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An ab initio numerical simulation model has been used to compute the complex effective dielectric
constant of a two-component lossy composite material, in the quasistatic limit. A computational
algorithm with a conventional finite element formulation solves Laplace’s equation for a spatially
heterogeneous medium, using the field calculation packageFLUX3D. In this way, different
three-dimensional topological arrangements of the components were considered. The composite
material consists of dense spheres of uniform size that are arranged in simple, body-centered, and
face-centered cubic lattices. The accuracy of the method is checked by comparing with results
previously presented in the literature. Detailed predictions provide a comparison with percolation
theory when the imaginary part of the relative permittivity of the spheres is very large. A
comparison with McLachlan’s generalized effective medium equation@D. S. McLachlan, J. Phys. C
20, 865~1987!# is further provided over a wide range of conditions. From these calculations one can
conclude that there are significant discrepancies between theab initio evaluated values of the
effective permittivity and those obtained on the basis of McLachlan’s analysis. On the one hand, the
numerical method demonstrated here shows that the real part of the effective permittivity, obtained
from ab initio results, can be significantly different from that predicted on the basis of McLachlan’s
equation when the imaginary part of the permittivity of the inclusion is very large compared to its
real part. On the other hand, these computational results capture the trends in the percolation
threshold variation with cubic lattice packing. We measured the exponentss andt which determine
how the real and imaginary parts of the permittivity scales with the distance from the percolation
threshold. This behavior is most probably due to the drastic differences in the basic assumptions
existing between McLachlan’s modeling and our numerical approach. In particular, this analysis
makes it clear that any approach based only on the dipole approximation must fail to correctly
describe the complex effective dielectric constant, over the entire range of volume fraction of
spherical inclusions. ©1998 American Institute of Physics.@S0021-8979~98!00101-7#

I. INTRODUCTION

The study of dielectric properties of heterostructures has
recently seen an enhanced level of activity, prompted in part
by the insight such investigations might give in a number of
practical applications in the electronics and aerospace indus-
tries, to name but a few. Extensive research work on this
subject has been reported in the literature during the past
several years. The general state of the art has been reviewed
by Landauer1 and more recently by Priou.2 On the theory
side, these studies have also fundamental consequences in
connection with the problem of localization of waves, i.e.,
dielectric structures with photonic band gaps.3 On the prac-
tical side, recent works indicate it is possible that the con-
struction of composite materials may constitute a useful
method for obtaining materials with desirable specific prop-
erties, e.g., composite superconductors,4 nanostructured
components.2 The microstructure morphology of these mate-

rials clearly plays a major role in determining their effective
dielectric properties, and an understanding of the behavior of
the complex permittivity is essential to establish which prop-
erties of the composites might follow simply from their ge-
ometry.

One fundamental issue that has driven many of the ex-
periments on electromagnetic properties of heterogeneous
media is the nature of the conductivity- and permittivity-
concentration characteristics. In order to fix notation and to
give an account of the earlier work, we begin by recalling
some results that we will need, connected to the percolation
analysis of insulator-metal composite systems. The percola-
tion model gave rise to a number of applications to explain
the behavior of a variety of condensed-matter systems and
several generalizations are documented in a series of recent
reviews and books.5,6 The percolation process is geometrical
in nature and provides a theoretical framework for under-
standing collective phenomena in a number of systems with
quenched disorder. For insulator-conductor mixtures there
exist a wide variety of predictions in the literature that show
a critical behavior near a concentration thresholdf c of the
conducting material. A number of researchers have obtained
power-law expressions for the dc electrical conductivity and
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have shown that it is nonzero abovef c and obeys a scaling
relation (f 2 f c)

t while the real part of the permittivity shows
a critical behavior;u f 2 f cu2s on the insulating side~below
f c!, wheref denotes the volume fraction of the high conduc-
tivity component. Furthermore, the critical exponentst ands
depend only on the dimensionality of the system and not on
the microscopic details of the system, i.e., for three-
dimensional systemst>1.5– 2 ands>0.7.7–9 This picture
has been developed by the concerted use of exact analytical
theories and numerical simulations. While the exponentss
and t are universal, the percolation fractionf c depends on
the geometrical details of the system. This behavior corre-
sponds to the formation of infinitely large connected clusters
of conducting elements, creating a connection between the
electrodes, i.e., the so-called ‘‘percolation path.’’ For a rigid,
periodic cubic array~built of sites or bonds! of conducting
spheres, the critical~percolation threshold! probability de-
pends on the topological arrangement of the spheres. Table I,
abstracted in part from Ref. 5 reveals the tendency of these
probabilities to decrease as the coordination number~pack-
ing fraction! is increased. Recently, there have been many
experimental verifications of the values of the scaling expo-
nents predicted by the percolation model for a variety of
composite materials.10–14

Early theoretical attempts to model the dielectric proper-
ties of a two-component composite material consisting of
inclusions of constituent 1~with permittivity e1! surrounded
by a background material of constituent 2~with permittivity
e2! relied primarily on mixing law calculations.1,2,15–17Much
of it has centered around the expression of the permittivity of
a heterogeneous material in terms of the permittivities of the
different components and using more or less detailed infor-
mation of the particle distribution. These semiempirical
methods are especially tied to the specific materials they ad-
dress and are difficult to generalize. Moreover the mixing
formulas all give more or less the same results at low con-
centration of inclusions~dilute limit!.18,19 When they were
originally formulated, these mixing laws were intended for
static conditions. In practice, many calculations in the past
decade have demonstrated that these formulas give decent
results for the nonzero frequency domain but are unable to
reproduce a number of experimental features such as a
proper description of the local field distribution at high vol-
ume loading and the evaluation of the percolation threshold.
Typical mixture formulas which have generated a great deal
of interest are those of Maxwell Garnett and of Bruggeman.1

If the two components of the composite material are metal
and insulator the former does not yield a percolation thresh-

old at any finite values off , whereas the latter predicts a
percolation threshold off c50.33 for dense spherical inclu-
sions.

McLachlan postulated a generalized effective medium
equation for describing the dielectric properties, in the qua-
sistatic limit, of a binary mixture and found remarkable sin-
gularities of the real part of permittivity near the percolation
thresholdf c where the imaginary part diverges.20 This equa-
tion, developed heuristically, was originally written in terms
of the conductivitys, as

f ~s1
1/t2s1/t!

s1
1/t1As1/t 1

~12 f !~s2
1/t2s1/t!

s2
1/t1As1/t 50, ~1!

wheres1 ~resp.s2! is the conductivity of the more conduct-
ing ~resp. insulating! component andA[(12 f c)/ f c . Refer-
ence is made to McLachlan for the full details.20,21 Since
McLachlan phenomenological analysis does not resort to re-
strictive or presumptive assumptions on the spatial distribu-
tion and particle shapes, it ignores almost all the details of
the microgeometry and is therefore applicable to quite gen-
eral heterogeneous systems including those with a periodic
geometry. Note that Eq.~1! reduces to the Bruggeman sym-
metric equation by settingt51 and to the Bruggeman asym-
metric equation whens250 andf c50 or whens1→` and
f c51. In many cases this phenomenological equation give
results surprisingly close to the mark, e.g., microemulsion of
AOT, ~sodium di-2-ethylhexylsulfosuccinate!, water and
isooctane.20,21 However two main difficulties, to which we
return below, are worth noting. First, since McLachlan’s
equation is rooted in the Bruggeman theory, it cannot realis-
tically describe the permittivity at large concentrations of
inclusions because this effective medium parametrization in-
cludes only dipolar effects and does not include quadrupole
or higher interactions. Second, there is no reference in this
equation to the microstructure geometry of the constituents
in the system.

Below, we present the results from anab initio numeri-
cal study of the complex effective permittivity of a two-
component periodic composite material. The present numeri-
cal experiments aimed at comparing our results to the
analytical data of McLachlan over a wide range of condi-
tions. Such a comparison is of interest as it may provide
insight concerning the polarizability properties of inclusions.
Additional motivation for this study is to complement earlier
work on lossy composite materials.22

The content of this manuscript is organized as follows.
Section II will be devoted to a brief description of some of

TABLE I. Critical parameters for bond and site percolation models on cubic lattices.

Lattice

Critical
~percolation
threshold!

bond
probability

Critical
~percolation
threshold!

site
probability

Coordination
number

Packing
fraction

Simple cubic~sc! 0.249 0.312 6 0.524
Body-centered cubic~bcc! 0.180 0.246 8 0.680
Face-centered cubic~fcc! 0.119 0.198 12 0.741
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the essential features of our computational procedure. Next
Sec. III presents the detailed results of the different numeri-
cal evaluations of the effective complex permittivity for a
variety of rigid, periodic arrays of inclusions. Our results are
compared with those obtained from McLachlan’s phenom-
enological equation. In the concluding remarks, Sec. IV, we
suggest future directions for continuing the development of
the research.

II. SIMULATION TECHNIQUE

An extensive literature exists on the numerical evalua-
tion of the dielectric properties of heterostructures~see Refs.
1 and 15–17 for surveys and comprehensive reference lists!.
A full study of the effective properties of random composite
media is a formidable task but, in fact, certain simplifications
may be introduced which allow essential features to be iso-
lated. With recent advances in numerical simulation, it is
now possible to obtain high-precision values of the effective
dielectric constant of multicomponent composite materials.
Besides providing clues to the understanding of complex
systems, computer simulations are also assumed to give an-
swers which do not differ in a marked way from the ones one
would find by performing experiments on real systems.

In a previous article from our team, the effective dielec-
tric constant of a two-dimensional~or three-dimensional axi-
symmetric! lossy composite material in the quasistatic limit
was considered22 and a comparison of the results of simula-
tions with the predictions of analytical theories was pro-
vided, e.g., Bergman and Milton analysis.9,23 The conclusion
of this study was that this simulation accounts quantitatively
for the evaluation of the complex permittivity of these mate-
rials. As noted before, the method is quasistatic. For this
reason, the wave cannot resolve the individual inhomogene-
ities and the dielectric properties of the composite can be
defined by a single effective permittivity.

The simulations presented in this article are based on the
resolution of a finite element~FE! modeling using the field
calculation packageFLUX3D. Before proceeding further, it is
necessary to begin with a discussion of the computational
method. Our code has been developed over a number of
years.24,25 Since the attributes of the algorithm for studying
two-component heterogenous materials have already been
described in detail elsewhere,22,24,25 we shall touch only
briefly on its main features. Briefly they are:~1! The general
features of our results do not depend on the effective me-
dium approximation. Our systematic approach avoids the
somewhatad hoc manner in which mixture equations are
often introduced in discussions of dielectric properties of
composite materials.~2! This method is exact for regulars
arrays forming a crystal lattice but we have to make approxi-
mations when applying it to random media since an exact
calculation of higher multipole interactions is intractable in
that case.~3! The method includes all multipoles exactly: it
has proven very successful for high permittivity contrast ra-
tios because the response of the system to a potential is
found from coupled multipole equations~multipole polariz-
abilities! which are not contained in simple dipole mixture
rules or mean-field approaches.~4! This calculational
method is not computationally intensive. The computational

time taken to run our simulations on a HP model 712/80
workstation depends upon the quality of the meshing of
about 3500 equations and is 8 min for calculating the per-
mittivity of a typical configuration. This is an important con-
sideration to care about if we want to study the influence of
randomness on the dielectric properties of hetero-
structures.25–27

In this study we consider a composite medium consisting
of two materials having relative permittivitiese1 ande2 with
respect to the vacuum permittivity. We begin our analysis by
refering to Fig. 1 which shows a unit cell of a simple cubic
periodic structure. We assume, in the following, that all the
lengths (l ,a) are dimensionless and that the side of the cell
has the specific valuel 52. In the numerical experiments of
Sec. III, the component 1~here, spherical inclusions of uni-
form size! is a lossy material, i.e.,e15e182 i e19 , and the
component 2~host! is a pure dielectric, i.e.,e25e28 . Details
of the simulation procedure can be found in previous
work.22,24,25

The method has been numerically verified for a variety
of benchmarks.22,25 We include such test below for demon-
stration purpose. In this test problem, results are given for a
simple cubic configuration usinge1538.2-i22.1 and e2

51.0-i0.0. These values were chosen for the purpose of
comparison with the results of Calameet al.28 The ab initio
results are graphed in Figs. 2~a! and 2~b!. The solutions com-
pare very well with the data of Calameet al. It is interesting
to note, that in common with theab initio results, the behav-
ior of the permittivity is dramatically altered for a volume
fraction f >0.5 which is close to the percolation threshold,
corresponding to the touching spheres condition, for an infi-
nite simple cubic lattice of uniform size spheres~see Table
I!. The satisfactory overall agreement of our computational
model with the numerical results of Calameet al. along with
previous comparison with analytical theories9,23 gives us
confidence that our simulation will give a reliable description
of the effective permittivity of lossy composite materials.

FIG. 1. Notation relating to the unit cell of the two-component periodic
composite material investigated in the finite element model computation.
The spherical inclusion with dielectric constante1 is periodically arranged
in a three-dimensional cubic lattice structure. The dielectric constant of the
remaining space ise2 .
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The machinery for calculating the complex effective permit-
tivity presented in this article is now in place. In the next
section the relevant details of the results are described and
discussed.

III. RESULTS AND DISCUSSION

Through the use of the numerical technique described in
the previous section, a set of different simulations corre-
sponding to selected three-dimensional geometries were per-
formed and are discussed in detail. Specifically we present
numerical results for several regular arrays of spherical in-
clusions of uniform size forming a crystal lattice in a host
matrix. Three types of structures are investigated: simple
~sc!, body-centered~bcc!, and face-centered~fcc! cubic lat-
tices.

A. Comparison of numerical predictions with
McLachlan analysis

We begin this presentation by considering a system in
which spheres are spatially distributed at the nodes of a
simple cubic lattice. Two sets of permittivity component val-
ues were studied:e1580-i106, e252-i0 ande1580-i104,
e252-i0. In either case the sphere to host real part of per-
mittivity is 40. Figures 3 and 4 compare the simulation data
of the complex effective permittivity with predictions from
McLachlan’s equation.20 As can be seen clearly from these

figures, the values ofe8 ande9 given here deviate markedly
with the published results of McLachlan. For these two sets
of parameters, the simulation data predict a lower real~and
imaginary! part than the McLachlan analysis. The most dis-
tinguishing feature of McLachlan’s data is the sharp increase
in permittivity with volume fractionf which is particularly
evident in the real part forf <0.2 @Figs. 3~a! and 4~a!#. We
observe that the real part of the effective permittivity in-
creases rapidly fore1580-i106 @Fig. 4~a!# and slowly for
e1580-i104 @Fig. 3~a!# but in both cases the values ofe8
remain moderate up to the close packing limit. Computer
simulations produce a result of quite different form and mag-
nitude over the entire range of volume fraction. The largest
deviation appears for the higher value ofe19 . Departures
from the dilute limit appear also atf >0.1 for the imaginary
part of the permittivity. We observe that the results superim-
pose rather nicely at the higher volume fractions, i.e.,f
.0.6.

The differences between the two approaches are also
striking in the transition region when the spheres make con-
tact. The present analysis and that of McLachlan both predict
a critical volume fraction of inclusionsf c wheree9 begins
deviating substantially from zero. We estimatef c50.50
60.02. for our results while McLachlan’s equation uses as
input f c50.16,29 i.e., well below the close packing limit con-
centration which is close to the touching spheres condition in
the sc structure~Table I!. We note also that the critical region

FIG. 2. ~a! The real part (3) of the effective permittivity is shown as a
function of the volume fractionf of the inclusion phase. Spherical inclu-
sions~permittivity e1538.2-i22.1! are placed in a host matrix material of
permittivity e251.0-i0.0. Simple cubic lattice. Also shown is the Calame
et al. ~Ref. 28! prediction~square!. ~b! The imaginary part (3) of the ef-
fective permittivity is shown as a function of the volume fractionf of the
inclusion phase. Spherical inclusions~permittivity e1538.2-i22.1! are
placed in a host matrix material of permittivitye251.0-i0.0. Simple cubic
lattice. Also shown is the Calameet al. ~Ref. 28! prediction~square!.

FIG. 3. ~a! The real part (3) of the effective permittivity is shown as a
function of the volume fractionf of the inclusion phase. Inclusions~permit-
tivity e1580-i104! are placed in a host matrix material of permittivitye2

52-i0.0. Simple cubic lattice. Squares: prediction from McLachlan equa-
tion ~Ref. 20!. ~b! The imaginary part (3) of the effective permittivity is
shown as a function of the volume fractionf of the inclusion phase. Inclu-
sions ~permittivity e1580-i104! are placed in a host matrix material of
permittivity e252-i0.0. Simple cubic lattice. Squares: prediction from
McLachlan equation~Ref. 20!.
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is quite sharp. We have analyzed the real and imaginary parts
of the complex permittivity in terms of the scaling variable
f 2 f c . According to the ideas underlying the percolation
model, one can obtain the critical exponentss andt by fitting
the relationse8;u f 2 f cu2s ande9;( f 2 f c)

t in the immedi-
ate neighbor of the percolation thresholdf c . Figures 5~a!–
5~b! show the data on a log-log scale fore1580-i106. The
linear part of these graphs yields a value of the critical ex-
ponentss50.6160.05 andt51.2360.30 to be compared
with the universality ranges of 0.6–0.7 fors and 1.5–2 fort
predicted by the percolation model for insulator-conductor
mixtures.5

B. Effect of crystal lattices

The results reported up to this point have been obtained
from simulation on a sc lattice. The purpose of this section is
to examine the effect of crystal lattices on the complex per-
mittivity. In Figs. 6~a!–6~b! we display the reale8 and
imaginarye9 parts of the complex effective permittivity plot-
ted versusf for bcc and fcc lattices. To illustrate our point
the dielectric constant of the sphere is assumed to be equal to
e1580-i106 and that of the remaining volume ise252-i0.
The results shown in Figs. 6~a!–6~b! lead to two conclusions.
First, the percolation threshold concentrationf c depend sen-
sitively on the type of cubic lattice. We cannot estimatef c

for bcc and fcc lattices: what we can say is that these values

are higher than the corresponding value of the sc lattice, i.e.,
the higher percolation threshold concentration the higher
packing fraction. An explanation for this behavior can prob-
ably be ascribed to the fact that the face-centered cubic is the
most dense and the simple cubic is the least dense of the
three cubic lattices~see Table I!. Note that, due to computa-
tional limitation, it was not possible to determine the critical
exponentss andt from the dependences ofe8 ande9 on the
distance from thresholdf 2 f c . A second conclusion is that
the three different crystal lattices give the same result forf
,0.5. Thus the effective complex permittivity is insensitive
to the geometry of the periodic structure for this range of
concentration. However at higher concentrations, we observe
some significant differences in both the real and imaginary
parts of the permittivity.

C. Effect of absorption losses

The purpose of this subsection is to investigate the effect
of absorption losses of the dense spheres, i.e., of the ratio
e19/e18 . Our results, concerning a sc lattice, are shown in the
semilogarithmic plots of Figs. 7~a!–7~b! for e1580-i10n, n
51,4 ande252-i0. The data in Fig. 7~a! show that the real
parts of the effective permittivity are identical in the range of
values of n investigated; whereas the imaginary parts in-

FIG. 4. ~a! The real part (3) of the effective permittivity is shown as a
function of the volume fractionf of the inclusion phase. Inclusions~permit-
tivity e1580-i106! are placed in a host matrix material of permittivitye2

52-i0.0. Simple cubic lattice. Squares: prediction from McLachlan equa-
tion ~Ref. 20!. ~b! The imaginary part (3) of the effective permittivity is
shown as a function of the volume fractionf of the inclusion phase. Inclu-
sions ~permittivity e1580-i106! are placed in a host matrix material of
permittivity e252-i0.0. Simple cubic lattice. Squares: prediction from
McLachlan equation~Ref. 20!.

FIG. 5. ~a! Real part~d! of the permittivitye8 as a function of the scaling
variable f - f c ; log-log plot abovef c with slopes50.6160.05. The perco-
lation threshold isf c50.5060.02. Inclusions~permittivity e1580-i106! are
placed in a host matrix material of permittivitye252-i0.0. Simple cubic
lattice. ~b! Imaginary part~d! of the permittivity e9 as a function of the
scaling variablef 2 f c ; log-log plot abovef c with slopet51.2360.30. The
percolation threshold is f c50.5060.02. Inclusions ~permittivity e1

580-i106! are placed in a host matrix material of permittivitye252-i0.0.
Simple cubic lattice.
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crease when the ratioe19/e18 increases, as displayed in Fig.
7~b!. We found a similar behavior for bcc and fcc lattices.

D. Discussion

A comparison with computer simulations showed that
the McLachlan equation does not accurately reproduce the
numerical data over a wide variety of conditions. On the
basis of the numerical results described above, an evaluation
of the McLachlan’s modeling is possible. They may be sev-
eral reasons for the discrepancy between the predictions of
McLachlan equation with our numerical calculations. A use-
ful starting point for discussion of these results comes from
the basic assumptions on which McLachlan’s modeling rests.
Equation ~1! rests on a tentative to combine mean field
~Bruggeman! theory and percolation theory. The mean field
theory of a composite material assumes that the only effect
of interactions is to replace the field each dipole feels by an
average field. This assumption is not justified for the entire
range of volume fractions of the inclusion phase.1,2 Further
scrutiny of the McLachlan model has led to two additional
observations. The first is that the effective medium approach
of McLachlan disregards information concerning the detailed
structure of the inclusions arrangement in the host medium.
The second deals with the fact that the McLachlan equation
is written in terms of the conductivities of the two compo-
nents, a percolation thresholdf c and the critical exponentt.

However we expect that when dealing with permittivity, the
mathematical formulation should include the exponents
which determines howe8 scales withf 2 f c . It should also
be mentioned that the above conclusions are obtained by
analysis of materials with finite conductivities.

IV. SUMMARY AND CONCLUDING REMARKS

We have attempted to show in this article to what extent
the McLachlan equation can be used to model the complex
effective permittivity of a two-component heterogeneous
material, in the quasistatic limit. The technique used has
been to compare the results of anab initio numerical proce-
dure, based on the FE method using the field calculation
packageFLUX3D which allows the exact values to be com-
puted, to results predicted by this equation. In the first place,
a comparison of our numerical data for regular arrays of
spherical inclusions, shown in Figs. 3~a!–3~b! and Figs.
4~a!–4~b!, with the analytical results obtained with Eq.~1!
indicates that McLachlan equation does not provide a good
fit for the effective permittivity over the entire range of vol-
ume fraction of inclusions. Secondly, the data have been
used to examine the relationship between the percolation
transition and the permittivity ratio of the two constituents.
In this latter context we have illustrated how the percolation
threshold changes for cubic lattices. The primary results of
this article must be considered the multipole analysis of per-

FIG. 6. ~a! The real part of the effective permittivity is shown as a function
of the volume fractionf of the inclusion phase. Inclusions~permittivity e1

580-i106! are placed in a host matrix material of permittivitye252-i0.0.
Simple cubic lattice (3), base-centered cubic lattice~s!, and face-centered
lattice ~n!. ~b! The imaginary part of the effective permittivity is shown as
a function of the volume fractionf of the inclusion phase. Inclusions~per-
mittivity e1580-i106! are placed in a host matrix material of permittivity
e252-i0.0. Simple cubic lattice (3), base-centered cubic lattice~s!, and
face-centered lattice~n!.

FIG. 7. ~a! The real part of the effective permittivity is shown as a function
of the volume fractionf of the inclusion phase. Inclusions~permittivity e1

580-i10n, n51,4! are placed in a host matrix material of permittivitye2

52-i0.0. Simple cubic lattice. The values ofe8 are identical forn51,4. ~b!
The imaginary part of the effective permittivity is shown as a function of the
volume fraction f of the inclusion phase. Inclusions~permittivity e1

580-i10n, n51,4! are placed in a host matrix material of permittivitye2

52-i0.0. Simple cubic lattice.
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mittivity and the numerical evaluation of the percolation
threshold that describe critical behavior of the complex ef-
fective dielectric constant of a two-component periodic com-
posite material.

This methodology has shown to be robust and accurate
for computing the complex effective permittivity of a two-
component composite material, in a quasistatic approach. It
would be very gratifying to see these results tested in real
laboratory experiments. Unfortunately, none of the experi-
mental systems are both sufficiently well characterized and
studied in enough detail to provide real tests of these numeri-
cal data. Nevertheless, if the development of good experi-
mental models is realized, it may be possible in the future to
measure some of the effects that were observed here. Re-
search is currently underway to systematically vary param-
eters like particle shape, spatial arrangement, and size distri-
bution. Such a battery of simulations should make it possible
to identify important microstructural information that affect
the value of the percolation threshold. These results are rel-
evant for a range of applications such as temperature sensors,
corrosion protection devices such as sacrificial anodes and
current limiters.30,31 Arrays of conducting strips and spheres
embedded in dielectric materials are useful microwave
devices.32 Colloidal crystals which are three-dimensional pe-
riodic structures formed from small particles suspended in
solution have important technological uses such as optical
filters and switches.33 The ability to characterize the perco-
lation behavior is important for the design of composite ma-
terials having components with finite conductivity because it
can be exploited to control complex behavior in these mate-
rials. Other properties for which the present results should be
directly applicable are the thermal conductivity, the diffusion
constant, and the permeability of two-component compos-
ites.
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24B. Sareni, L. Kra¨henbühl, A. Beroual, and C. Brosseau, J. Appl. Phys.80,

1688 ~1996!.
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