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1 Introduction

This manuscript is an attempt to derive a generalized formulation for the wave
equation in linear acoustics, including the conservation of energy. It makes
use of the conservation of the stress-energy tensor, that is, the covariance of the
stress-energy tensor is null in linear acoustics, as first proven by P.M. Morse and
K.U. Ingard [MI68]. At stake is a novel approach to sound field computation
that naturally accounts for losses, whereas current computational methods do
not.

As a matter of fact, the stress-energy tensor and its covariant conservation
are the basis of general relativity. The present paper therefore investigates to
which extend general relativity has application in linear acoustics. Except for
its derivation by Morse and Ingard [MI68], there has been no attempt to apply
this formalism to acoustics. The motivation behind this investigation was the
search for a natural setting for explaining the curvature of rays above absorbing
surfaces experimentally proven by Janowsky and Spandock in the 30s [JS37],
and confirmed by Cremer and Miiller [CM78].

2 The generalized wave equation

We consider a 4-dimensional time-space with its metric tensor g;; and the volume
element dV = /|g|dz®...dz3, where g = detg;; [Lin 5. The infinitesimal
distance element is given by:

ds® = g;;dz"dx’ (1)
and the generalized wave equation is:
0% = v;970;® =0 (2)

where @ is the velocity potential and g* the inverse matrix of g;;. Note that
V; is the covariant derivation with respect to z?, which differs from the usual
partial derivation 0; in a way that depends on the tensor rank. For example,
for a function ®:

Vi®=0;® =29



but v;®; = 0;®; — F?ZII);C and Vin = Gin + F;ka, where X* are the (con-
travariant) components of vector X and the F;?i the Christoffel symbols linked

to the derivatives of the elements of the metric tensor g;;:
1
I = 59“ (0j9i + Oigij — D1gji) (3)

Note that, unlike ordinary differentiations, covariant derivations do not com-
mute. Their commutators is given by the curvature of the time-space [Lin 5]:

(VZ‘V]‘ — Vjvi) Xk = Rk X™ (4)

mij
where the Rfmj are the elements of the Riemann tensor. However, for a function,
V;0;® = V;0;®; and by construction, all covariant derivatives of the elements
of the metric tensor are null. In other words, the contravariant derivation v is
defined by:
vl — gijvj _ ngij

One calls vectors tensors with one upper index, such as X?; and covectors tensors
with one lower index, such as ®,.

3 Volume deformation

In general, the velocity potential @ is a complex function. So one can consider
the product ®*[0®, where ®* is the complex conjugate of ®. Differentiation
rules lead to:

P*0® = &V, 0,® = v;¢" [®*0;®] — [0;9*] g7 0;® = 0 (5)
that is, to: - -

vig¥ [@*8]@)] = [&-CI)*]g”&'j(b (6)

As the right member of the preceding equation is real, separating the real and
imaginary parts leads to:

L 20,0 + B0 0"
2

for the real part, where L is the Lagrangian; and for the imaginary part, to:

Vilg

] = 0;9*g70;® = 2L (7)

L D*0; D — PJ,; P* . D*0;d — PO, P*
v, ¥ J J =/ J J =0 8
[9 2i ] 2i ®
It should be noticed that ¢ w can be rewritten as:
L D*0; P 4 O, D" i 1
gw% = g0 <2|q)|2) (9)

that is, as the 4-gradient of a real function. As a consequence, g
can be assimilated to a 4-velocity —U*. Thus the real part of Eq. (6) simply
reduces to:

ij 70;2+929,%"
2

V0 = 2L (10)

meaning that the Lagrangian L amounts to a volume deformation (divergence

of a velocity). In a similar fashion, the imaginary part w can be
assimilated to a ”covector” potential ; with the gauge relation:
Vi, =0 (11)



4 Conservation of the stress-energy tensor
We now consider the product 9y ®*[0®. Once more, differentiation rules lead to:
O ®* 00 = 0,0V, 0;® = V;9" [0,D*0;®] — [V,;01.P*] g7 0, ®
= Vigij [8k<1>*8]<1>] — [Vkazq)*] g”ﬁﬂ)
=vJ [8k<I>*8J<I>] — [vk@(b*] gijajq) =0

As i and j are mute indices, separating the real and imaginary parts of the
preceding equation leads to:

e for the real part:
V7 (0;9 0P + 0,90, D*) = vy, (0;9%¢" 9;9) (12)
that is, to: ‘
ViT,; =0 (13)
where T;; is the symmetrical stress-energy tensor, defined by:

_ AP02 4020, _ 1gz‘j (2:2%9"70;9) (14)

T
J 2 2

e for the imaginary part:

VI (0,0* O ® — 0,0, 0*) = [V,0;9*] g7 0;® — [V1,0;®] g 0;P*
= —4mij,  (15)

The covector j; can be assimilated to a 4-current, as will become evident
in next Section.

It is easy to recognise that the equation for the real part corresponds to the
contravariant conservation of the stress-energy temsor, suggesting that T;; be
proportional to the Ricci curvature tensor R;;, and its reduction T to the scalar
curvature R, linked to the volume variation. This confirms the conclusion from
Sec. 3 that T measures a volume deformation.

5 Maxwell equations

In acoustics, the different coefficients of the stress-energy tensor can be inter-
preted as [MIG8]:

e the total energy density Tyo;
e the active acoustic intensity T,0,a € [1,2,3], or To,,a € [1,2,3];
e the symmetrical wave-stress tensor Ty, (a,b) € [1,2,3];

Conservation of the stress-energy tensor T;; therefore amounts to the conserva-
tion of energy.
On the other hand, let us introduce the antisymmetric tensor Fj; defined
by:
Fij = VZ‘Q[J‘ — iji = —Fj‘ (16)



In other words, F;; is the the external differential form (curl) of the covector
potential 2. Simple derivations lead to:

9,0 — $9;*

V,L-Qlj =V, 9%
1
= % {32(1)*8]@ + @*Viﬁj‘b — &(I)@‘I)* - (I)Viaj@*} (17)
1 * * * *
Vji)li = 2*1 {fajq)aﬂ) + P V]B,;fI) + 6]-(1) 0;® — <I>Vj87;<1> } (18)

and by subtracting the two equations, to:

0;9*0,® — 0;9*0;P
Fj =v2; —v;A; = I 5; J (19)
1

Due to its definition, Fj; naturally satisfies the generalized Maxwell equations:

ViFij = 747Tjj
V[kFU] = Vil +ViFj +V;F,; =0 (20)

where the square brackets indicate sum over all cyclic permutations, that is,
anti-symmetrization. The first equation is nothing else than Eq. (15), and leads
to assimilate the covector j; to a 4-current. The second equation simply derives
from the definition of tensor Fj; and the commutative property of covariant
derivations. Indeed:

VieFij) = Vi [Vifl; — V24] + Vi [V — V2] + V5 [V — Vi) = 0 (21)

Note that the first Eq. (20) implies current conservation. Indeed, form the
definition of j;:

V0P klg,d* — V0, P* kg, 1
ji _ LPg l : k g 1 - -G {Viakq)gklalq)*} (22)
4 4

we obtain:

i vi&cfbg’“@l@* — Viak(b*gklalq)

VY =V,
Ji = Vg 4mi
T [ Jgﬂv 8k<I>g“81<I>* + V; 8k¢>gklg”v 0| ® ]
Tl
1
r [ ]gj Vi 6k¢)* kl@[@ + V; 8k‘1)*gklgljv 61(13]
5}
1 3 3
47 [ngﬂviakq)gklal‘b* — ngﬂviak‘b*gklal ]
i
1
r [V gﬂvka <I>g“61<1>* -V gJ Vka o ’”81 ]
(23)
The commutation relations for covariant derivatives leads to:
Vjvkgji@-(b = Vg [ngji(“)iq)} + RJ ]kg"”a P
(24)



We recognize in the first term on the right hand side the generalized wave
equation V,;¢’*0;® = 0, and the term is therefore equal to 0. Thus:

Vg V0, 0gM 0,0 = R . g™ 009" 0,2% = Rypg™ 0; 09" 0,0

m

where R;, = jok is the Ricci tensor. In a similar fashion:
V9 Vk0;9* " 0,® = Ry 0,9 g" 0, ®

and Eq. (23) becomes:

1 . .
— [Rmkgmlai‘l)gklaz@* o Rmkgmzazé*gklalq)]

Vi =
)i 41

Since all indices are mute and the Ricci tensor is symmetric, the two terms
cancel out. Thus:

V' =0 (25)
There remains to interpret the antisymmetric tensor F;; in acoustical terms. By
comparison with the stress-energy tensor, it is obvious that F,g = —Fps,a €
[1,2,3] is the reactive acoustic intensity. Therefore, by analogy, we call the
terms Fop = —Fyq, (a,b) € [1,2, 3] the reactive wave stress.

6 Solving the generalized wave equation

Let us now consider a 4-dimensional manifold V', with border 9V = S, metric
tensor g;; and volume element dV = /|g|dz"...dxz>. We consider boundary
conditions of admittance type on S:

9i®B =0 (26)

where 3¢ = £ —io? is the complex specific 4-admittance. Solving the wave equa-
tion in V' with boundary condition (26) on S amounts to finding the extremum
of the Lagrangian, that is, the extremum of the volume integral T = fv TdV of
the volume deformation 2L given by Eq. (10). Using Eq. (7), we thus obtain:

1 3y
2£:2/ LdV = 5/ Vg [*0;® + ®0;®*] \/|g|da® ... dz" (27)
% %

Using the identity v; X* = 9;(1/|g|X?) [Lin 5] and applying Stokes theorem,

i

the last expression leads to:
1 g
2/VLdV =5 /S [270;® + ©9,;D"] g'*n;dS (28)
Choosing the local coordinates on the boundary so that n; is the outgoing 4-
vector, and that ¢7n; = & leads to:
[@%0;® + 0;*®] g''n; = [®*0;® + ;P D &
= [©*0;0B7 + 0;9* B @] + [ic? &7 0;® — ic? D" D]
=0+io? [@*0;® — 9;0* D] = 207 J [0*0; D] (29)



Thus:
22:2/ TdV:/Uj%[é*ajfb] ds (30)
14 S

In a similar way, for the imaginary part, Eq. (8) implies:
0= / VI [2*0,® — ®9; %] dV = / [®*0;® — ®9,;®*| g’'n;dS  (31)
|4 S

with:

[@%0;® — 0;*®] g''n; = [®*0;® — 9;P* D] &
= [270;®p87 — 0;0* B ®| + [ic! D" 0;® + ic]D* D]
=0+i0? [@*0;® + 0;*®] = 2ic? R [®*0; D] (32)

We finally obtain:
/ IR [@*0;®]dS =0 (33)
s

It should be noted that the metric tensor g% is normalized by |g| = 2, but its
elements are not bounded. Similarly, the 5* are not bounded.

7 Discussion

The striking aspect of these generalized equations is the presence of Maxwell
equations equations to describe the evolution of the reactive intensity and wave
stress. They are obtained as the external differential form of a covector potential
2; that naturally satisfies the gauge relation V'2l; = 0.

There exist other attempts in the literature to associates Maxwell equations
to the energy-stress tensor. Most notable is the Kaluza-Klein theory [Wik18§],
derived in the 1920s, and its successors. Unlike Kaluza-Klein theory, the present
approach does not introduce an extra dimension to introduce Maxwell equations;
nor is the metric tensor modified by the covector potential ;.

The fact that thecovector potential and the Maxwell equations are associated
to the reactive intensity field leads to a straightforward physical interpretation:
they are associated to standing waves and the eigenmodes of the manifold.
Indeed, its is well known that eigenmodes are characterized by a quadrature
relation between pressure and particle velocity, that is, by a vanishing active
intensity and a non-vanishing reactive intensity. Thus, compared to the local
field described by the stress-energy tensor, the reactive field is the global sig-
nature due to the manifold geometry. Global and local field are coupled at the
boundaries, as shown by Eq. (30).

8 Examples

We now give a few examples of metric tensors g;; that satisfy the admittance
condition (26) on the boundary, with real specific admittance.



8.1 Propagation above constant absorbing plane

The case of sound propagation above a constant absorbing plane z' = 0 is

addressed first. Boundary condition (26) then reduces to p®3° + 9,98 = 0,
with g—? = —¢, the real specific admittance on the absorbing plane. As the
outgoing 4-vector is n; = (0,—1,0,0), the local metric must satisfy g/ln; = &7,
that is, g'° = ¢! is non-zero. In other words, the metric tensor and its inverse
are no longer diagonal, and must be written as:

—¢ b 0 0 —a b 0 0
b a 0 0 b ¢ 0 O

Ly — L

9°=1 0 o1 0 |"% =] 0 01 0 (34)
0 0 0 1 0 00 1

where a, b, and ¢ only depend on the coordinate ' and not on the two other
space coordinates. The boundary condition is then given Jy®b+ 9, Pa = 0, with
g = —¢, the real specific admittance on the absorbing plane. Normalizing a, b,

and ¢ by ac + b?> = 1, it is then obvious that g = det(¢*/) = —1, @ > 0, and
b<O0.

Lagrangian: Simple calculation shows that the Lagrangian L is given by:

1
L= [~cl®ol* +b(®5®1 + Po®]) + a|®s|* + [@of* + |P57]  (35)

Christoffel symbols: The Christoffel symbols are all equal to 0, except for:

1 1
I =Tgo = ~To1 = gbala o, = 5
0 1 1 1 1 0 1
Iy=-Tn = §CG17F10 = _gbalaru = —cby + §bcl (36)

Stress-energy tensor: The conservation of the stress-energy tensor takes a
simpler form for 7% than for T};, which still is symmetric. Indeed, Eq (13) can
be written as:

GV = g* Vv Tug = viT9 = ;T + T3, T +T? T =0 (37)

that is ([Lin 5] p.54):
1
Vgl

or, after integration on a small 4-dimensional volume V' with border oV

0:(\/1g|T}) + T4, T =0 (38)

/ n;TidS + / T Tmdy =0 (39)
oV 1%
In the last two equations, T% = g* 1(®, @} + ®;P;)g" — gL is given by:

% [| —c®g + b<I>1|2 + ‘¢1|2 + C‘q)2|2 + C‘q)3|2]
[(R{(—c®o + bP1)(bDF + adt)} — R(Po®T) — b|D2|? — b|Ds|?]
R{(=cPo + b)) P35}
R{(—cPo + b®1)P5}

1
2



3 [R{(=c®o + bP1)(DF + a®])} — R(PoP]) — b|P2|* — b|P5|?]
% H(I)l‘Q + ‘b(I)o + a<I>1|2 — a\<I>2|2 — a‘q)g‘Q]
R{(bDy + aP,) P35}
%{(b‘bo +0,‘I)1)(I>§}

R{(—cBo + b1 )3}
R{(b®y + ady) D3}
3 [cl®of? — 26R(PDT) — a|@1[* + o[> — |P5]?]
0

%{(—C(I)(] + b(I)l)(I)g}
R{(bDy + aP;)P%}
0
1 [c|®o]? — 26R(PD}) — a|®1|? — [D2f* + |P5?]

0T + 0T + 9,7 + 05T° + 210 + ['1o]T%° + [3T9, + ', ]7"0 + 19, T
=0

BT + T + 0% + 93T°" 4+ Ty T* + [Tgg + 3T1o] T + [T, + 211, |T
=0

QT + 1T + 0, + 05T + [Ty + T T + [T9, + T, | T =0

0T + T + 01?8 + 93T% + [T9) + T T + [T, +T1, | T =0

that is to:

1 1
DT + T + 9,720 + 95130 + 5balTOO +car T — (cby — 5bcl)T“ =0

1 1
9T + 0, T + 9,7 + 0573 + 5bUHTOO — bay T — 5ca1T11 =0
BT + T + 0,T% 4 95T = 0
DT + 0T 4+ 0,T% + 05T =0

Ricci and scalar curvature: The Ricci curvature tensor can be computed
from the derivative of the Christoffel symbols, by contraction of the Riemann
curvature tensor on two indices. One obtains successively:

e the Riemann tensor: Rfm-j = 81-I‘§k. — @I‘ik + F}’}el—‘ém — F;’Zl—‘zm

e the Ricci tensor: R;j = Rﬁlj

e the scalar curvature: R = g R;;

Lengthy calculations lead to the expression of the Ricci tensor and the scalar
curvature:

1 1 1
Rop = §aa11,R01 =Ry = _ibaH’RH = —§CG11,R = —an

all the other elements being null. Note that the last equation indicates that
there always is volume expansion or contraction. However, the Einstein tensor
GY = R — % g% R is identically null, in accordance with the fact that acoustical
waves are not subject to gravitation.



Ray equation: Sound rays simply follow the equation dxigijdxj = 0. With

the notations:
, drt ,  dx?

, dad

a0 Y T a0 * T a0
it reduces to Monge equation:
202’ + () + () + () =a

Ray curvature can then be computed form the generalized acceleration equation:

dv’ .
dl == Zz”kvl
-
where 7 is the proper time defined by dr? = —ds? = —g;;jdz’dz’ and the v’ are
defined by: '
i dz'
Cdr
We can then write:
dvi:idixi:7 i okl
dr dr dr kil
O N A N
Cdr \dax® dr ) (dx0)2 \ dr dz0 (dr)?
d*z ov2  dz' o g
= ez V) T gt
Thus: ) ) e
i d dz* i v
()" = (@2 (dxofu kl) 050 (40)

We then obtain the system:

! [Foo +2rg, @ + F(1J1(33/)2] - [F(lJo + 202 + Fh(x,)Q]

% [bay + 3bayz’ + 3cai (z')? — (2¢by — bey)(z')?] (41)
=y [ 0o + 2002’ + F(1)1(33/)2]
= % [bay + 2ca1z’ + —(2cby — ber)(2')?] o/ (42)
" =2 [T + 202" + T (a")?]
= % [bay + 2cayz’ + —(2cby — bey) (2')?] 2/ (43)

Since a must increase away from the boundary and b is negative, ba; is negative
and a ray parallel to the absorbing plane (' = 0) is curved down toward the
plane, as experimentally observed by Janowsky and Spanddck [JS37]. On the
other hand, rays with normal incidence (y' = 2’ = 0) are not deviated and
remain normal to the surface.



8.2 Propagation above plane with varying absorption

We still consider the plane 2! = 0 with the same boundary condition as in the

previous case: 9y®3° + 9, PB! = 0, with g—f = —¢, the real specific admittance
on the absorbing plane. The metric tensor and its inverse are still given by Eq.

(34):

—¢ b 0 0 —a b 0 0

y b a 0 0 b ¢ 0 0

(O —

91 0 o1 0 |’% =] 0 010 (44)
0 0 0 1 0 00 1

with ac+b2 =1, a > 0, and b < 0. But now, a, b, and ¢ only depend on the 3
space coordinates x', 22, and x3.

Lagrangian: The Lagrangian L is not changed:
1
L = 5 [=c|®ol* + b(®G1 + D7) + a|®: | + @ + [@5]7] (45)

Christoffel symbols: New non-zero Christoffel symbols must now be consid-
ered, besides the ones given by Eq. (36):

1 1

o =I5 = 5(002 +bbs), T3 =T, = §(ca3 + bb3)
1 1

Iy =T9 = §(b02 —chy), I =T%, = 5(1703 — cbs)

1 1
Ty, =T3 = —§(ba2 —aby), T3 =Ty = —§(ba3 — abs)

1 1
I}y =T3 = i(bbz +acy), I3 =T4, = §(bb3 + acs)
1 1 1
5o = §a2ﬁrgl =T = —§b2,F%1 =—5C
3 _ 1 3 3 1 3 1
FOO = 50,3,1—‘01 = FlO = _§b3’rll = —503 (46)

Stress-energy tensor: The conservation of the stress-energy tensor 7% now

becomes:

DT + T + 0,7 4 95T + [2I, + 1| T + 319, + T, )T + T, T
+ [3T02 + T1o)T%% + [8T0 + D) T% + 209, T4 + 2T, T =0

QT + 01T + 05T + 93T3 + T, T + [T + 3T, T + [T, + 2T}, )T
4 2T 5o T2 4 2T, T + [Ty + 3T1,] T 4 105 + 30 15] T =0

DT % + O T + 0,T%2 + 93T32 + T2,7°° + 212, 7% + 13, 7!

+ [To + Tio) T + [T, + T11] T =0

DT + T + 0,17 + 05T + T3, T + 205, T + T3, T

+ [[9o + Tio) T% + [Tg; + T3] T =0

10



that is:

00T + 01T + 0,70 + 93T + %balTOO + cay T — (cby — %bcl)T”
+(cag + bba)T? + (caz + bb3)T* + (bea — cba)T + (bes — cb3) T =0
DT + O T + 0,T? + 0:T3 + %balTOO — ba; T — %calTll
+(aby — bag)T? 4 (abs — baz) T + (bby + acy)T*? + (bbs + ac3) T =0

1 1
0T + T2 + 05T + 05T + SasT™ = by T = ST =0

1 1
BT + 0,713 + 9573 + 05733 + 5ag,TOO — by TO — 5chll =0

9 Conclusion

Besides deriving the wave equation and the corresponding energy conservation in
generalized coordinates, the present paper has proved the possibility to construct
metric tensors ¢g¥ that satisfy the boundary condition ¢‘n; = 3%, with
real, on the border S. However, the initial hypothesis that an analogue to
FEinstein equation holds in acoustics cannot be maintained. Even though the
corresponding Ricci curvature tensor R¥ satisfies the relation

Vi

1
o _qgW =
R~ 2yg R} 0

with R the scalar curvature, the stress-energy tensor 7% cannot be proportional
to the Einstein tensor G = R — 1g"R, as the metric tensor must be time
invariant, and is in fact null in the present applications, as acoustical waves
are not subject to gravitation. On the other hand, the stress-energy tensor is
decaying with time and cannot be null. The solution of the generalized wave
equation must therefore be numerically computed.

Beyond the falsification of the initial hypothesis, some new results have been
obtained. Firstly, a generalized equation for energy conservation has been de-
rived, that can now be numerically solved along the line of our previous papers
[DPTP17, DPTP18]. Secondly, the thickness of ”adaptation layer” between the
surface admittance and the free space above is a free parameter in the theory;
it can thus be adjusted to the case at hand, for example to a quarter wave-
length as usually hypothesized in room acoustics. Thirdly, ray curvature above
finite impedance surfaces has been proved, and a proper explanation to the
experimental finding of Janowsky and Spandock [JS37] can now be given, or
to the computational artifice, amounting to multiple reflections of the rays on
the boundaries, currently used in Boudary Element Methods (BEM) to com-
pute propagation above flat lossy boundaries of varying admittance [Ras82].
Such results provide a validity check of the present generalized formulation for
acoustics.

But totally unexpected is the discovery that reactive intensity and reactive
wave stress satisfy Maxwell equations. It makes it possible to define some sort
of ”second order” stress-energy tensor that describes the conservation of the
standing waves within the manifold where the acoustic field takes place. This
discovery certainly deserves further investigation.
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