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Abstract

We studied millimeter-size aqueous sessile drops in an ambient oil

environment in a classical electrowetting con�guration with a wire

shaped electrode placed at a variable height above the substrate. Within

a certain range of height and above a certain threshold voltage the drop

oscillates periodically between two morphologies where it is either at-

tached to the wire or detached from it. We determine the range of

control parameters wire height and voltage in which oscillations occur

and explain it by a simple capillary model. Furthermore, we analyze

the dynamics of the oscillations using high speed video microscopy and

numerical �uid dynamics modeling. We develop a one-dimensional

harmonic oscillator model that describes the dependence of the drop

oscillations on the relevant intrinsic (surface tension, viscosity, density)

and extrinsic (wire height, voltage) parameters.

1 Introduction

Micromanipulation of liquid droplets is the basis of digital micro�uidic sys-
tems in which droplets are the elementary units that carry a biological or
chemical content.1 To be functional, the micro�uidic system considered
does not only have to provide several elementary handling operations on
the unit, like production, actuation, splitting and fusion; it should also be
adapted to the particular biochemical constraints of the liquid used, reduce
cross-contamination between samples and promote mixing at small scales.
Amongst the various ways to actuate liquid at the microscale, electrowet-
ting2,3 is a particularly promising technique. Its e�ciency and versatility has
been demonstrated by various groups, not only for functional lab-on-a-chip
devices 1,4�9 but also for tunable lenses,10,11 displays,12 and optical switches.13

Despite the large number of applications, modeling of electrowetting has so
far mainly been restricted to static situations - except for a few recent contri-
butions. In the present paper we discuss the behavior of drops in a classical
electrowetting con�guration with a wire shaped electrode held at a variable
distance d above the substrate. The electrode is barely immersed into the
drop, such that it detaches from the wire upon applying a su�ciently high
voltage. After the detachment, no more voltage is applied to the drop and
hence it relaxes back towards its shape at zero voltage. Upon doing so, it
reattaches to the electrodes whereupon it spreads again, thereby starting a
cycle of periodic drop oscillations. The present work is an extension of our
previous work on oscillating capillary bridges.14,15 In a previous communica-
tion, we showed that the relaxation of the drop towards its zero voltage shape
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can be controlled either electrically if the drop retains a �nite charge after
the detachment, or purely hydrodynamically if it is discharged during the
pinch o� from the wire.16 While the static stability diagram to be described
below applies in both cases, for the dynamic part we will focus in the present
paper on hydrodynamically controlled oscillations.
The paper is organized as follows: after a brief introduction into the basics
of electrowetting at the end of this section, we describe the experimental
setup in section II. Subsequently, we present the experimental data and a
simple static capillary model to describe the range of stability and instability
of both the attached and the detached morphology in the parameter space
spanned by the substrate-wire distance d and the applied voltage U (section
III). In section IV we analyze the dynamic behavior of the oscillating drops
by comparing high speed video microscopy images and numerical (volume-
of-�uid) simulations. In the discussion section (V), we map the dynamics
of the oscillating drops onto a one-dimensional damped harmonic oscillator.
This model turns out to contain all the relevant ingredients to understand
the basic physics of the oscillations.
Let us now brie�y review the basics of electrowetting. When a drop is de-
posited on a surface the energies of the various interfaces determine the value
of contact angle17 θY . When a voltage is applied between a conductive liquid
and an electrode on a substrate, the solid-liquid interfacial energy decreases
quadratically with the applied voltage, as shown by Lippmann in 1875.18 In
recent years, electrowetting on dielectric, a variant of Lippmann's original
"electrocapillarity e�ect" has become the standard con�guration for electro-
static actuation of sessile drops (see Fig. 1). In this con�guration a thin
dielectric coating separates the electrode from the liquid and thus prevents
electrical currents from �owing. Under these conditions, applying a voltage
between the drop and the electrode gives rise to electrostatic charging of the
parallel plate capacitor formed by the (perfectly conductive) drop and the
electrode on the substrate. The resulting electrostatic energy gain of the sys-
tem is proportional to the solid-liquid interfacial area. Hence, electrowetting
on dielectric - although physically being an electrostatic e�ect - leads to an
e�ectively reduced solid-liquid interfacial energy γsl,eff (U) = γsl,0 − cU2/2,
where c = ε0εr/T is the capacitance per unit area between the drop and
the substrate electrode. ε0εr is the dielectric permittivity of the insulating
layer, T its thickness. As a consequence, the apparent contact angle θ(U) of
the drop depends on both Young's angle and the applied voltage U via the
electrowetting equation:2

cos θ = cos θY +
c

2γ
U2 = cos θY +

(
U

UL

)2

(1)
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where γ the liquid/vapor surface tension. UL = c/2γ is the characteristic
voltage scale of the problem. Electrowetting is thus a way to actively control
the wettability of a surface by a voltage. In the following we will denote
the voltage-dependent contact angle as the apparent contact angle and the
contact angle at zero voltage as Young's angle.

Figure 1: Electrowetting set-up with schematic droplet morphology in the
connected state. The drop apparent contact angle (measured by the side-
views of the sessile drops) θ is modulated by the rms value of the applied
voltage U0. The distance d is mechanically adjustable. The current is mea-
sured via the resistor Rm.

2 Material and Methods

We used a typical electrowetting set-up made of a conductive substrate, an
insulating layer, a drop of a conductive liquid (typical volume V ≈ 1µl) and
a platinum wire immersed in the drop. The wire (radius re = 50 or 125 µm)
is positioned at a controllable distance d above the substrate. An AC voltage
U = 0 ... 100 Vrms with a frequency f = 1...20 kHz is applied between the
wire and the solid substrate. The solid substrate is a conductive n+ arsenic
doped silicon wafer (conductivity 1-5 mSm) on top of which a silicon oxide
insulating layer has been thermally grown up to a thickness T = 1.15 ± 0.15
µm. An additional hydrophobic layer (OTS monolayer) has been deposited
on the surface from the liquid phase using standard protocols.19 The liquids
used are mixtures of water, glycerol and NaCl in various compositions which
allows to tune the viscosity η (2 ... 70mPas) and conductivity σ (0.1 ... 10
mS/cm) without signi�cant modi�cation of its surface tension γ ≈ 38 mN/m.
The whole set-up is immersed in a silicon oil bath (Wacker silicone oil AK

4



5, viscosity η = 5 mPas) in order to (i) prevent evaporation on the time of
the experiments, (ii) reduce contact angle hysteresis and (iii) reduce e�ect of
gravity. Young's contact angle θY of the solution under oil, measured using
a side view of a sessile drop of water, is 155�on the OTS layer and about
140�for glycerol with a few degrees (<5�) hysteresis in both cases. The
relative density of the liquids in the silicone oil is ρ = 0.2-0.3 103 kg/m3. An
Ohmic resistor (Rm = 10 kΩ) was included in series with the drop (see Fig.1).
The current through the circuit is monitored by measuring the voltage across
the resistance. The jump of the current amplitude from a zero value in the
disconnected state to a non-zero value in the connected state provides an
electrical measurement of the drop oscillation frequency. In addition, side-
views of the drop are recorded with a high-speed camera (Photron Fastcam
ultima 512) at a frame rate of 2000 fps and with an opening time of the
shutter in the range 20 - 40 µs.
The apparent contact angle θ was determined from side view images of the

Figure 2: Electrowetting curve for a water drop in oil showing the dependence
of the apparent contact angle with the applied voltage. The electrowetting
equation 1 holds below 50 V. Here UL = 50 V.

sessile drop using a custom written software. θ decreases with increasing
voltage in agreements with eq. 1 up to 50 V 2 (see Fig. 2). The hysteresis
between increasing and decreasing voltage is smaller than 5◦.

3 Morphology diagram

The experiments were performed as follows. A drop with a radius smaller
than the capillary length was deposited on the substrate. The Pt wire was

2Above 50 V contact angle saturation set in, as typically observed in electrowetting.2
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above the drop at zero voltage. There are two possible morphologies for a
droplet deposited on a surface: it can be either attached to the wire or de-
tached from it. The stability of both morphologies depends on wire-substrate
distance d and on the applied voltage U .22 We determined the stability lim-
its of both morphologies by varying d and U systematically. The result is
shown in Fig. 3, where we rescaled the abscissa and the ordinate by UL and
by V 1/3, respectively. At large separation (region A), the droplet is always
detached from the wire, whereas at small separation (region B), it is always
attached. At low voltage, there is a region (C) in which the morphology is
history dependent. If region C is entered from above (i.e. from region A), the
drop is detached from the wire, whereas upon entering from below (region
B) it is attached. In region C both morphologies are thus metastable. The
upper boundary of region C, dmax(U0) (solid line and black circles), repre-
sents the stability limit of the attached state, whereas the lower boundary,
dmin (dashed line), represents the stability limit of the detached phase. This
is the well-known phenomenon of capillary hysteresis. Upon increasing U the
width of region C decreases. At the threshold voltage UT , the stability limits
dmin(U) and dmax(U) cross and continue as smooth continuous functions of
U . Placing the wire at a distance d such that dmin < d < dmax for U > UT
(region D) gives rise to the following situation situation: d is both above
the stability limit of the attached morphology and below the stability limit
of the detached morphologies. Hence both morphologies are unstable. As a
consequence the system oscillates periodically between the attached and the
detached state in this region (triangles in Fig. 3).

To characterize this dynamic phase diagram in more detail, we determined
the threshold voltage for drop oscillations for various drop volumes V (V ∼
0.12 . . . 5.3 µL ) and for two di�erent radii re of the electrode (50µm and
125µm). Both increasing V and decreasing re were found to reduce UT (see
inset 4).

The raw data could be collapsed onto a master curve by rescaling re by
V 1/3, see Fig.4.

To understand this morphological diagram and the behavior of the thresh-
old voltage, we developed a simple capillary model. The stability limit of the
detached phase is rather obvious: as soon as

d < h(U = 0), (2)

where

h(θ(U)) =

(
3V

π

)1/3
1− cos θ(U)

2− 3 cos θ(U) + 3 cos3 θ(U)
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A B

C

D

Figure 3: Dynamic phase diagram for a drop of V ≈ 4 µL with UL = 50
V. In region A, connected states are unstable (the black dots represent the
experimental stability limit of the connected morphology.); in region B only
connected states are stable; C is the region of capillary hysteresis and D is
the oscillation region in which oscillations are stable (triangle up) or unstable
(triangle down). The limits of the regions are in agreement with the model
(solid line: stability limit of attached morphologies dmax; dashed line: height
of the drop with Young's angle h(U = 0)/V 1/3).

Figure 4: Dependence of the threshold contact angle θT with rescaled drop
size. Diamonds have been obtained with re = 50 µm and crosses with re =
125 µm. The full line corresponds to Eq. 3, the dashed line is obtained by a
model based on stability of unduloids.22
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is the height of the drop at voltage U , the wire touches the drop and thus
gets immersed. For drops that are completely discharged after detachment
this condition thus gives rise to a voltage-independent horizontal line that
depends only on the contact angle if we rescale all lengths by V 1/3 (see
Fig.3). What determines the stability limit of the attached morphology? As
long as the drop is su�ciently large compared to the wire, we may regard
the attached drop as a spherical cap of (rescaled) height h̃(U) = h(U)/V 1/3

with a tiny capillary neck of negligible volume attached to it. The stability
limit of the attached morphology is thus determined by the maximum length
of that neck. Using Rayleigh's classical argument we expect that the neck
becomes unstable when its height is of the order of its circumference 2πre
31 (see e.g. bottom right snapshot of Figure 7). This leads to a maximum
height of the electrode:

d̃max(θ) = h̃(θ) + kr̃e (3)

where k is a �t parameter, which we expect to be of order 2π. Using the
experimental electrowetting curve (Fig.2) to convert the applied voltage into
a contact angle, we obtain k ≈ 5 upon �tting the eq.3 to the experimental
data in Fig.3. Obviously, the maximum electrode height decreases with de-
creasing contact angle, i.e. with increasing voltage. As a consequence, there
is - at low voltage - a range of electrode heights for which both morphologies
are (meta)stable. At high voltage, however, there is a range of d values where
neither morphology is stable. This range of droplet oscillations is determined
by the criterion

d̃max(U) < d̃ < h̃(0) (4)

From this equation it is also clear that the threshold of voltage for drop os-
cillations is given by d̃max(θ(UT )) = h̃(0). The solid line in Fig.4 shows the
solution of this equation for UT (using k=5). It produces good agreement
with the experimental data for large volumes, V 1/3/re ∼ 10 and larger but
fails at smaller volumes. The reason for this failure is that the decomposition
of the attached drop into a spherical cap and a capillary neck of negligible
volume is no longer justi�ed for small drops. In that range the stability of the
exact solutions of the capillary equation, the general axisymmetric surfaces
of constant means curvature (Delaunay surfaces) 27 has to be analyzed as
described recently.22 Without any �t parameter it gives rise to the dashed
line in Fig.4, which reproduces the experimental results also for small vol-
umes. This analysis also shows that the relevant length scale for the pinch
o� problem is actually the electrode radius rather that the drop size, which
is obviously of no relevance.
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4 Dynamics

In the following, we focus on the dynamics of drop oscillations. Assume
that we immerse the wire deeply into the drop and set a voltage U>UT .
Then we increase d in a quasistatic process to enter the oscillatory region.
Upon crossing dmax(U), the drop breaks o� the electrode. Two di�erent
kinds of drop behavior are then observed, depending on the conductivity
and the AC frequency of the applied voltage.16 At low frequency (or at DC
voltage) and/or high conductivity, the drop detaches without changing the
contact angle substantially (on average). We thus end up with a spherical
cap with contact angle θ ∼ θ(U). On a time scale of many seconds up to
minutes (depending on the quality of the insulating layer) θ slowly relaxes
back towards θY . At some point the apex of the drop reaches the height d
and the drop touches the electrode again. At this moment, the contact angle
suddenly drops back to θ(U), the drop spreads again until it detaches once
more from the wire and the entire cycles begins again. This gives rise to
highly 'asymmetric' oscillations in which the drop spends most of its time in
the detached state and only a short time in the attached one. The explanation
of this dynamics is very simple: once the drop is detached from the wire, its
contact angle is determined by its charge following

cos θL(q) = cos θY +
q2

2CAslγ
(5)

where C = cAsl is the total capacitance between the drop and the substrate
electrode (Asl: solid-liquid interfacial area). For DC voltage, the charge is
simply given by q = Qmax = CU , which means that the contact angle does
not change upon detachment of the drop from the electrode. On longer time
scales, the drop slowly discharges via unavoidable creep currents, giving rise
to the observed slow relaxation of the contact angle and the overall drop
shape.

At high AC frequency (and/or at low conductivity), the behavior is com-
pletely di�erent. In this regime, the contact angle increases immediately
more of less to θY upon detachment from the wire. As a consequence, the
drop shape evolves back towards a spherical cap with θ = θY on a time scale
of order milliseconds rather than seconds to minutes. During this process, it
touches the wire again, whereupon the contact angle switches back to θ(U)
and the cycle starts again. This gives rise a very fast drop oscillations with
a frequency ranging from ∼10Hz to ∼100Hz, depending on the exact drop
size and the viscosity. These fast oscillations are thus much more symmetric
with the fraction of time spent in the attached state, ton, and the detached
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state, toff , both being of the order of tens of milliseconds. Details, however,
still depend on both d and U , as will be discussed below.

From eq.5 it is obvious that the rapid increase in contact angle in the fast
oscillatory regime implies that the drop is essentially discharged after the
detachment process. We described in detail in a previous publication16 that
such a discharge can indeed take place during the last moments of pinch o� of
the capillary neck. In that work we showed that the charge in the �nal state
is determined by a balance of three factors: (i) the AC frequency, (ii) the RC-
time constant formed by the ohmic resistance of the capillary neck (which
diverges algebraically upon pinch o�) and the capacitance between the drop
and the substrate electrode, and (iii) a characteristic hydrodynamic time
scale τ of the capillary pinch o�, which depends on the oil-water interfacial
tension and the viscosity. All these factors can be combined in a dimension-
less parameter α = 2πf(R0Ct

µ
0)1/(1+µ). In this expression 1/2<µ<3/2 is the

exponent of the neck resistance divergence and R0 = 1/σre is the charac-
teristic resistance of the neck. For α � 1 the drop charge varies randomly
between ±Qmax = CU , for α� 1, however, it goes to zero 3 In the following,
we will focus on fast oscillations with α� 1.

Fig.5 shows the electrical current through the circuit, which displays a
non-zero value when the drop is in contact with the electrode during drop
oscillations. Fig.5(a) corresponds to parameter values of d and U deep inside
oscillatory region.

Oscillations are very periodic and the frequency is well-de�ned. The
absolute frequency depends on both parameters. For instance, for a ∼4 µL
drop of viscosity 15 mPas frequency of the oscillations is increasing from 26
Hz at 37 V to 42 Hz at 50 V with only a few percent variation when d is varied
in the whole range of the oscillating regime. Furthermore, the frequency also
depends on the drop size and on the viscosities. However, no signi�cant
variations have been observed with the electrical conductivity (within the
range that guarantees complete drop discharge upon detachment).

The measurement of the electrical current allows to measure the time
spent in the attached state and in the detached state. Variations of d do
a�ect the relative time spent in the attached and in the detached state,
respectively. In Fig. 6 we display the fraction of time αi = ti/(ton + toff ))
with i=on, off spent in either state as a function of d. As naturally expected,
the time spent in the on (resp. o�) state increases (resp. decreases) with
decreasing (resp. increasing) d.

Close to the boundary of the oscillatory region the oscillation frequency

3For intermediate values of α the charge can adopt a random value between zero and
an α-dependent maximum value16
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Figure 5: Electrical current indicating the drop / electrode connection. The
current is normalized by its maximal value. (a) deep in the oscillating regime
(U = 50 V, d = 1.69 mm) the oscillations are stable. (b) close to boundary
(U = 40 V, d = 1.73 mm), the oscillations are erratic.
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Figure 6: Time spent in the on state as a function of distance for 3 voltages
in the oscillating regime. Experimental data (+) and comparison with the
model (full line). The parameters of the model are θ =100, 90 and 80 degrees
(top to bottom), Q = 0.5, V =3.76 µL, θY = 140 degrees in reasonable
agreement with the experimental values.

is not well-de�ned. Fig. 5(b) shows that the oscillations are rather irregular
with periods of slowly relaxing drops (via creep currents; see above) inter-
changing with periods of fast oscillations.
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Apart from the parameters d and U , which control also the morphological
diagram in Fig. 3, the oscillation dynamics depend also on the viscosity of
the drop and on its volume. Two typical dynamics of oscillations have been
observed. For large volumes and small viscosities the drop shape displays
large amplitude deformation while for small volumes and large viscosities
the drop remains more or less spherical cap shaped. In both cases, the ap-
parent contact angle of the drop is a dynamic advancing contact angle close
to the electrowetting angle θ(U) in the connected state and a receding contact
angle close to Young's angle θY in the disconnected state. The switch from
θ(U) to θY and back occurs on time scales much faster than the oscillation
period. Examples (snapshots from high speed video clips) of the two types
of oscillations are displayed in Fig. 7(a) and 8(a).

In view of the fast switch of the contact angle, we concluded that the
oscillation dynamics are in fact completely determined by the hydrodynamic
response of the drop to this instantaneous change of the boundary condition.
To test this idea, we implemented a numerical simulation scheme of drop
oscillations using the volume of �uid (VOF) method with the commercial
�uid dynamics package CFD-ACE+ (Fig. 7 (b) and 8 (b)). In the code,
the drop dynamics are driven entirely by the switching of the contact angle
between the indicated values as the drop either detaches from the wire or
reattaches to it 4. As becomes apparent from the �gures, the qualitative
features of the dynamics are rather well reproduced - although the absolute
oscillation frequency is not perfectly reproduced (see below). Table 1 shows
the variation of the times spent in the attached and the detached states,
respectively, as well as the oscillation frequencies for a series of parameter
values.

These results con�rm on a semiquantitative level the validity of the ap-
proach taken here. The oscillation dynamics are entirely determined by the
hydrodynamic response of the drop to variations of the contact angle. Elec-
tric �elds do not in�uence the drop oscillations directly. They enter only
indirectly via the induced variation of the contact angle. While the over-
all drop shapes are correctly reproduced by the numerical calculations, a
quantitative comparison of the frequencies shows a slight mismatch, prob-
ably caused by the di�erence of the parameters between experiments and
simulations or more fundamentally by the physical description of the contact
line motion.

Both the experimental results as well as the numerical calculations show

4Numerical methods such as VOF are known to have di�culties in capturing accurately
singularities such as during capillary pinch o�. However, since the pinch o� occurs on a
time scale much smaller than the period of the drop oscillation we do not expect such
errors to play an important role for the overall dynamics.
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(a)

(b)

Figure 7: High-speed snapshots of the oscillations of 1 µL aqueous drop in
oil and corresponding numerical simulations (VOF, CFD-ACE+ package),
inertial regime η ≈ 2 mPas. (a): d = 1.26 mm, F = 72 Hz, time between
two frames 1.5 - 2 ms. (b): numerical calculation d = 1.21 mm, F = 93 Hz,
time between two frames 1.4 ms.

that the oscillation frequency depends strongly on the contact angle. During
the oscillations, one should obviously take into account the speed-dependent
dynamic contact angle rather than the static value, which we used here. Fur-
thermore, it is to be expected that electric �eld-induced distortions of the
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(a)

(b)

Figure 8: High-speed snapshots of the oscillations of 1 µL aqueous drop in
oil and corresponding numerical simulations (VOF, CFD-ACE+ package),
viscous regime η ≈ 80 mPas. (a): d = 1.10 mm, F = 24 Hz, time between
two frames 5 ms.(b) d = 1.10 mm, F = 34 Hz, time between two frames 3.7
ms

drop surface pro�le, which are already present in the static situation,26 or
dynamic aspects of the entrapment of thin �lms of the ambient oil,20 also
a�ect the drop dynamics. Such e�ects, however, require additional simula-
tions with more sophisticated numerical tools than currently available to us.
Within the scope of the present analysis, we content ourselves with the con-
clusion that the qualitative aspects of the oscillation dynamics for both low
viscosity inertia-dominated drops as well as for viscosity-dominated drops
are well reproduced.
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d (mm)
θ [deg] 0.90 1.00 1.10 1.15 1.17 1.20

50 ton [ms] 40
toff [ms] 7

65 ton [ms] ∞ 51 14 13 13 9
toff [ms] 6 8 9 10 13

75 ton [ms] ∞ 25 16 14
toff [ms] 8 9 10

85 ton [ms] ∞ 32
toff [ms] 10

Table 1: Numerical simulations results: time in the connected state (ton) or
disconnected state (toff ).

5 Discussion

By changing the contact angle abruptly between a low and a high value upon
breaking the capillary neck or upon reattaching to the electrode, we excite
oscillations of the drop. The spectrum of eigenfrequencies of free drops was
investigated by Lamb.21 The evolution of the drop shape suggests that sev-
eral eigenmodes are excited simultaneously, in particular for the low viscosity
case. Rather than analyzing these eigenmodes in detail we will analyse the
oscillating drops as a simple damped harmonic oscillator in order to provide
a physical understanding of how the oscillation dynamics depend on (i) pa-
rameters characterizing the drop (density and size, viscosity, surface tension)
and (ii) on the external control parameters d and U .

To perform the mapping, we follow a model similar to the one described
by Okumura et al.30 for bouncing drops on superhydrophobic surfaces. The
deformations induced by the fast changes of the contact angle are balanced
either by viscous dissipation or by inertia or a combination of both. The drop
shape is described in radial coordinate by a function R = R0 +R1(φ, t) with
R0 the drop radius at rest (zero voltage), R1 a time-dependent perturbation
and φ the angle with respect to the vertical (see Fig. 9).

In order to determine the time-scale of the drop dynamics we consider
the Navier-Stokes equation expressing the balance of acceleration by capillary
forces and viscous dissipation:

du

dt
+ u∇u =

η

ρ
∇2u− 1

ρ
∇p (6)

where the speed u ∼ dR/dt. From a dimensional perspective, we �nd u ∼
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Figure 9: Sketch of the capillary problem considered. The relaxation of the
perturbation εR1 is balanced by viscous dissipation or inertia. h is the height
of the apex of the drop (see Eq. 8 and 9)

R1/τ where τ is the time-scale of the motion, du/dt ∼ R1/τ
2 and u∇u ∼

R2
1/(R0τ

2). Hence the non-linear term u∇u can be neglected as long as the
amplitude R1 of the perturbations is smaller than the drop size R0. p is the
capillary pressure linked to the curvature of the interface ∇p ∼ γ/R0 ·R1/R

2
0.

Therefore Eq. 6 can be rewritten as a damped harmonic oscillator equation
for R1:

R̈1 +
1

Q
Ṙ1 +R1 = 0 (7)

with a dimensionless time t̃ = tω where ω2
0 = γ/(ρR3

0) is the eigenfrequency
of the undamped system. The dots indicate time derivatives, as usual. (As
already noted, we neglect the presence of higher eigenmodes in this analysis.)
The quality factor of the oscillator Q = (ργR0)

1/2/η is given by the inverse
of the Ohnesorge number Oh = η/(ργR0)

1/2. The latter is the characteristic
number appearing whenever viscosity, inertia and capillarity compete with
each other, as for instance in drop impact problems23 and capillary breakup.24

From eq.7 it is thus clear that the dependence of the oscillation dynamics of
the drop parameters is represented by the two parameters ω0 and Oh in this
homogeneous equation.

Depending on the value of Oh di�erent regimes are obtained. In the
extreme case of inviscid �uids, Oh � 1 ( Q ∼ ∞), the system behaves as a
spring without damping. The frequency of the oscillations is therefore given
by the only remaining time-scale:

Fc ∼ ω0 =

(
γ

ρR3
0

)1/2

For the drop shown in Fig. 5 we have Oh ≈ 0.01, i.e. the system behaves
as a weakly damped oscillator. This explains the overshoot above the static
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height and the other inertia driven deformations of the drop surface.
In the case of an extremely viscous �uid (Oh � 1), inertia is of minor
importance. Keeping only the viscous term the frequency of the oscillations
is now given by the relaxation time of the system:

Fv ∼
γ

ηR0

For the data shown in Fig. 8 we have Oh ≈ 1. These oscillation thus fall
into the intermediate regime inertia, where capillarity and viscous damping
are equally important.

While ω0 and Oh characterize the intrinsic response of the drop, the
experimental control parameters d and U will determine the strength and the
time-dependence of the external forces, i.e. the inhomogeneities to be added
in eq. 7. To understand this aspect it is convenient to rewrite eq. 7 focusing
on the dynamics of the drop apex characterized by h(t), i.e. R(φ = π).

ḧ+Oh× ḣ+ h = heq (8)

where

heq =

{
h0 for h(t) < hc
h(U) for h(t) > d

(9)

with hc = d − kre is the critical height where the capillary neck breaks
(cf. Eq. 3). For d − kre < h(t) < d, the value of heq can adopt either
value depending on the history, i.e. heq = h(U) if the drop was previously
attached, and heq = h0 if the drop was previously detached. This explains the
role of the external control parameters: the larger U , the larger the di�erence
between h0 and h(U) and thus the stronger the external driving force acting
on the oscillator. d controls the timing when external forces are switched
between the two values.

In Fig.10 we display the results of the dynamics of the drop apex for a
viscous drop of volume V = 3.76 µL with Q = 0.5. The drop is initally
connected to the wire placed at d = 1.5 mm at t=0. In this case, heq = h(U)
and the drop apex begins to relax exponentially towards this equilibrium
value (dashed line in Fig. 10). Upon doing so, the capillary neck breaks at
t1 whereupon the equilibrium values switches to heq = h0. Hence the drop
begins to relax towards this new equilibrium value (dotted and dashed line
in Fig. 10) until it reaches h = d at t = t2, whereupon heq switches back to
h(U), etc. The apex height thus oscillates periodically between d and hc (full
line in Fig. 10, as observed experimentally. The time the systems spends
in either the attached (ton) or the detached (toff ) morphology and thus the
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Figure 10: Dynamics of drop apex. Solution of the model for θY =140 de-
grees, θ = 80 degrees, Q = 0.5, V = 3.76 µL. The dashed line corresponds
to the spreading without detachment, the dashed-and-dotted line to the re-
laxation to a drop with Young's contact angle without reattachment and the
full line the oscillations. Each time the interface crosses the gray lines, the
condition of equilibrium is switched. The over- and under- shoots are results
of inertia.

oscillation period is strongly a�ected by both d and U . For instance it is
obvious that ton should increase upon reducing d (and thus hc). In fact, we
expect ton to diverge as hc approaches h(U). Similarly, toff is expected to
increase and diverge as d is increased and approaches h0. A comparison of
the model with the experimental measurements of ton is displayed on Fig. 6
showing that the model predicts correctly the variations of the experimental
points. The model however overestimates the drop frequency by a factor
of ∼2 which might be caused by additional dissipations (at the contact line
or in the surrounding �uid) that are not considered here. If we include the
e�ect of inertia into this picture, the main qualitative di�erence is that we
expect the value of h(t) no longer to be con�ned between d and hc. Rather,
dynamic overshoots and undershoots will occur, as observed in both the
experiments and the numerical simulations (see Fig.7). In agreement with
the experiments, these overshoots also explain that drop oscillations (once
started) can be observed at wire positions d > h0 for low viscosity drops.

The model gives also a qualitative explanation for the irregular burst-
like oscillations observed close to the edge of the oscillatory region. In most
experiments there is still a small random residual charge charge q on the
drop after the detachment, with a maximum value is given by Qmax.

16 This
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reduces the equilibrium height of the drop from h0 to h(q), as can be derived
from eq.5. If h0 < d < h(Qmax) the randomly picked value of q determines
whether the drop can reach the wire within the hydrodynamically governed
time-scale of the fast oscillations or not. For d just above h(Qmax, this is the
case after most detachment events, but sometimes q is su�ciently close to
Qmax such that the oscillations are blocked for a certain time.

6 Conclusions

In summary we were able to quantify the geometric and electric conditions
required for the generation of self-excited drop oscillations in electrowetting.
A simple geometric capillary model was developed to identify the regions
within the two-dimensional parameter space d − U where drop oscillations
occur, including the threshold voltage UT . To model the oscillation dynam-
ics, the drop was mapped onto a damped harmonic oscillator in which the
intrinsic �uid parameters determine the response of the droplet to an external
force that is switched periodically between two values as the drop attaches to
the wire and detaches from it. The timing of the external force is set by the
external control parameters d and U . From a more general perspective, the
success of the modeling presented in this work corroborates two statements
that apply to more or less any electrowetting experiment: (i) the character-
istic hydrodynamic response times of drops are determined by the balance
of three intrinsic �uid dynamic properties of the drops: surface tension, vis-
cosity, and density. The relative importance of these three contributions can
be read from the Ohnesorge number Oh = η/(ργR0)

1/2. (ii) variations of
the contact angle are instantaneous on the time scale of the typical hydro-
dynamic response times of the drops. Under usual experimental conditions,
there is thus a separation of time scale. As a consequence, the drop dynamics
can be modeled by an instantaneous variation of the local contact angle to
the voltage applied to the electrode(s) in the system, followed by a purely
hydrodynamic response of the liquid on longer times.

We thank Renate Nikopoulos, Udo Kra�t and Manfred Hörger for tech-
nical assistance. We are also indebted to Ralf Seemann, Stephan Herming-
haus and Martin Brinkmann for fruitful discussions and comments on the
manuscript. This work was supported by the German Science Foundation
within the priority program Wetting and Structure Formation at Interfaces
and by the Institute of Mechanics, Process and Control Twente (IMPACT).
J.-C. Baret acknowledges support by a Marie Curie Industry Host Fellowship
IST-1999-80004.

19



References

1. Pollack, M. G.; Shenderov, A. D.; Fair, R. B. Lab on a Chip 2002, 2,

96-101.

2. Mugele, F.; Baret, J.-C. J. Phys. Cond. Matter 2005, 17, R705-R774.

3. Darhuber, A. A.; Troian, S. M. Annu. Rev. Fluid Mech. 2005, 37, 425-
55.

4. Cho, S. K.; Moon, H.; Kim, C. J. J. Microelectromechanical systems

2003, 12, 70-80.

5. Srinivasan, V.; Pamula, V. K; Fair, R. B. Lab Chip 2004, 4, 310-315.

6. Dubois, P.; Marchand, G; Fouillet, Y.; Berthier, J; Douki, T.; Has-
sine, F; Gmouth, S.; Vaultier, M. Anal. Chem. 2006, 78, 4909-4917.

7. Wheeler, A. R.; Moon, H; Kim, C. J.; Loo, J. A.; Garrell, R. L. Anal.
Chem 2004, 76, 4833-4838.

8. Yoon, J. Y.; Garrell, R. L. Anal. Chem 2003, 75, 5097-5102.

9. Paik, P.; Pamula, V. K.; Fair, R. B. Lab Chip 2003, 3, 253-259.

10. Berge, B.; Peseux, J. Eur. Phys. J. 2000, E, 159-163.

11. Hendriks, B.; As, S. K. M. V.; Renders, C.; Tukker, T. Optical Review
2005, 12, 255-259.

12. Hayes, R. A.; Feenstra, B. J. Nature 2003, 425, 383-385.

13. Krupenkin, T.; Yang, S.; Mach, P. Appl. Phys. Lett. 2003, 82, 316-318.

14. Klingner, A.; Herminghaus, S.; Mugele, F. Appl. Phys. Lett 2003, 81,
4187-4189.

15. Klingner, A.; Buehrle, J.; Mugele, F. Langmuir 2004, 20, 6770-6777.

16. Baret, J.-C.; Mugele, F. Phys. Rev. Letters 2006, 96, 106106.

17. Young, T. Philos. Trans. R. Soc. London 1805, 95, 65-87.

18. Lippmann, M. G. Ann. Chim. Phys 1875, 5, 494.

19. Sagiv, J. J. Am. Chem. Soc. 1980, 102,.

20



20. Staicu, A.; Mugele, F. Phys. Rev. Letters 2006, 97, 167801.

21. Lamb, H. Dover Publications; 6th Edn. 1993, .

22. Baret, J.-C.; Brinkmann, M. Phys. Rev. Letters 2006, 94, 146106.

23. Schia�no, S.; Sonin, A. A. Phys. Fluids 1997, 9, 3172-3186.

24. Eggers, J. Rev. Mod. Phys. 1997, 69, 865-929.

25. Berge, B. C. R. Acad. Sci. III 1993, 317, 157.

26. Buehrle, J.; Herminghaus, S.; Mugele, F. Phys. Rev. Lett. 2003, 91,
6101.

27. Delaunay, C. J. math. pures et appliquées 1841, 6, 309-319.

28. Mugele, F.; Klingner, A.; Buehrle, J.; Steinhauser, D.; Herminghaus, S.
J. Phys. Cond. Matter 2005, 17, 559-576.

29. Mugele, F.; Baret, J.-C.; Steinhauser, D. Appl. Phys. Letters 2006, 88,
204106.

30. Okumura, K.; Chevy, F.; Richard, D.; Quéré, D.; Clanet, C. Europhys.
Lett 2003, 62, 237-243.

31. Rayleigh, L. Proc. R. Soc. London Ser 1879, A 29,.

21


