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Abstract
We propose a Gradient Boosting algorithm for learning an ensemble of kernel

functions adapted to the task at hand. Unlike state-of-the-art Multiple Kernel Learning
techniques that make use of a pre-computed dictionary of kernel functions to select
from, at each iteration we fit a kernel by approximating it as a weighted sum of Random
Fourier Features (RFF) and by optimizing their barycenter. This allows us to obtain
a more versatile method, easier to set-up and likely to have better performance. Our
study builds on a recent result showing one can learn a kernel from RFF by computing
the minimum of a PAC-Bayesian bound on the kernel alignment generalization loss,
which is obtained efficiently from a closed-form solution. We conduct an experimental
analysis to highlight the advantages of our method w.r.t. both Boosting-based and
kernel-learning state-of-the-art methods.

1 Introduction
Kernel methods are among the most popular approaches in machine learning due to their
capability to address non-linear problems, their robustness and their simplicity. However,
they exhibit two main flaws in terms of memory usage and time complexity. To overcome
the latter, some numerical approximation methods have been developed [23, 10]. Landmark-
based approaches [4, 3, 5, 27] can be used to reduce the number of instances to consider
in order to reduce the number of comparisons [21], but they heavily depend on the choice
of the kernel. Tuning the kernel is, however, difficult and represents another drawback
to tackle. Multiple Kernel Learning (MKL) [15, 13, 25, 24] and Matching Pursuit (MP)
methods [17, 22] can provide alternatives to this problem but these require the use of a
pre-defined dictionary of base functions.

Another strategy to improve the scalability of kernel methods is to use the Random
Fourier Feature (RFF) approach that proposes to approximate some invariant-shift kernel
with random features based on the Fourier Transform of the kernel [19]. This approach is
data independent and then a predictor can be learned over these random features. Several
works have extended this approach by allowing one to adapt the approximation with respect
to the (learning) data points [26, 18, 20, 16, 1]. Among them, the recent work of [16] presents
a method to quickly obtain a weighting distribution over the random features by a single
pass over them. The method is derived from a statistical learning analysis, starting from the
observation that each random feature can be interpreted as a weak hypothesis in the form of
trigonometric functions obtained by the Fourier decomposition. Thus, a predictor can be
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seen as a weighted majority vote over the random features. This Fourier decomposition is
then considered as a prior distribution over the space of weak hypotheses/random features;
the authors propose to learn a posterior distribution by optimizing a PAC-Bayesian bound
with respect to a kernel alignment generalization loss over the learning data points. In other
words, this corresponds to learning automatically a representation of the data through the
approximation which then does not require to choose or tune a kernel in advance.

However, in practice, the method of [16] requires the use of a fixed set of landmarks
selected beforehand and independently from the learning task. It is only once these landmarks
are selected that the method can learn a representation based on the PAC-Bayesian bound.
This leads to three important drawbacks: (i) the need for a heuristic strategy for selecting
enough relevant landmarks, (ii) these landmarks and the associated representation might
not be adapted for the task at hand, and (iii) the number of landmarks might not be
minimal, inducing higher computational and memory costs. Instead of deliberately fixing the
landmarks beforehand, we propose in this paper a Gradient Boosting approach (GB) [11]
for learning both the landmarks and the associated random features combination directly,
leading to a strong predictor. This strategy allows us to provide more compact and efficient
representations in the context where the learning budget might be limited.

The reminder of the paper is organized as follows. Section 2 introduces the notations
and the setting of the paper. Then, we recall in Section 3 the work of [16]. We introduce our
landmark-based gradient boosting approach in Section 4. The experiments are performed in
Section 5. Then we conclude in Section 6

2 Notations and Setting
We consider here binary classification tasks from a d-dimensional input space Rd to the label
set Y = {−1, 1}. Let S = {zi = (xi, yi)}ni=1 ∼ Dn be a training set of n points sampled i.i.d.
from D, a fixed and unknown data-generating distribution over Rd × Y .

In this paper, we focus on kernel-based algorithms that rely on pre-defined kernel functions
k : Rd × Rd → [−1, 1] assessing the similarity between any two points of the input space.
These methods present good performances when the parameters of the kernels are learned
and the chosen kernel can fit the distribution of the data. However, selecting the right
kernel and tuning its parameters is computationally expensive. For this reason, Multiple
Kernel Learning techniques [15, 13, 25, 24] have been proposed to select the combination of
kernels that fits best the training data: a dictionary of base functions {kt}Tt=1 is composed
by considering various kernels with their parameters fixed to several and different values and
a combination is learned, taking the following form:

H(x,x′) =
T∑
t=1

αtkt(x,x′), (1)

with αt ∈ R the weight of the kernel kt(x,x′).
Similarly, in our method, we aim at learning linear combinations of kernels. However, we

do not rely on a pre-computed dictionary of kernel functions. We rather learn them greedily,
one per iteration of the Gradient Boosting procedure we propose (described in Section 4).
Because of the computational advantages described in Section 1, we consider landmark-based
shift-invariant kernels relying on the value δ = xt−x ∈ Rd and denoted by abuse of notation:

k(δ) = k(xt − x) = k(xt,x), (2)

where xt ∈ Rd is the landmark of the input space which all the instances are compared
to, that strongly characterizes the kernel. At each iteration of our Gradient Boosting
procedure, we optimize not only this landmark but also the kernel function itself, exploiting
the flexibility of the framework provided by [16]. We write the kernel as a sum of Random
Fourier Features [19] and we learn a posterior distribution over them. We achieve this by
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studying the generalization capabilities of the so-defined functions through the lens of the
PAC-Bayesian theory. This theoretical analysis ultimately allows us to derive a closed-form
solution of the posterior distribution qt (over the RFF at a given iteration t), which is
guaranteed to minimize the kernel alignment loss. In the following section, we recall the
framework of [16] and adapt it to our scenario.

3 Pseudo-Bayesian Kernel Learning with RFF
The kernel learning method proposed by [16] builds on the Random Fourier Features
approximations proposed in [19]. Given a shift-invariant kernel k(δ) = k(x− x′) = k(x,x′),
[19] show that

k(x− x′) = E
ω∼p

cos (ω · (x− x′)) ,

with p the Fourier transform of k defined as

p(ω) = 1
(2π)d

∫
Rd

k(δ) exp(−iω · δ)dδ.

This allows the kernel k to be approximated in practice by drawing K vectors from p denoted
by Ω = {ωj}Kj=1 ∼ pK and computing

k(x− x′) ' 1
K

K∑
j=1

cos (ωj · (x− x′)) .

The larger K, the better the resulting approximation.
Instead of drawing RFF for approximating a known kernel, [16] propose to learn a new

one by deriving a posterior distribution qt for a given landmark point in {xt}Tt=1:

kqt(xt − x) = E
ω∼qt

cos (ω · (xt − x)) .

A distribution qt is learned by minimizing a PAC-Bayesian generalization bound on the
expected value of the loss between the landmark xt and any point (x, y) ∼ D.

Let (xt, yt) be a sample, then its expected loss Lt and empirical loss L̂t are respectively
defined as

Lt = E
(x,y)∼D

`(kqt
(xt − x)), and L̂t = 1

n− 1

n∑
j=1,j 6=t

`(kqt
(xt − xj)).

Using the PAC-Bayesian theory, they obtain the following theorem, under the linear loss
`(kqt

(xt − x)) = 1
2 −

1
2ytykqt

(xt − x), by expressing the loss as

Lt(kqt) = Lt
(

E
ω∼p

htω

)
= E

ω∼p
Lt(htω),

with htω(x) = cos(ω ·(xt−x)). We note that the result also stands for any [0, 1]-valued convex
loss `. Indeed, by Jensen’s inequality, we have Lt(kqt

) = Lt(Eω∼p h
t
ω) ≤ Eω∼p Lt(htω).

Theorem 1 (Theorem 1 from [16]). For s > 0, i ∈ {1, . . . , n}, a convex loss function
` : R×R→ [0, 1], and a prior distribution p over Rd, with probability 1− ε over the random
choice of S ∼ Dn, we have for all q on Rd:

Lt(kq) ≤ E
ω∼p
L̂t(htω) + 1

s

(
KL(q‖p) + s2

2(n− 1) + ln 1
ε

)
,

where KL(q‖p) = Eω∼p
p(ω)
q(ω) is the Kullback-Leibler divergence between q and p.
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Algorithm 1: Gradient Boosting with least square loss [11]
Input :Training set S = {xi, yi}ni=1 with yi ∈ {−1, 1};

T : number of iterations; v: learning rate

Output :Weighted sum of predictors: H(x) = sign
(
H0(x) +

T∑
t=1

vαthat
(x)
)

1: H0(x) = 1
n

n∑
i=1

yi

2: for t = 1, . . . , T do
3: ∀i = 1, . . . , n, ỹi = yi −Ht−1(xi)

4: (αt, at) = argmin
α,a

n∑
i=1

(
ỹi−αha(x)

)2
, where a denotes the parameters of the model ha

5: Ht(x) = Ht−1(x) + vαthat(x)
6: end for

It is well known [2, 8, 12] that the closed form solution minimizing the bound is the
pseudo-posterior distribution Qt computed as

Qtj = 1
Zt

exp
(
− β
√
nL̂t(htω)

)
, (3)

for j = 1, . . . ,K with β a parameter and Zt the normalization constant. Finally, given a
sample point (xt, yt) and K vectors ω denoted by Ωt = {ωt

j}Kj=1 ∼ pK , their kernel is finally
defined as:

kQt(xt − x) =
K∑
j=1

Qtj cos(ωj · (xt − x)).

Then [16] learn a representation of the input space of nL features where each new feature
t = 1, . . . , nL is computed using the kernel kQt with the sample (xt, yt). To do so, they
consider a set of nL landmarks L = {(xt, yt)}nL

t=1 which they chose either as a random subset
of the training set, or as the centers of a clustering of the training set. Then, during a second
step, a (linear) predictor can be learned from the new representation.

It is worth noticing that this kind of procedure exhibits two drawbacks. First, the model
can be optimized only after having learned the representation. Second, the set of landmarks
L has to be fixed before learning the representation. Thus, the constructed representation is
not guaranteed to be relevant for the learning algorithm considered. To tackle these issues,
we propose in the next section a method performing the two steps at the same time through
a gradient boosting algorithm, that allows us to learn the set of landmarks.

4 Gradient Boosting for Random Fourier Features
The approach we propose to follow the widely used gradient boosting framework first proposed
by [11]. Before presenting our contribution, we quickly recall the classical gradient boosting
algorithm instantiated with the least square loss.

4.1 Gradient Boosting in a Nutshell
Gradient boosting is an ensemble method that aims at learning a weighted majority vote
over an ensemble of predictors in a greedy way by learning iteratively the predictors to add
to the ensemble. The final majority vote is of the form

∀x ∈ Rd, H(x) = sign
(
H0(x) +

T∑
t=1

vαthat
(x)
)
,
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where H0 is a predictor fixed before the iterative process and is usually set such that it
returns the same value for every data point, and vαt is the weight associated to the predictor
hat

(v is called the learning rate1 and is fixed for each iteration, and αt is called the optimal
step size learned at the same time as the parameters at of the predictor hαt

). Given a
differentiable loss, the objective of the gradient boosting algorithm is to perform a gradient
descent where the variable to be optimized is the ensemble and the function to be minimized
is the empirical loss.

We now remind the gradient boosting algorithm instantiated with the least square loss
in Algorithm 1 proposed by [11]. At the beginning (line 1), the ensemble is constituted by
only one predictor, the one that outputs the mean label over the whole training set. At each
iteration, the first step (line 3) consists in computing the negative gradient of the loss, also
called the residual and denoted by ỹi, for each training example (xi, yi) ∈ S. Note that in
the case of the least square loss the residual of an example is the deviation between its true
label and the returned value of the current model. Then, it learns the parameters at of the
predictor hαt

, along with the optimal step size αt, that fit the best the residuals (line 4).
Finally, the current model is updated by adding vαthat

(·) (line 5) to the vote.

4.2 Our Algorithm
We now propose to benefit from the gradient boosting to tackle the drawbacks of the
landmark-based approach of [16] recalled in Section 3. Our objective is to learn at the same
time the landmarks (i.e., the representation) and the classification model.

Let k be a shift-invariant kernel and let p be its Fourier transform. At each iteration t,
given Ωt = {ωt

j}Kj=1 ∼ pK a set of K random features drawn from p, the objective is twofold:

• Learn the parameters at of the base learner hat defined as

hat
(x) =

K∑
j=1

Qtj cos
(

ωt
j · (xt − x)

)
. (4)

In our case, the parameters to be learned are at = (xt, Qt) where xt is a landmark,
and Qt is the pseudo-posterior distribution that can be computed using a closed-form
similar to Equation (3).

• Compute the optimal step size αt.

In order to benefit from the theoretical guarantees of Theorem 1, and of the closed form
of Equation (3), we propose the following greedy approach consisting in computing the
landmark xt by fixing the weight of each random features to 1

K (Equation (5)), then Qt
thanks to its closed-form (Equation (7)), and finally αt (Equation (8)).

First, given the set of random features Ωt, we look for the landmark xt ∈ Rd that
minimizes the average least square loss between the residuals and the kernel approximation
defined as:

fΩt(xt) = 1
n

n∑
i=1

(
ỹi −

1
K

K∑
j=1

cos
(

ωt
j · (xt − xi)

))2

. (5)

The minimization is done by performing a gradient descent of fΩt to find the landmark xt
that minimizes fΩt where the gradient of fΩt with respect to xt is given by:

∂fΩt

∂xt
= 2
n

n∑
i=1

(
1
K

K∑
j=1

ωt
j sin

(
ωt
j · (xt − xi)

))(
ỹi −

1
K

K∑
j=1

cos
(

ωt
j · (xt − xi)

))
. (6)

1The parameter v is often referred as learning rate or shrinkage parameter. Decreasing v usually improves
the empirical performances [7] but requires to increase the number of boosting iterations T .
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Second, given the landmark xt found during the gradient descent, and given the set Ωt,
we compute the pseudo-posterior distribution Qt as:

Qtj = 1
Zt

exp
(
− cfωt

j
(xt)

)
= 1

Zt
exp

 c

n

n∑
i=1

(
ỹi − cos

(
ωt
j · (xt − xi)

))2
 , (7)

for j = 1, . . . ,K with c ≥ 0 a parameter and Zt the normalization constant.
To finish, the optimal step size αt is obtained by setting to 0 the derivative of line 4 with

respect to α. We then have

αt =

n∑
i=1

ỹihat
(xi)

n∑
i=1

hat
(xi)2

. (8)

This approach has two clear advantages compared to the two-step method of [16], where
one learns the mapping first—for a pre-defined set of landmarks—and learns the predictor
afterwards.

1. Gradient Boosting allows constructing iteratively the mapping by optimizing one
landmark at each step.

2. The final predictor is learned at the same time and the learning procedure can be
stopped when the empirical loss stops decreasing.

Consequently, the final mapping is likely to be less redundant and more suitable for the task
at hand.

5 Experiments
In this section, we provide an empirical study of our method, referred as GBRFF. Firstly,
we compare the performances of GBRFF with the two-step procedure from [16], referred
as PBRFF, and also with boosting-based methods described in the next paragraph. Then,
we compare the influence of the number of landmarks between GBRFF and PBRFF.

Experimental Setup. For GBRFF, we consider predictors as described in Equation (4)
and select by cross-validation the parameter c ∈ {0} ∪ 2{0,...,10}.

We compare GBRFF with the following algorithms :

• PBRFF [16] consists in first learning the new representation and then learning a
linear SVM on the mapped training set. We select by cross-validation its parameters
β ∈ 10{−3,...,3} and C ∈ 10{−3,...,3}.

• XGB for Xgboost [9] and LGBM for LightGBM [14] which are state-of-the-art gradient
boosting methods using trees as base predictors. For these methods, we select by
cross-validation the maximum depth of the trees in {1, . . . , 5}.

• MKBOOST [25] which is a Multiple Kernel Learning method based on the AdaBoost
algorithm. At each boosting iteration, it selects the best performing kernel plugged
inside a SVM, according to the Boosting weight distribution over the training examples.
As it is done by the authors, we consider at each iteration 14 RBF kernels k(x,x′) =
exp(−γ‖x−x′‖2) with γ ∈ 2{−6,...,7} and 3 polynomial kernels k(x,x′) = (xTx′)d with
d ∈ {1, 2, 3}. We select by cross-validation the SVM parameter C ∈ 10{−5,...,3}.
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• BMKR [24] which is another Multiple Kernel Learning method based on gradient
boosting with least square loss. Similarly as in MKBOOST, it selects at each iteration
the best performing kernel plugged inside an SVR to learn the residuals. It considers at
each iteration 10 RBF kernels with γ ∈ 2{−4,...,5} and the linear kernel k(x,x′) = xTx′.
We select by cross-validation the SVR parameter C ∈ 10{−5,...,3}.

For the four methods based on gradient boosting, we further select by cross-validation
the learning rate v ∈ {1, 0.5, 0.1, 0.05, 0.01}. The five boosting-based methods are run for
T = 200 iterations. As for PBRFF which is not an iterative method, we select randomly
with replacement nL = 200 landmarks from the training set. For the two methods PBRFF
and GBRFF using random features, we fix the number of random features K to 100 and we
draw them from the Fourier transform of the Gaussian kernel which is the normal law.

We consider 14 datasets coming mainly from the UCI repository. As we deal with binary
classification problems, we have binarized the datasets as described in Table 1 where the
classes considered respectively as the label ‘-1’ and as the label ‘+1’ are specified. All datasets

Table 1: Description of the datasets (n: number of examples, d: number of features, c:
number of classes) and the classes chosen as negative (Label -1) and positive (Label +1)

Name n d c Label -1 Label +1 Name n d c Label -1 Label +1
wine 178 13 3 2, 3 1 wdbc 569 30 2 B M
sonar 208 60 2 M R balance 625 4 3 B, R L
glass 214 11 6 2 3 5 6 7 1 australian 690 14 2 0 1
newthyroid 215 5 3 1 2, 3 pima 768 8 2 0 1
heart 270 13 2 1 2 german 1000 23 2 1 2
bupa 345 6 2 2 1 splice 3175 60 2 +1 -1
iono 351 34 2 g b spambase 4597 57 2 0 1

are normalized such that each feature has a mean of 0 and a variance of 1. For each dataset,
we generate 20 random splits of 30% training examples and 70% testing examples. The
hyper-parameters of all the methods are tuned by a 5-fold cross-validation on the training
set. We report in Table 2 for each dataset the mean results over the 20 splits. In terms
of accuracy, our method GBRFF shows competitive results with the state-of-the-art as it
obtains the best performances on 5 datasets out of 14 with the best average rank among the
six methods. This confirms the relevance of our algorithm.

Table 2: Mean test accuracy ± standard deviation over 20 random train/test splits.
Dataset XGB [9] LGBM [14] MKBOOST [25] BMKR [24] PBRFF [16] GBRFF
wine 94.92 ± 2.5 95.72 ± 2.1 98.56 ± 1.3 99.08 ± 0.6 97.92 ± 1.2 96.80 ± 2.2
sonar 76.34 ± 2.8 76.10 ± 3.2 77.77 ± 5.8 71.78 ± 4.3 75.82 ± 4.1 76.10 ± 7.5
glass 79.70 ± 3.2 78.33 ± 4.1 78.27 ± 2.8 77.93 ± 2.9 77.27 ± 3.4 75.70 ± 3.0
newthyroid 90.79 ± 2.9 83.01 ± 4.3 91.26 ± 13.8 94.17 ± 1.4 95.89 ± 1.6 93.18 ± 1.6
heart 79.71 ± 3.3 80.74 ± 2.4 77.67 ± 2.8 83.15 ± 2.0 83.02 ± 2.2 82.54 ± 2.2
bupa 66.10 ± 1.8 67.19 ± 2.7 58.39 ± 4.0 62.11 ± 3.3 65.48 ± 2.7 67.58 ± 3.2
iono 89.25 ± 1.7 88.64 ± 2.1 91.77 ± 5.9 92.40 ± 2.7 93.21 ± 1.9 85.55 ± 2.1
wdbc 94.60 ± 1.8 95.24 ± 1.8 95.16 ± 1.7 96.20 ± 0.8 95.99 ± 1.1 96.40 ± 1.1
balance 94.13 ± 2.4 95.02 ± 2.2 83.89 ± 9.3 93.36 ± 1.2 96.12 ± 1.4 94.77 ± 1.0
australian 85.33 ± 1.2 85.65 ± 1.4 80.46 ± 3.9 85.70 ± 1.1 85.66 ± 1.2 85.72 ± 1.3
pima 75.34 ± 1.8 74.81 ± 2.0 73.06 ± 2.5 75.02 ± 1.6 75.36 ± 2.1 75.66 ± 1.9
german 71.51 ± 1.2 71.60 ± 1.4 69.84 ± 1.3 71.18 ± 2.0 71.79 ± 1.3 72.36 ± 1.5
splice 96.35 ± 0.4 96.26 ± 0.4 82.70 ± 3.8 86.42 ± 0.6 85.27 ± 0.5 88.16 ± 0.5
spambase 94.20 ± 0.3 94.25 ± 0.3 90.45 ± 0.6 92.34 ± 0.5 91.60 ± 0.4 92.33 ± 0.3
Average Rank 3.40 3.20 4.40 3.07 2.80 2.73

Influence of the number of landmarks. In Figure 1, we analyze the accuracy of our
landmark-based method GBRFF in two variants. The first one named GBRFF Learn
corresponds to what was done in the previous experiment where at each iteration a landmark
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was learned. The second named GBRFF Random considers at each iteration a landmark
drawn randomly from the training set. In addition, we compare our method to PBRFF which
also draws the landmarks randomly from the training set. To gain relevant insights, the
analysis is made on three datasets for which our method has better and worse performances
compared to PBRFF. We consider the datasets “sonar”, “newthyroid” and “bupa”.

Overall, as expected, the larger the quantity of landmarks, the better the performances for
all methods. We see on the three datasets that GBRFF Learn presents better performances
than GBRFF Random. The difference is especially large when the number of landmarks is
small. For “sonar” and “bupa”, PBRFF requires much more landmarks than GBRFF Learn
to reach its maximal value. This shows the importance of learning the landmarks compared
to selecting them randomly as it allows converging faster to possibly better performances.
On the other hand, the results on “newthyroid” are better for PBRFF, no matter the number
of landmarks used. This may happen because the linear classifier in the two methods is
learned differently: it is learned using all landmarks by PBRFF with a Linear SVM and
learned one landmark at a time by GBRFF with gradient boosting.

0 50 100 150 200
Number of landmarks

60

70

Ac
cu

ra
cy

Dataset: sonar

PBRFF
GBRFF Random
GBRFF Learn

0 50 100 150 200
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80
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PBRFF
GBRFF Random
GBRFF Learn

0 50 100 150 200
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60

65
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Figure 1: Mean test accuracy over 20 train/test splits on the “sonar”, “newthyroid” and
“bupa” datasets as a function of the number of landmarks used with PBRFF and our two
variants of GBRFF.
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Figure 2: Mean test accuracy over 20 train/test splits and over the 14 datasets as a function
of the number of landmarks used to train the two methods PBRFF and GBRFF. The mean
values are displayed at the top of the bars, and the numbers of datasets where a method has
the best performances are displayed at the bottom of the bars

We summarize in Figure 2 the influence of the number of landmarks used to train PBRFF
and GBRFF. The figure gives the mean test accuracy across all datasets and over the 20
train/test splits. As seen in the previous experiment, with 200 landmarks, PBRFF and
GBRFF have similar performances with respectively 84.49% and 85.03% of mean accuracy
and with better performances for GBRFF on 8 datasets out of 14. However, when the
number of landmarks decreases, GBRFF demonstrates a clear superiority. Indeed, we can
observe in Figure 2 that with 25 landmarks, GBRFF provides a mean accuracy 0.21 point
higher than the one of PBRFF while being better on 10 datasets, with 10 landmarks it is
1.04 points higher and better for 11 datasets, with 5 landmarks it gets 1.82 points higher and
is still better for 11 datasets, with 3 landmarks it is 3.35 points higher and finally with only
one landmark it is superior with 4.94 points higher. Additionally, our method obtains the
best performances in 12 datasets out of 14 with less than 3 landmarks. Thus, the smaller the
number of landmarks used, the better our method GBRFF compared to PBRFF. The gain
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is significative when the number of landmarks is smaller than 25 which also corresponds to
learning very small representations. This shows the clear advantage of our landmark-based
method when learning compact representations with few landmarks, especially when one has
a limited budget. In this case, learning the landmarks to solve the task at hand is preferable
to selecting them randomly.

6 Conclusion
In this paper, we propose a Gradient Boosting algorithm where a kernel is learned at each
iteration; the kernel being expressed with random Fourier features (RFF). Compared to
state-of-the-art Multiple Kernel Learning techniques that select the best kernel function
from a dictionary, and then plug it inside a kernel machine, we directly consider a kernel as
a predictor that outputs a similarity to a point called landmark. We learn at each iteration
a landmark by approximating the kernel as a sum of Random Fourier Features to fit the
residuals of the gradient boosting procedure. Building on a recent work [16], we learn a
pseudo-distribution over the RFF through a closed-form solution that minimizes a PAC-Bayes
bound to induce a new kernel function tailored for the task at hand. The experimental study
shows the competitiveness of the proposed method with state-of-the-art boosting and kernel
learning methods, especially when the number of iterations used to train our model is small.

So far, the landmarks have been learned without any constraint. A promising future
line of research is to add a regularization on the set of landmarks to foster diversity. In
addition, the optimization of a landmark at each iteration can be computationally expensive
when the number of iterations is large, and a possibility to speed-up the learning procedure
is to derive other kernel approximations where the landmarks can be computed with a
closed-form solution. Other possibilities regarding the scalability include the use of standard
gradient boosting tricks [14, 9] such as sampling or learning the kernels in parallel. Another
perspective could be to extend the analysis of [16] along with our algorithm to random
Fourier features for operator-valued kernels [6] useful for multi-task learning or structured
output.
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