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Abstract

Malaria transmission is highly heterogeneous through time and space, and mapping of this heterogeneity is
necessary to better understand local dynamics. New targeted policies are needed as numerous countries have
placed malaria elimination on their public health agenda for 2030. In this context, developing national health
information systems and collecting information at sufficiently precise scales (at least at the ‘week’ and ‘village’
scales), is of strategic importance. In a recent study, Macharia et al. relied on extensive prevalence survey data to
develop malaria risk maps for Kenya, including uncertainty assessments specifically designed to support decision-
making by the National Malaria Control Program. Targeting local persistent transmission or epidemiologic changes
is necessary to maintain efficient control, but also to deploy sustainable elimination strategies against identified
transmission bottlenecks such as the reservoir of subpatent infections. Such decision-making tools are paramount
to allocate resources based on sound scientific evidence and public health priorities.

Please see related article: https://malariajournal.biomedcentral.com/articles/10.1186/s12936-018-2489-9.

Keywords: Sustainable malaria control, spatiotemporal analysis, bottleneck strategies, malaria reservoir,
Epidemiological Information System

Background
In line with the Sustainable Development Goals numer-
ous countries have placed malaria elimination on their
public health agenda for 2030. Understanding the spatial
and temporal dynamics of malaria is of utmost import-
ance to deploy sustainable control and elimination inter-
ventions. Indeed, resource constraints preclude the
generalization of interventions and guide targeted ap-
proaches. Following the recommendations of the World
Health Organization, maps of malaria transmission het-
erogeneity are being prepared for national programs to
efficiently allocate interventions [1]. Consequently, the
development of national epidemiologic information sys-
tems is of strategic importance. Nevertheless, the choice
of relevant representations of malaria risk heterogeneity
and the assessment of uncertainty of results present sig-
nificant challenges. Indeed, misclassification may result
in the lack of service provision to populations in greater

need, causing preventable mortality and morbidity. In-
correctly addressing persistent foci of transmission could
also jeopardize elimination efforts in some settings. Con-
versely, resources should not be wasted on interventions
in populations who do not require them.
In a recent article, Macharia et al. [2] analyzed the spa-

tiotemporal prevalence of Plasmodium falciparum malaria
in Kenya based on an extensive collection of 5020 malaria
surveys conducted at 3701 communities over 35 years
(1980–2015). The authors predicted country-scale maps
of annual risk of P. falciparum infection for children aged
2–10 years (PfPR2–10), using a geostatistical model fitted
on a limited number of surveyed parameters, namely age,
number of samples, location, and time of survey.

Stratifying malaria and assessing uncertainty with
limited data
Interest in such geostatistical modelling does not stem
simply from its ability to produce probability maps,
which could also be drawn using country-representative
cross-sectional surveys (such as the Malaria Indicator
Survey included in the Demographic and Health Surveys
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program), but also from its inclusion of estimates of the
certainty of malaria risk prediction, which can prove
very useful for decision-making. Building on limited as-
sumptions and extensive prevalence data, as the authors
were able to do in Kenya, is close to ideal, albeit not al-
ways possible. The contribution of historical data to the
assessment of the current situation deserves attention,
considering changes in the diagnostic methods, from mi-
croscopy to rapid diagnostic tests (RDTs), as well as
changes in malaria epidemiology.
Microscopy is the only consistent laboratory method

allowing comparison of cross-sectional survey results
over 35 years, as presented by Macharia et al. [2]; how-
ever, there are limitations to the use of microscopically
defined prevalence as a general indicator of malaria
transmission. The interpretation of a given prevalence
value, such as ‘PfPR2–10’, changes with malaria epidemi-
ology and transmission intensity, and specific human
and vector behaviors result in high risks for different
population groups. For example, in Southeast Asia, un-
like in Kenya, young adult males are at highest risk
through occupational exposure to forest-dwelling vec-
tors. In addition, the percentage of asymptomatic subpa-
tent infections undetectable by microscopy and RDT
increases with decreasing incidence, which makes esti-
mating the size of the parasite reservoir more difficult in
low transmission settings. These subpatent infections
could represent more than 80% of carriers in some set-
tings, and they have been shown to contribute to malaria
persistence and epidemic recurrence [3–5]. Finally, local
changes in the interpretation of prevalence-based indica-
tors can also result from middle- to long-term modifica-
tions of the malaria transmission environment
(deforestation, irrigation works, changing behavior of
vectors, etc.) [6]. Therefore, context-specific prevalence
indicators would likely have to be developed to identify
subpatent infections.
The generalization of RDTs has led to a drastic in-

crease in the proportion of laboratory-confirmed malaria
episodes reported by health systems. Indeed, RDTs re-
quire a lower level of equipment and skills, and a much
less stringent quality control compared to microscopy.
RDT deployment in health centers or at community
level across entire countries has significantly improved
access to diagnosis and treatment for populations, as
well as contributing to improving the precision and reli-
ability of malaria clinical incidence estimates, with the
caveat that pfhrp2- and pfhrp3-deleted clones do not
reach high prevalence [7].
Consequently, based on data available from public

healthcare providers, annual parasite incidence-based
stratification remains the recommended strategy. While
it sometimes relies on outdated incomplete datasets at a
very coarse spatial scale, the continued support and

investments to develop national health information sys-
tems have resulted in improving quality, completion,
and resolution of available incidence datasets. Incidence
recorded routinely and continuously at the local level
(community health worker, health center, etc.) provides
valuable additional spatiotemporal information rarely
captured by cross-sectional surveys.
Countries with a reactive surveillance system and na-

tionwide retrospective data already have the capacity to
report incidence-based analysis of malaria trends [8, 9].
Without relying on prevalence, incidence maps and
models also provide useful information on temporal
trends of malaria, matched with uncertainty levels, ul-
timately guiding elimination programs with relevant in-
formation for decision-making, prioritization, and
adjustment of on-going interventions. The combination
of incidence series with specifically collected prevalence
data using sufficiently sensitive tests (polymerase chain
reaction or ultrasensitive-RDT) to estimate the size of
the asymptomatic reservoir will enable the identification
and development of responses targeted to transmission
bottlenecks [10].
Other programs [11–16] rely on more complex ana-

lysis frameworks, including mathematical simulations,
compensating sparse data with hypotheses on the rela-
tionship between environmental conditions and risk.
The complex relationships between environmental,
demographic, and social factors and malaria transmis-
sion are difficult to assess accurately, especially when
studying historical databases. The increasing availability
and quality of national health information data will fur-
ther minimize the need for underlying assumptions.
New layers of data, such as precise environmental fac-
tors, parasite genomics, and population mobility, are also
becoming available and allow more accurate discrimin-
ation of sources from sinks [17]. In all cases,
ground-truthing should remain a priority to ensure the
validity of the models and of the actions taken upon
their outputs.

Towards real-time surveillance and early warning
systems
While the links between incidence and transmission re-
main complex, incidence data provide a dynamic view of
malaria epidemiology in terms of seasonal patterns and
yearly variations, and can be collected in a timely man-
ner. A shift from reactive to proactive strategies can also
take place when real-time surveillance data is integrated
with sentinel sites and weather/climate data in order to
produce early warnings [18, 19]. In such information
systems, the first challenge is to combine information
arising from sources such as health organizations and
economic, social, environmental, and population move-
ments. Indeed, the complex transmission dynamics
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derive from a large range of associated factors. The second
challenge is related to the information flow and portfolio of
evidence-based and sustainable control strategies. Develop-
ment of information systems and real-time data should
generate retro-information loops, where integrated data is
fed back to local-level health professionals (e.g. for inven-
tory management or epidemiological investigations). This
approach allows the deployment of locally tailored strat-
egies, such as screening and treatment campaigns, targeted
mass drug administration, reactive case detection, context-
ual community engagements, enhanced vector control, and
setting up or reinforcing capacities in a community-based
treatment facility in remote villages, to reach elimination in
a changing environment.

Conclusion
Spatiotemporal analysis of malaria dynamics based on
epidemiological surveillance systems is needed to collect
accurate local information and guide decision-making.
As transmission decreases, the heterogeneity of malaria
epidemiology increases. In such situations, targeting
transmission ‘bottlenecks’, such as addressing residual
foci, persisting transmission periods, and parasite reser-
voir, becomes a priority. In a changing environment, sus-
tainable and adaptive strategies should now be directed
from an informed local level.
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