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Abstract

Background: With limited resources and spatio-temporal heterogeneity of malaria in developing countries, it is still
difficult to assess the real impact of socioeconomic and environmental factors in order to set up targeted campaigns
against malaria at an accurate scale. Our goal was to detect malaria hotspots in rural area and assess the extent to
which household socioeconomic status and meteorological recordings may explain the occurrence and evolution of
these hotspots.

Methods: Data on malaria cases from 2010 to 2014 and on socioeconomic and meteorological factors were acquired
from four health facilities within the Nanoro demographic surveillance area. Statistical cross correlation was used to
quantify the temporal association between weekly malaria incidence and meteorological factors. Local spatial
autocorrelation analysis was performed and restricted to each transmission period using Kulldorff’s elliptic spatial
scan statistic. Univariate and multivariable analysis were used to assess the principal socioeconomic and
meteorological determinants of malaria hotspots using a Generalized Estimating Equation (GEE) approach.

Results: Rainfall and temperature were positively and significantly associated with malaria incidence, with a lag
time of 9 and 14 weeks, respectively. Spatial analysis showed a spatial autocorrelation of malaria incidence and
significant hotspots which was relatively stable throughout the study period. Furthermore, low socioeconomic
status households were strongly associated with malaria hotspots (aOR = 1.21, 95% confidence interval: 1.03–1.40).

Conclusion: These fine-scale findings highlight a relatively stable spatio-temporal pattern of malaria risk and indicate
that social and environmental factors play an important role in malaria incidence. Integrating data on these factors into
existing malaria struggle tools would help in the development of sustainable bottleneck strategies adapted to the local
context for malaria control.
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Background
Malaria’s epidemiology is influenced by climatic factors
[1–3] which affect the ecology of the vector and conse-
quently exposure of human populations to pathogens. At
a global or micro-epidemiological scale, malaria transmis-
sion is highly heterogeneous and modified by numerous
factors, generating malaria hotspots that can maintain
malaria transmission over a long time and across a wider
area [4–7]. In 2015, according to the World Malaria Re-
port, there were approximately 214 million cases of mal-
aria and an estimated 438,000 deaths in malaria endemic
countries, including Burkina Faso [7], with children under
5 years being the most affected [8].
In Burkina Faso, malaria is endemo-epidemic, the

transmission is seasonal with a peak of incidence during
and just after the rainy season and depends also on cli-
matic and socioeconomic conditions [9]. Despite the
combined efforts from local government and its inter-
national partners to mitigate the malaria burden, malaria
annual incidence remains stubbornly high throughout
the country areas. Additionally, the incidence of malaria
increased from 309 cases per 1000 persons per year in
2011 to 514 cases per 1000 persons per year in 2016,
however, the lethality due to malaria during the same
period was considerably decreased (from 3.3% in 2011 to
0.9% in 2016 or 73% of reduction) [9, 10]. The current
national policy is based on the Test-Treat-Track initia-
tive (T3 initiative), universal distribution of long-lasting
insecticide-treated nets (LLINs), seasonal malaria che-
moprevention (SMC) for children under 5 years old
during the high transmission period and intermittent
preventive treatment (IPT) of malaria during pregnancy
[11, 12]. Beside these measures, government adopted a
national policy which provided health care free-of-
charge to children under 5 years and to pregnant women
attending public health facilities [13]. With these com-
ponents of current national policy, it is noticeable that
in 2017 and according to the national health statistics,
malaria remained the first cause of outpatient consulta-
tions (43.5%), hospitalization (clinical observation) and
(60.5%) mortality (35.9%) in health facilities; its annual
incidence was estimated at 607 cases per 1000 persons
per year with a lethality rate of 0.8% in the general popu-
lation [14]. These statistics provide a partial estimate of
the total malaria burden because home treatment or
self-medication is a common practice in the Burkinabè
context [15, 16], and are therefore not accounted for in
the statistics presented above. To overcome the high
rates of morbidity and mortality related to malaria, it is
crucial to undertake research to refine approaches to ap-
plying existing interventions most effectively and effi-
ciently in local contexts, in a bottleneck approach such
as malaria hotspot-targeted strategies and according to
the season of transmission [3]. Albeit some studies have

reported that, within a micro-epidemiological scale in
endemic areas, malaria disproportionately affects popu-
lation living in similar conditions (nearest mosquito
breeding site, wind direction and velocity, vegetation,
house construction features, human genetic and behav-
ioural factors) [17–21], the large growing studies carried
out across African countries seemed to prove that mal-
aria hotspot-targeted approaches are efficient and have
more validity [22, 23]. However, for now the conclusion
of results varied, some research have reported that mal-
aria hotspot targeted approaches are not effective and/or
efficient, especially for reducing transmission outside of
the hotspot [4, 24].
Furthermore, albeit the effects of weather and environ-

mental factors (social and natural) on malaria distribu-
tions at the global, regional and local scale (including
the village level) are well documented [19, 25–30], con-
troversial data regarding the role of meteorological and
socioeconomic variables on generating or maintaining
malaria hotspots observed at a fine scale remains a re-
search topic to explore [17, 31–33].
In Burkina Faso, only few studies have directly or indir-

ectly addressed spatial or spatio-temporal variation of
malaria [5, 6, 34]. Some of these studies suggested rela-
tionships between malaria transmission and socioeco-
nomic, environmental climatic variables [5, 6, 17, 18, 34,
35]. Nevertheless, until recently, the spatio-temporal dy-
namic of transmission at a fine geographical scale has not
been sufficiently explored, because of lack of data. The lit-
erature investigating the role of socioeconomic and envir-
onmental factors on the dynamic spatio-temporal of
malaria at the household level is growing. In such context
of high malaria burden associated with national and local
resource constraints in a framework of seasonal malaria
chemoprevention program, we proposed to address this
gap by analysing longitudinal malaria data from rural hy-
perendemic area in the Central-West region of Burkina
Faso, Nanoro, taking into consideration socioeconomic
and meteorological factors at household level.
The aim of this study was to define accurately the differ-

ent transmission (or incidence) periods of malaria at a fine
scale rural area and estimate the lag times between me-
teorological variables and high malaria incidence period.
Then, to detect potential malaria spatial hotspot for each
period of transmission. The study further investigated if
meteorological and socioeconomic were associated to
malaria hotspots observed at a fine scale over time.

Methods
Study area, design and population
The study was carried out in Nanoro Demographic Sur-
veillance Area (DSA), located in a rural in the Central
West region of Burkina Faso. DSA was created in 2009 by
the Clinical Research Unit of Nanoro (CRUN) and
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covered two departments: Nanoro (15 villages) and Soaw
(9 villages). The DSA lied between longitudes 1°892,537
and 2°83,146 West and latitudes 12°857,955 and 12°
872,863 North and covers an area of 594.3 km2. In
this area, seven peripheral health facilities and one
referral hospital (Centre Médical avec Antenne Chir-
urgicale, CMA) provided health care to the popula-
tion. In the baseline of initial census (years 2009),
54,781 inhabitants were recorded. A unique identifi-
cation number was assigned to each inhabitant of
the DSA in order to track the different events occur-
ring in the population by regular home visits [36].
This study focused on Nanoro departments health
facilities (Fig. 1) [36, 37].
Our study was an observational, longitudinal cohort

study. We examined all malaria cases reported in the
telegram weekly official letter (Telegramme Lettre Offi-
ciel Hebdomadaire, TLOH) for 260 weeks (January 2010
to December 2014) from four health facilities of the
Nanoro department (406.3 km2) covering 12 villages
(35,952 inhabitants in 2010). The TLOH has been devel-
oped by the Burkina Faso National Epidemiological
Surveillance department which provided weekly reports
on 11 diseases (including malaria cases) notified in each
health facility; the number of cases is then gathered and

controlled by health districts each week before being
sent to the Ministry of Health. All age groups pa-
tients attending health facilities within the DSA and
for whom malaria diagnosis (according to national
protocol) was confirmed by a parasitological exam
(Rapid Diagnostic Test or Microscopy), were reported
in the TLOH.
A subset from 1,028 households (Fig. 2) was further

investigated, in which all individuals were included for
detailed investigations, mainly for the detection of mal-
aria hotspots and to assess the effect of socioeconomic
and meteorological factors.

Data acquisition procedures and data structure
Malaria cases data
Data on malaria cases were obtained from two sources.
The first was extracted from TLOH of health facilities of
Nanoro health district (NHD) and the second from med-
ical consultation registries of health focal points (HFP)
of CRUN. The CRUN’s HFP represented sentinel health
stations that were set up in the framework of health
research activities and nested within each health facilities
of NHD [38].
The TLOH database included all malaria cases of the

study area reported by health facilities (including case

Fig. 1 Burkina Faso map showing Nanoro Health District and the Nanoro Demographic Surveillance Area (DSA). Source: Burkina Faso, Base
Nationale de Découpage du territoire (BNDT, 2006); shapefile downloaded from www.maplibrary.org. Created by Eli Rouamba, 2018
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reported by HFP of CRUN). We extracted cases from
four peripheral health facilities (Urbain, Godo, Nazoanga
and Séguedin). This database aggregated malaria cases
by health facility and by week (in accordance with the
epidemiological calendar of the National Disease Control
Directorate, Ministry of Health (Direction de Lutte con-
tre la Maladie DLM). It was supplied by the Centre of
Health Information and Epidemiological Surveillance
(Centre d’Information Sanitaire et de Surveillance Epidé-
miologique, CISSE) of NHD.
Registries of HFP of CRUN: Each patient who was at-

tending one of the HFP of CRUN was recorded in a
registry by the medical team member who had examined
him/her. Date of consultation, names, age and sex of the
patient, village or neighbourhood he/she lived in, recent
history of any treatment intake, weight, clinical signs,

diagnosis, prescribed treatment (dose and duration) were
reported.

Socioeconomic, demographic and geo-location data
This database included information from 1,028 house-
holds of individuals of HFP registries. All participants
provided their consent to be part to a Health and Demo-
graphic Surveillance System (HDSS). Socioeconomic,
demographic and Geo-location data were extracted from
DSA database of CRUN. A unique identification number
hold by each permanent resident [36] allowed us to es-
tablish the link between of individuals in the registries
through a HDSS to their respective houses. Data on 26
variables of individual demography, household posses-
sions and assets and materials for house construction
were extracted. For this present study, analysis has been

Fig. 2 Flow chart of patients and their household’s selection
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conducted at household level, so the individual data have
not been considered.
Data on household included number of inhabitants per

household, water source, house types and shapes, main
goods and properties (for further precisions see [36]).
Geo-location data for each household was provided by

GPS (Global Positioning System coordinates). These geo-
location data were collected as part of the HDSS [36].

Meteorological data
These data were collected by the National Meteoro-
logical Directorate (Direction Générale de la Metéorolo-
gie, DGM), and aggregated weekly in accordance to the
epidemiological calendar.
The data from local rainfall station located in Nanoro

was used. Since temperature and humidity data were
not available at departmental level, data from the syn-
optic station of Ouagadougou, located at about 85 km
from the study area, were used, in accordance with the
standards of the World Meteorological Organization
(WMO). Thus, for evapotranspiration and temperature,
WMO recommends a maximum distance of 150 km be-
tween the measuring stations. For the rainfall network,
WMO recommends a minimum of one station per
10,000 km2 area [39]. The selected meteorological vari-
ables were rainfall (cumulative rainfall and number of
rain events per week); temperatures (average of mini-
mum and maximum per week, total average per week);
relative humidity (minimum and maximum average per
week, total average per week).

Geographical data
Nanoro department shape file (administrative boundary)
with UTM zone 30 projection (Universal Transverse
Mercator coordinate system zone 30) was downloaded
from the following website: www.maplibrary.org.

Statistical analysis
Descriptive and exploratory analysis of time series
Malaria incidence per week was estimated providing
time series. Mann-Kendall test [40, 41] was used to as-
sess the trend of the time series. The periodicities of the
time series were assessed by their autocorrelograms, fol-
lowing the Box-Jenkins approach [42].
To take into account combinations of meteorological

variables, but also to solve the collinearity and to reduce
dimension, a principal component analysis (PCA) [43]
was used, and the number of dimensions were selected
according to the Kaiser rule.
To define transmission periods we performed, after a

logarithmic transformation of the malaria incidence, a
change point analysis [44], in order to detect significant
changes in the mean and variance of the series for 260
weeks. For this purpose, the algorithm PELT (Pruned

Exact Linear Time) [45] was used and the Modified Bayes-
ian Information Criterion [46] was chosen for penalty.

Building ARIMA seasonal model and cross-correlation of the
malaria series with the series of meteorological variables
Box-Jenkins approach [42] was used to model independ-
ently each time series. The best seasonal autoregressive
integrated moving average (SARIMA) model was selected
with the lowest Akaike Information Criterion (AIC). The
remaining white noise was verified by using the Ljung-
Box and Student test. With this approach, stationary time
series were obtained, and used to explore relationships
between time series.
Cross correlation function (CCF) was then used to as-

sess the relationship between weekly meteorological vari-
ables (principal components), and log-transformed weekly
malaria incidence.

Spatio-temporal analysis for hotspots detection
In our study a hotspot was defined using Martin Kull-
dorff ’s Satscan approach [47] and was defined as statis-
tical cluster or area of houses aggregation where malaria
or incidence is higher than in the surrounding areas [4].
Spatial analysis for local hotspots detection was per-
formed by using a purely elliptic spatial analysis (Poisson
distribution), the detection was performed in each of the
three combined period of malaria transmission (results
of the change point analysis) in order to limit the impact
of very high risk cluster on secondary cluster detection
[48, 49]. The p-values were estimated by Monte Carlo
inference.
Location of all household and statistically significant

hotspots were mapped and roads, land, permanent water
bodies were added using information from OpenStreet-
Map, after geo-referencing (https://www.openstreetma-
p.org/#map=12/12.6228/-2.1622).

Multivariable analysis
Based on Kulldorff scan detection results, the outcome
variable was categorized as “being in a significant hotspot”
(1) and “not being in a significant hotspot” (0) throughout
the different transmission periods. Socioeconomic profile
of each household and the effect of this profile on malaria
hotspot were established by proceeding as follow. Firstly,
we performed Multiple Correspondence Analysis (MCA)
including all socioeconomic and demographic variables.
The resulted coordinates (from the MCA) were then used
for a hierarchical ascendant classification [50]. The end
result grouped all the households in three clusters or “so-
cioeconomic profiles”. Secondly, we used generalized esti-
mating equations (GEE) model to explore the effect of
socioeconomic profiles and principal components (by
considering lag times between meteorological variables
variable and high malaria transmission period) on malaria
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hotspot across time (malaria transmission periods). The
accurate working correlation matrix was selected by
assessing the correlation structure showing the low QIC
(Quasi-AIC) score [51].

Ethics consideration
This analysis used household socioeconomic data from
Nanoro HDSS that set up a population-based monitor-
ing system in a framework of main study entitle ‘Phar-
macovigilance for ACTs in Africa’ and was approved by
Centre Muraz Institutional Ethical Committee (N° Réf.
03-2010C/E-CM), Burkina Faso National Ethics Com-
mittee for Research in Health (N° 2010–27).

Software and packages
Statistical analyses were performed using the R software
version 3.2.5 (R Development Core Team, R Foundation
for Statistical Computing, Vienna, Austria), including the
following packages: autoarima, Dcluster, FactoMineR,
geepack, rgdal. Local hotspot assessment was performed
by using the SatScan™ software version 9.4.2. Maps were
provided by using the QGIS software (2014 QGIS Devel-
opment Team).

Results
Description of time series and subset characteristics
Over the 5 years, 115,306 malaria cases were notified in
the TLOH. The annual malaria incidence per 1000 in-
habitants were 559, 581, 613, 646 and 623 respectively
for year 2010, 2011, 2012, 2013 and 2014. For the subset,
19,091 subjects from 1,028 households were included in
2010, among them 788 malaria cases were reported. The
flow of the study subject selection is shown on Fig. 2.
The Fig. 3 which illustrates the evolution of malaria

incidence and meteorological variables time series,
showed a maximum peak every 52 week, indicating the
classical seasonal pattern of this endemo-epidemic area,
but no trend was observed (see Additional file 1).
The reduction of meteorological variables showed that

the two first components explained 88.25% of the total
inertia (see Additional file 2). The first component was
mainly associated to rainfall (cumulative rainfall and
number of rain events) and relative humidity (maximum,
minimum and average). The second component was
mainly associated to temperatures (maximum, minimum
and average).
The cross-correlation analysis between malaria and

the first component showed that rainfall and humidity
were positively and significantly associated with malaria
incidences with a time lag of 9 weeks. The lag time of 9
weeks indicates the time elapsing periods between the
peak of rainfalls and the peak of malaria incidence (rise
of malaria case). The second component showed that
temperatures were positively and significantly associated

with malaria cases with a time lag of 14 weeks. The time
lagged variables were used in the GEE regression for
components 1 and 2 in order to assess the impact of
these meteorological factors on spatial hotspot genesis.
The change point analysis of the malaria time series

identified 15 time-points or periods. These periods were
uniformly distributed annually (three periods each year).
The most important changes in the time series for mal-
aria incidence for one period (i.e. 52 weeks) occurred be-
tween July and mid-November where malaria incidences
increased (about 3.53-fold) (Table 1 and Fig. 3).

Spatio-temporal hotspot detection
Kulldorff scan method for hotspots detection, according
to the three transmission periods, showed a spatio-tem-
poral heterogeneity. But, the location of the different hot-
spots through the study area was relatively stable through
the study period. Two significant hotspots were detected
during the low and intermediate transmission periods,
with relative risks (RR) of 2.15 and 3.69 (Low transmission
period, respectively 82 and 13 households, p < 0.001), and
of 1.50 and 1.94 (Intermediate transmission period, re-
spectively 211 and 43 households, p = 0.001 and p =
0.028). Five significant hotspots were identified during the
high transmission period. Principally, this area belonged
to the villages of Gouroumbila, Nanoro, Basziri, Goulouré
and Godo. The hotspot which showing the highest RR
was in Séguedin village (RR = 6.90, 1 single household, p
= 0.002). The largest hotspot counted 255 households,
with the lowest RR of 1.30 (p = 0.011) and was located
both in Nanoro and Godo Villages (Table 2, Fig. 4, and
Additional file 3).

Multivariable analysis
In this study area, we find three socioeconomic profiles
among the 1,028 households. Thus, 797 (77.5%), 219
(21.3%) and 12 (1.2%) households were classified (from
HCA) as low, middle and high socioeconomic status
respectively (Table 3). The low socioeconomic class was
characterized mainly by a shorter distance to health facil-
ity (37.8%), less material goods ownership (excluding mo-
bile phone, 89.7%, radio, 69.6%), less latrines (2.8%), piped
water, no electricity and no gas, more houses made by clay
bricks, dirty floors, and clay, wood, or straw made roofs.
Unadjusted univariate GEE analysis (Table 4) revealed

significant associations between malaria hotspots and
households classified as low socioeconomic status (OR =
1.23, 95% CI: 1.05–1.44 and the temperature component
(OR = 0.65, 95% CI: 0.61–0.69). After adjusting on
temperature and rainfall/humidity, households showing
a low socioeconomic status presented the highest signifi-
cant risk (aOR = 1.21, 95% CI: 1.03–1.40) associated to
malaria hotspot compared to the households belonging
to the medium and high status.
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Discussion
This longitudinal observational study showed the annual
seasonal pattern of malaria incidence, but with an inter-
mediate transmission (or incidence) period between the
two-classical low and high transmission. Moreover,
weekly rainfall was positively associated with weekly
malaria incidence, with a lag time of 9 weeks. Our find-
ings supported a relative stability of the spatio-temporal

pattern. The relative stable hotspots were associated
with meteorological factors but also with low socioeco-
nomic status.
Contrary to literature that describes two malaria trans-

mission periods (high and low) in Burkina Faso [17, 37],
our results have shown three clear transmission (or inci-
dence) periods per year in Nanoro setting which corres-
pond to high, intermediate and low period of malaria

Fig. 3 Transmission periods and seasonality of weekly malaria incidence and weekly meteorological variables from 2010 to 2014. Component 1
was associated to rainfall and relative humidity (cumulative rainfall and number of rain events and relative humidity); Component 2 was
associated to temperatures (maximum, minimum and average)
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incidence. Similar result was recently found by Oue-
draogo et al. (2018) in Ouagadougou. Our intermediate
period of malaria incidence (middle-November to
March) is consistent with the rainfall transition period
reported in the literature (November and February) [37].
During our “intermediate” period, recorded rainfalls were
quasi null (Table 1), however, the presence of wetlands
(temporary and permanent waterbodies) associated with
optimum range of temperatures (28.41 °C [18°–38°]), rela-
tive humidity (30.33% [12–47%]), and human activities
(off-season agriculture is intensifying during this period)

created suitable conditions to maintain larval or mosquito
abundance and thus contributed to maintain risk for mal-
aria transmission in human populations.
Furthermore, considering the lag time (9 weeks) found

in our study, rainfalls had a delayed influence on malaria
cases whatever the transmission period (Table 1). These
findings established the classical positive strong tem-
poral association between meteorological factors (com-
ponent 1: rainfall & relative humidity; and component 2:
temperatures) and weekly malaria incidence in our area.
In addition, these lag times coincided with the theoretical

Table 1 Description of malaria incidence and rainfall according to the transmission periods

Year Seasons Start date Seasons Durationa Incidenceb Rainfallc Rainfall with lagd

2010 Intermediate 2010-01-04 16 9.18 0.82 10.38

Low 2010-04-26 9 5.64 16.99 37.32

high 2010-06-28 22 14.40 28.13 12.86

Intermediate 2010-11-29 18 9.20 0 6.18

2011 Low 2011-04-04 14 5.95 18.36 34.61

high 2011-07-11 17 18.08 21.99 2.06

Intermediate 2011-11-07 22 8.78 0 5.69

2012 Low 2012-04-09 15 4.49 19.69 47.05

high 2012-07-23 18 20.91 31.22 1.47

Intermediate 2012-11-25 17 11.50 0 6.30

2013 Low 2013-03-25 17 5.76 15.03 29.96

high 2013-07-22 17 20.32 25.69 4.64

Intermediate 2013-11-18 19 10.24 0.16 5.81

2014 Low 2014-03-31 16 4.88 19.18 32.36

high 2014-07-21 16 20.64 23.7 3.62

Intermediate 2014-11-10 7 11.63 0 0
aSeasons Duration in weeks
bMalaria incidence per 1000 person-weeks for the transmission season
cAccumulates Rainfall (mm) / week for the same transmission season
dAccumulates Rainfall (mm) / week with time lag (9 weeks)

Table 2 Malaria hotspots detected by the elliptic scan

Period Na X b Y b Axis in km (major/minor) Number of households RR c P value

HighH 1 595,099 1,395,750 1.09/1.09 38 1.84 < 0.001

2 604,229 1,401,150 0.00/0.00 1 6.90 0.002

3 614,102 1,400,450 1.12/0.56 12 2.27 0.003

4 587,828 1,403,520 6.01/2.00 255 1.30 0.011

5 598,740 1,399,110 0.31/0.15 2 4.90 0.015

InterI 1 586,028 1,400,300 3.28/3.28 211 1.50 0.001

2 611,969 1,397,070 7.09/2.36 43 1.94 0.028

LowL 1 595,715 1,395,570 2.67/1.78 82 2.15 < 0.001

2 581,892 1,401,070 1.82/0.61 13 3.69 < 0.001

L Low transmission periods
I intermediate transmission periods
H high transmission periods
aNumber of hotspots for each period
bCentroid coordinates of hotspots (UTM zone 30)
cRR (Relative risk)
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vector-parasite-host cycle under optimum conditions [52–
55] and contributes to better understanding the classical
hypothesis of biological/ecological drivers of the spatial-
temporal distribution of malaria throughout a country.
Indeed, surface water from first rainfalls may have been
rapidly dried, by infiltration or evaporation. Therefore,
the formation of a temporary waterbodies needed nu-
merous rainfalls before becoming breeding sites. An-
other delay may be due to the vector life cycle itself,
from eggs to adults, and the number of cycles before
reaching the sufficient population needed to accelerating
the parasite transmission (also depending on meteoro-
logical factors favouring mosquito survival). Finally, an-
other delay may be observed until the first clinical cases
were reported, defining the epidemic “official” onset.
In Ghana [56], neighbouring country of Burkina, in

Ethiopia (East Africa) and China [1, 57–59], rainfalls

and malaria were positively correlated with a lag time of
9 and 10 weeks respectively. Similarly, lag times
between one and 3 months were reported in Mali (3
months), Kenya (one and 3 months) and China (1
month) [58, 60, 61]. By contrast, malaria incidence rate
was delayed by 2 weeks compared to meteorological fac-
tors in Ouagadougou, located at about 85 km from
Nanoro site. According to the authors of this latter
study, the 5 dams located in this central region may
contribute to the constant presence of vectors, which
explains this short delay [6]. Taken together, this finding
highlights the variability of spatio-temporal dynamic of
malaria at micro-epidemiological scale in endemic areas.
These lag times should be understood and considered
by the Health Program Planners when implementing
SMC campaigns in local context for delivering interven-
tions at the right/relevant time.

Fig. 4 Map of Nanoro (a) with water bodies, villages and health facilities. Hotspots of cumulative weekly malaria incidence in Nanoro: High
transmission period (b), Intermediate transmission period (c), Low transmission period (d). Source: Burkina Faso, Base Nationale de Découpage du
territoire (BNDT, 2006); shapefile downloaded from www.maplibrary.org. The map background (raster) is captured from https://
www.openstreetmap.org/#map=12/12.6228/-2.1622. Maps created by Toussaint Rouamba, 2018
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Table 3 Socioeconomic characteristics of households (1028) obtained by the hierarchical ascendant classification

Socioeconomic status of households

Low
N = 797

Middle
N = 219

High
N = 12

Total
N = 1028

Distance to health facility, n (%)

< 5 km 540 (67.8) 127 (58.0) 5 (41.7) 672 (65.4)

5–10 km 251 (31.5) 87 (39.7) 7 (58.3) 345 (33.6)

> 10 km 6 (0.8) 5 (2.3) 0 (0) 11 (1.1)

Ownership of radio, n (%)

No 242 (30.4) 38 (17.4) 4 (33.3) 284 (27.6)

Yes 555 (69.6) 181 (82.6) 8 (66.7) 744 (72.4)

Ownership of TV, n (%)

No 788 (98.9) 159 (72.6) 0 (0) 947 (92.1)

Yes 9 (1.1) 60 (27.4) 12 (100) 81 (7.9)

Ownership of mobile phone, n (%)

No 82 (10.3) 4 (1.8) 0 (0) 86 (8.4)

Yes 715 (89.7) 215 (98.2) 12 (100) 942 (91.6)

Ownership of fridge, n (%)

No 797 (100) 206 (94.1) 0 (0) 1003 (97.6)

Yes 0 (0) 13 (5.9) 12 (100) 25 (2.4)

Ownership of car, n (%)

No 796 (99.9) 199 (90.9) 8 (66.7) 1003 (97.6)

Yes 1 (0.1) 20 (9.1) 4 (33.3) 25 (2.4)

Ownership of motorcycle, n (%)

No 322 (40.4) 47 (21.5) 0 (0) 369 (35.9)

Yes 475 (59.6) 172 (78.5) 12 (100) 659 (64.1)

Ownership of bicycle, n (%)

No 14 (1.8) 10 (4.6) 1 (8.3) 25 (2.4)

Yes 783 (98.2) 209 (95.4) 11 (91.7) 1003 (97.6)

Toilet ownership, n (%)

Latrine 3 (0.4) 66 (30.1) 11 (91.7) 80 (7.8)

Latrines unenriched 19 (2.4) 151 (68.9) 1 (8.3) 171 (16.6)

Absence 775 (97.2) 2 (0.9) 0 (0) 777 (75.6)

Major source of drinking water, n (%)

Tap (Piped water) 2 (0.3) 6 (2.7) 7 (58.3) 15 (1.5)

Well 131 (16.4) 1 (0.5) 0 (0) 132 (12.8)

Water drilling 660 (82.8) 212 (96.8) 1 (8.3) 873 (84.9)

Other 4 (0.5) 0 (0) 4 (33.3) 8 (0.8)

Main source of lighting, n (%)

Electricity 0 (0) 89 (40.6) 12 (100) 101 (9.8)

Other 797 (100) 130 (59.4) 0 (0) 927 (90.2)

Main material of walls (bedrooms), n (%)

Made of cement bricks 7 (0.9) 59 (26.9) 11 (91.7) 77 (7.5)

Semi-hard 81 (10.2) 12 (5.5) 1 (8.3) 94 (9.1)

Made of clay bricks 709 (89.0) 148 (67.6) 0 (0) 857 (83.4)
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However, studies carried out in Sri Lanka and Madhya
Pradesh (Central India), did not detect a clear relationship
between rainfall and malaria incidence probably because
of dry areas [62] or flooded areas [63].
Our study area was characterised by a spatial aggrega-

tion and spatio-temporal heterogeneity of malaria cases
through all transmission periods. Similarly, in Burkina
Faso, a study that use the Kulldorff ’s approach with
health facility as spatial scale, had found also a spatial
variability and relative temporal stability of malaria inci-
dence around the capital Ouagadougou [6].
The persistence of hotspots, especially in the village of

Nanoro (down-town of the department) and its surround-
ing, could be explained partly by several combined factors.
First, by presence of several areas of off-season agriculture,
better health services accessibility that could improve

malaria cases reporting, the construction of the new dam
of Soum which created a swampy area, favourable condi-
tions for the breeding sites. Second, by the high popula-
tion density which was estimated at 104 persons per km2

[36]. However, it is important to note that this relationship
may not be linear nor direct. Indeed, study carried-out in
malaria endemic countries across Africa suggested that
population densities of 100 persons per km2 were more
predictive of malaria infection in young children than very
low densities (less than 10 persons per km2) or very high
densities (more than 1000 persons per km2) [64]. Another
study in Ethiopian highland suggests that, the spatial dis-
tribution of malaria in the low season is well-explained by
both temperature and population density [65].
Persistence of malaria hotspots during low transmission

periods might constitute a stepping-stone control strat-
egies, and stir transmission during high transmission pe-
riods [22]. Therefore, these hotspots in low transmission
seasons could be targeted for efficacious strategies, follow-
ing a bottleneck approach to reduce malaria transmission
at the local scale (see Additional file 3) [4, 66].
Our findings regarding the space-time dynamic of

malaria, the three incidence periods of malaria and the
lag time elapsing periods between the peak of rainfalls
and the peak of malaria incidence might be considered
for disrupting malaria transmission in the study area by
adapting the malaria SMC program to local context and
developing bottleneck strategies. Indeed, new strategies
such as mass drug administration (MDA), mass screen-
ing and treatment (MSAT) are under consideration [23].
This study also found that malaria hotspots were

constituted by all types of households whatever their

Table 3 Socioeconomic characteristics of households (1028) obtained by the hierarchical ascendant classification (Continued)

Socioeconomic status of households

Low
N = 797

Middle
N = 219

High
N = 12

Total
N = 1028

Main material of the floor, n (%)

Tiles 0 (0) 0 (0) 4 (33.3) 4 (0.4)

Cover floor with roughcast (cement) 568 (71.3) 216 (98.6) 8 (66.7) 792 (77.0)

Dirt floor 229 (28.7) 3 (1.4) 0 (0) 232 (22.6)

Main material of the roof, n (%)

With iron sheets 720 (90.3) 219 (100) 12 (100) 951 (92.5)

Made of clay and wood 64 (8.0) 0 (0) 0 (0) 64 (6.2)

Made of straw and wood 13 (1.6) 0 (0) 0 (0) 13 (1.3)

Gas for cooking, n (%)

No 797 (100) 216 (98.6) 4 (33.3) 1017 (98.9)

Yes 0 (0) 3 (1.4) 8 (66.7) 11 (1.1)

Electricity, n (%)

No 797 (100) 130 (59.4) 0 (0) 927 (90.2)

Yes 0 (0) 89 (40.6) 12 (100) 101 (9.8)

Table 4 Factors associated with malaria hotspots

Univariate Multivariable

OR [95% CI] P value aOR [95% CI] P value

Socioeconomic status

Medium (Ref) 1 – 1 –

Low 1.23 [1.05–1.44] 0.013b 1.21 [1.03–1.40] 0.021b

High 0.90 [0.43–1.92] 0.79 0.93 [0.43–1.98] 0.84

Component 1 1.03 [1.00–1.06] 0.05a 1.01 [0.97–1.05] 0.68

Component 2 0.65 [0.61–0.69] < 0.001c 0.65 [0.61–0.69] < 0.001c

Component 1: resumed rainfalls considering its lag time with malaria
Component 2: resumed temperatures considering its lag time with malaria
aOR adjusted odds ratio
asignificant at the 0.1 level
b significant at the 0.05 level
csignificant at the 0.01 level
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socioeconomic status, this emphasizes that vector breed-
ing sites were common in this area and the behaviour of
the majority population influenced the profile and inten-
sity of malaria transmission. Nevertheless, within this
setting, low socioeconomic status of households and me-
teorological factors were positively correlated with mal-
aria hotspots. After adjusting for meteorological
components, the association of low socioeconomic sta-
tus with malaria hotspots still remained. Poorer socio-
economic status of households was significantly
associated with some factors that lead to increase and
sustain malaria transmission, from poor-quality housing
(bedroom with clay brick walls, roof made of clay/straw
and wood, dirt floor, absence electricity, and absent of toi-
let, absence of tap) and absence of exposure to TV preven-
tion campaigns. This positive association between malaria
transmission and low socioeconomic status has been pre-
viously described in Burkina Faso at national or
sub-national level [5, 17, 18, 34, 67].
The association with the rainfall/humidity disappeared

in the multivariable analysis. Possible explanations of
this observation could be inter alia, (1) the location of
the households near water points, (2) permanent water-
bodies due to the construction of the new dam of Soum
which created flooded areas.
One limitation of the study was the fact that the study

included both malaria cases diagnosed actively and pas-
sively. The passive detection of malaria cases might bias
the findings by people who live closer to a health facility.
However, this bias could be considered low because, in
our context, about two-thirds of the study participant
houses were located less than five kilometres. Moreover,
active case detection, even in remote areas from health
facilities, have also limited a potential bias due to health
facility proximity. Additionally, as prevalence of home or
self-treatment was presumably high, malaria incidence
may be underestimate. A study carried out in 2011
noted that 72.7% of presumptive malaria admitted in a
hospital of district practiced self-medication at home
[68]. However, in our study area, strategies have been
implemented to limit the practice of self-medication. In-
deed, DSA’s field workers and community-based health
workers, permanently sensitized population to avoid
self-medication and attend a health facility if they expe-
rienced abnormal symptoms.

Conclusion
Our study area was characterized by high incidence of
malaria despite increasing efforts to fight the disease
during the last decade. Findings showed a clear annual
seasonal pattern of malaria incidence with three periods
of different level of incidence and determined the lag
times (9 weeks) between suitable meteorological factors
and the peak of incidence of malaria. At a fine scale, and

according to the three periods of malaria incidence, our
findings supports a relative spatio-temporal stability of
malaria hotspots, which were characterized by low so-
cioeconomic status. Understanding environmental and
socio-economic factors associated to the spatio-temporal
dynamic of malaria is of high importance to adapt
current control strategies and to develop new strategies
such as bottleneck strategies.
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