the current one
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even though the reference configuration is always the same. Only the first

computation (for scan S1) is performed with no initialization (all displacements

are set to zero). This procedure will be applied (individually) to each of the

three scenarios (none, bulk and all).

To ensure robustness and low uncertainties, the regularization length for

each DVC calculation (i.e., for bulk and all cases) is progressively relaxed as

the algorithm progresses. This process helps transitioning from an “educated

guess” of the displacement field (i.e., heavily regularized) toward a more faithful

representation of the actual field (i.e., less regularized). The proposed relaxation

procedure consists of performing four successive correlation steps, each with

shorter regularization lengths. These lengths are obtained by defining a scale

factor of two and the length at the finer scale ξ. Then, the correlation steps

will employ 8ξ, 4ξ, 2ξ and 1ξ (in that order). The transition between such steps

is performed either when a maximum of 50 iterations (i.e., 200 maximum per

scan) is reached or when convergence is achieved. The convergence criterion

for each correlation step is defined with respect to the L2 norm of the Gauss-

Newton update ‖δu‖ < 0.01 voxel. Moreover, the solution of a given correlation

step will be used as initialization for the following one. Similar criteria are

employed for the non-regularized none case, in which case a single correlation

step is performed per scan.

Last, for the sake of simplicity, the regularization lengths are set to ξm = α · `
for bulk and Neumann DOFs and ξS = α · ξm for the concerned (Dirichlet) sur-

faces. This allows setting α = 2 for the analyses using the “complete” FE mesh

and α = 4 for the analyses using the “cropped” FE mesh. These are two fully

separate analyses and are carried out independently from each other. Both pa-

rameterizations are tailored so as to ensure final convergence for each case (i.e.,

the “cropped” case is more complex than the “complete” one).
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4.2. Results

Let us analyze the results with the “complete” FE mesh (shown in figure 6b)

from the perspective of the correlation residual

σ =
1

∆f

√
〈η(x)2〉x , (37)

normalized by the dynamic range ∆f = max (f)−min (f). The residuals σ are

computed for each of the deformed configurations. These results are reported

in table 1 along with the total number of iterations Nit per scan.

Table 1: Number of iterations and final residual for different regularization

strategies (converged results are shown in boldface). All strategies are based

on global DVC [43]

none bulk all

Nit σ Nit σ Nit σ

S1 200 5.02% 94 3.24% 13 3.24%

S2 200 10.15% 176 3.26% 18 3.25%

S3 200 11.23% 200 5.09% 16 4.44%

S4 200 11.38% 196 3.54% 14 3.49%

S5 200 11.29% 200 4.13% 33 4.11%

S6 200 11.03% 200 5.68% 65 5.37%

With regard to the baseline measurement (between S0 and S1), the none code

does not converge (by design). Conversely, bulk and all regularizations lead to

convergence with σ = 3.24%, a low value when dealing with tomographic data.

For the remaining scans, it should be noted that all computations converged for

the all case. Yet only two and zero calculations converged for the bulk and

none regularizations, respectively. Even in bulk cases that converged (i.e., S2,

S4), it required a significantly higher number of iterations than in the all case.

This observation shows the gain associated with surface regularization.

22



It is worth mentioning that the load increment between scans is not constant.

As can be seen in figure 5, the load increase between scans S2 and S3 (364N) is

much more important than between scans S3 and S4 (74N). Additionally, the

registration is always performed with respect to the reference scan S0, and the

correlation procedures are all initialized with the results from the previous one.

Hence, the correlation step for scan S3 is much more complicated than for scan

S4. This leads to a particular case of convergence for the bulk case, in which

the scan S4 converges even though S3 did not.

A more detailed analysis of the correlation residual σ and the measured

displacement fields u(x) allow the benefits of the proposed surface regularization

to be commented. The former is shown in figure 7, with the residuals σ(x) as

functions of the x coordinate for each of the scans and both regularization cases

(i.e., bulk and all). The latter are reported in figure 8 for the last scan S6 and

both regularization cases by comparing the measured 3D displacements with the

3D rendering of the scan. These results provide a clear insight into the beneficial

effect of the proposed surface regularization, namely, the all case easily handles

the top-most surface whereas correlations with no surface regularization (i.e.,

none and bulk) cannot. It should be noted that, even though the registration

was successful in a significant part of the sample using the bulk regularization,

overall convergence was not achieved. However, just by taking this surface into

consideration (i.e., all), the problem is easily solved.
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Figure 7: Residuals averaged over (y-z) cross-sections as a function of x for the

two regularization cases. The peaks correspond to the crack.

As a side remark, a slight increase of residuals between scans can be seen

in figure 7. This effect is due to ductile tearing, namely, crack opening and

propagation introduces many “black” (i.e., zero valued) voxels in the ROI of

the deformed configuration. Because the residuals are rescaled globally, they

increase alongside the cracking mechanisms.
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Figure 8: Longitudinal displacement (expressed in voxels) for the cases with

(a) bulk and (b) all regularizations using the “complete” FE mesh. (c) 3D

rendering of scan S6

Last, figure 9 shows the mid-thickness slice of each residual η(x) at conver-

gence when all DOFs are regularized. For scan S2, the crack does not open

sufficiently to have a signature in the gray level residuals. Conversely, the crack

opens more significantly for scans S3 and S4 but does not propagate. Ductile

tearing occurs in scans S5 and S6. Apart from the zones around the crack sur-

face, the residuals are identical in levels as in the baseline scan S1. Moreover,

when using the “cropped” mesh neither the none or the bulk regularization sce-

narios converge. Convergence is achieved only when the complete regularization

is used for the Dirichlet surfaces (i.e., all). The residuals corresponding to the

“cropped” mesh are virtually identical to those obtained using the “complete”

mesh (e.g., figures 9f and 9l) even though the uppermost surface is very rough.

All these observations further validate the regularization strategy for arbitrarily

complex surface geometries.
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Figure 9: (x-y) mid-thickness gray level residuals with all DOFs regularized,

using (a)-(f) the “complete” mesh or (g)-(l) the “cropped” mesh. The outline

indicates the mesh boundary

5. Conclusions

The complete mechanical regularization proposed herein opens many pos-

sibilities in the field of global (i.e., FE-based) Digital Image and Volume Cor-

relation. First, the method is directly applicable to both 3D and 2D cases

(i.e., DVC and DIC) with no need for developing customized regularization

operators. Likewise, the use of the Laplacian operator allows for the study of

arbitrarily complex shapes, that is, not limited to flat (resp. straight) surfaces

(resp. boundaries) [20, 22, 23]. This observation implies that objects can now

be studied in their entirety, instead of traditional approaches that limit their

regions of interest to the interior of the object (i.e., the bulk). Furthermore,
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each of these boundaries can be accounted for differently, according to the initial

conditions (i.e., Dirichlet or Neumann type).

Since the technique is an extension to the bulk mechanical regularization, it

naturally inherits all its benefits. As such, it provides a mechanically admissi-

ble displacement field that best registers the images. Additionally, it provides

lower levels of uncertainty, even when dealing with images of poor quality. It

further reveals the advantages of regularization over some traditional multiscale

approaches, in particular for unstructured meshes.

The results presented herein (numerical and real tests) confirm all these

properties. A noteworthy benefit of the complete mechanical regularization is

its fast convergence. In practical terms, this result implies that even complex

cases can be treated both robustly and fast. Moreover, besides the definition

of the FE mesh, the only parameters required for the proposed regularization

scheme are the (very intuitive) regularization lengths for the bulk and bound-

aries. Likewise, simple cases, which may not “require” regularization, can ben-

efit from faster convergence. This desirable behavior (i.e., well-conditioning) is

shown in the analyzed experiment where a complex case was swiftly solved (i.e.,

low number of iterations) using the complete regularization scheme.

The regularization used herein was based on plain linear elasticity. If a

better appreciation of the sample constitutive law is available, the corresponding

regularization can be generalized. This would still penalize the unbalanced

forces and allow larger regularization lengths to be used.

Last, while most of the discussion focused on 3D aspects (i.e., DVC), it is

important to stress that it is also valid for 2D analyses (via DIC).
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Appendix A. Scaling of regularization length

To illustrate the scaling of the boundary term, let us consider a 2D case

(x, y) where a simple solution is available. The domain to be considered is

a semi-infinite plane x < 0. Then, considering an antiplane situation (i.e.,

ux = uy = 0), the displacement in the direction perpendicular to the plane is

defined as (with the real part omitted)

uz(x, y) = exp(q · x+ i · q · y) , (A.1)

for any real q. It is observed that, since

uz,xx = q2uz (A.2)

uz,yy = −q2uz , (A.3)

then uz is the solution to a homogeneous elastic problem as it obeys ∇2uz = 0.

From the antiplane condition, the only non-vanishing strain components are

εxz(x, y) = q · uz (A.4)

εyz(x, y) = i · q · uz (A.5)

and the corresponding symmetric component εzx and εzy. Thus, the stress

tensor reduces to

σ = 2µ · ε , (A.6)
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and the normal traction along the boundary x = 0 reads

tz(y) = 2µ · εxz(0, y) , (A.7)

= 2µ · q · exp(i · q · y) . (A.8)

Last, the proposed regularization is based on the quadratic norm of the

gradient of tz along y (including real part that was earlier omitted)

r = |∂ytz(y)|2 (A.9)

= |2µ · q2 · sin(q · y)|2 , (A.10)

which, when integrated over y along a large distance (as compared to 1/q),

becomes ∫ Ly

0

r dy ≈ 2µ2 · q4 · Ly . (A.11)

Hence, the scaling of the regularization kernel is q4, the fourth power also ob-

served in bulk regularization, where q = 2π|k| in equation (25).
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