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Abstract

The causes of disappearance of the Neanderthals, the only human population living in

Europe before the arrival of Homo sapiens, have been debated for decades by the scientific

community. Different hypotheses have been advanced to explain this demise, such as cog-

nitive, adaptive and cultural inferiority of Neanderthals. Here, we investigate the disappear-

ance of Neanderthals by examining the extent of demographic changes needed over a

period of 10,000 years (yrs) to lead to their extinction. In regard to such fossil populations,

we inferred demographic parameters from present day and past hunter-gatherer popula-

tions, and from bio-anthropological rules. We used demographic modeling and simulations

to identify the set of plausible demographic parameters of the Neanderthal population com-

patible with the observed dynamics, and to explore the circumstances under which they

might have led to the disappearance of Neanderthals. A slight (<4%) but continuous

decrease in the fertility rate of younger Neanderthal women could have had a significant

impact on these dynamics, and could have precipitated their demise. Our results open the

way to non-catastrophic events as plausible explanations for Neanderthal extinction.

Introduction

The Neanderthals, a human metapopulation that lived between 250,000 and 40,000 yrs ago

(OIS 7–3), is arguably the best known human fossil group. Since the discovery of the first

Neanderthal specimens in 1856, their origin, evolution, differentiation, variability and genetics

have been intensively studied. We have come to the understanding that the Neanderthals

emerged from the European branch of Homo heidelbergensis [1–5] and that their differentia-

tion in Europe has been the result of a long evolutionary process [6–8]. Neanderthals, who

were the only humans on the European territory, disappeared during the OIS 3, when Homo
sapiens arrived.

The causes of Neanderthal disappearance fueled a vigorous scientific debate and a number

of hypotheses have been put forward to account for their demise (for a recent review see [9]).

Because the Neanderthals disappeared at a time when Homo sapiens colonized Europe, their

extinction has been related to the expansion of Homo sapiens. According to the most
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commonly accepted hypothesis, the Neanderthals would have competed with Homo sapiens
for food resources and the replacement of Neanderthals would have been favored by Homo
sapiens' greater technical skills [10,11], their greater cognitive abilities [11–15], Neanderthal’s

narrower diet [16,17] and lower social capacities and network [11,18–21]. However, some pre-

historians dispute the superior capacities of the first Homo sapiens in Europe compared to

Neanderthals [20,22–27]. In light of our current knowledge about European colonization of

the Americas in modern times, some authors have suggested that the disappearance of Nean-

derthals was also brought about by violent confrontations between the two populations [28,29]

and by the exposure to new infectious agents [30–33].

Another hypothesis relates to climate changes affecting Europe during the period of the

Neanderthal demise [34–37]. At the time of Neanderthal differentiation, Europe was charac-

terized by a particular environment that underwent large climatic fluctuations, some of which

were of a great magnitude with potential consequences for the expansion and/or reduction,

and fragmentation of the Neanderthal metapopulation. Although Neanderthals had been cop-

ing with marked changes in climate and an associated turn-over in available food resources for

almost 200,000 yrs [38,39], they failed to survive after the arrival of new hunter-gatherers,

Homo sapiens.
All of these hypotheses, however, share the weakness of a much overlooked process of

Neanderthal demography in its interaction with the changing environment. For instance, a

small population size could have facilitated the replacement or the absorption of Neanderthal

by Homo sapiens. Due to the lack of data, very little is known about the demography of past

Neanderthal populations. Recent paleo-genetic studies have however estimated [23,40–45] the

effective population size (index of genetic variability and not the census size). In spite of the

fact that researchers agree on the “small size” of the Neanderthal population [2], its precise and

accurate estimation remains difficult. Attempts on the basis of demographic modeling applied

to Neanderthals proposed for the entire Neanderthal population (European and Asian) a max-

imum number of 70,000 individuals [46].

In this paper we are interested in understanding “how” Neanderthal disappeared. We

explored qualitatively the possible cause of the Neanderthal population demise in terms of

demographic changes, involving above all a reduction in its size. In the absence of palaeode-

mographic data regarding Neanderthal populations, we used demographic models to search

for what values of demographic parameters could have maintained a demographically stable

population. In a second step, we altered these values to quantify the necessary change in demo-

graphic parameters leading Neanderthals to extinction over a period of 10,000, 6,000 and

4,000 yrs i.e. within a time frame compatible with the known history of modern humans in

Europe. In order to make our model more likely, the demographic parameters used are not

stable over such a long time, but they change stochastically every year. In particular, we

focused on the effect of a fertility reduction for primiparous females known in large mammals

to be one of the first demographic rates affected by environmental variation (see [47–49]).

Then we also examined the effects of reduced survival rates of different age-classes on extinc-

tion probability and time to demise. We started by projecting the effect of a reduction in sur-

vival of the youngest children, and finally studied two catastrophic scenarios: the situation of

an epidemic and a war scenario, both of which would affect survival rates of adult individuals.

Modeling Neanderthal population dynamics

To study how Neanderthals disappeared, we modeled their population dynamics with stochas-

tic, age-structured matrix models [50,51]. This is a female-oriented model, where the demo-

graphic rates of males are supposed to mirror those of females. We also assumed that males are

Evaluation of the causes of Neanderthal demise using paleodemography

PLOS ONE | https://doi.org/10.1371/journal.pone.0216742 May 29, 2019 2 / 16

https://doi.org/10.1371/journal.pone.0216742


not a limiting factor for female reproduction, which is generally the case among polygynous

species [48,52]. An important characteristic of long-lived species, i.e. species with a long life-

expectancy, is the marked age-structure of its demographic rates [53]. For instance, popula-

tions of Homo sapiens [54], apes [52], mammalian large herbivores [49] and carnivores [55,56]

or seabirds [57] all show a strong age-specific pattern of survival, with low survival rates during

the juvenile stages, high survival of prime-aged individuals, and decreasing survival rates once

the onset of senescence is reached (see [53] for a review). In the case of Neanderthals, we

defined survival rates (Ф) for 5 age-classes: less than 1 y.o. (infant stage), from 2 to 15 y.o.

(childhood), from 16 to 18 y.o. (sub-adults), from 19 to 29 y.o. (prime-aged adults) and over

30 y.o. (old). In this latter age group we find the maximum longevity [46]. We know that the

longevity of Neanderthals could have been quite extensive [58–60] but, because of menopause,

we assumed that the contribution of older individuals to the population growth rate was negli-

gible and would not change our results while increasing the matrix dimension, and hence the

calculation time. We set the earliest age for first reproduction of women Neanderthals to 18 y.

o. Like survival rates, fertility varied with age, being lower for women aged between 18 and 20

y.o (primiparous) and higher for women between 21 and 30 y.o. (see below for details).

We accounted for the spatial-structure of the European Neanderthal populations as

revealed by recent genetic analyses [61]. We considered three discrete subpopulations labeled

from West to East A, B and C (Fig 1) allowing for movements of individuals and for different

demographic rates among subpopulations.

In our models, only individuals aged between 16 and 18 y.o., could migrate from one sub-

population to another. The rate of migrating Neanderthals varies among the three subpopula-

tions and is asymmetric, immigration being different from emigration for a given

subpopulation [61]. This movement pattern reflects the environmental and social constraints

associated with the colonization of Western Europe by modern humans from the East [62,63].

Material and methods

Although the size of the Neanderthal population is not known accurately, we have started with

an optimistic initial population size of 35,000 females corresponding to the estimated popula-

tion size [46] divided by two, hence assuming an even sex-ratio at the population level.

We then used the Leslie matrix to analyze in detail (by age) the role of demographic param-

eters (fertility, survival and migration) over time in three geographical regions.

We used the recurrence Eq [1] to simulate the spatio-temporal variation in population size

over a 10,000 year period (t = {1, . . ., 10000}) with a post-breeding Leslie matrix.

Ntþ1 ¼ Lt:Nt; ½1�

where N is the population vector and L is the transition matrix. At each time-step t, all demo-

graphic rates of Lt were drawn at random in age and subpopulation-specific density probability

function (Table 1) using beta distributions for survival (Ф) and dispersal (ψ) rates, and a Pois-

son distribution for the number of female offspring per fecund females (f) [64]. The time span

of the simulation corresponded to the elapsed time between the maximum population size

estimates and the current estimated time of the last Neanderthal site occurrence [65]. This

time span is less than 10,000 yrs [65].

Regarding the migration flows between three Neanderthal subpopulations in Europe, we

first assumed a very low population density for Eastern European Neanderthals (subpopula-

tion C), which is confirmed by the extremely high rate of endogamy of Neanderthals reported

in Eastern Europe [44,45]. The young individuals of subpopulation C are more likely to find a

partner by migrating to the West and South. Although very low (set to a rate of 0.005), this
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Fig 1. Spatial distribution and location of the 3 Neanderthal subpopulations. Southern Europe (labeled A in green), Northern Europe (labelled

B in yellow), and Eastern Europe (labeled C in purple) according to [61]. The full demographic model we used to simulate Neanderthal population

dynamics was composed of three sub-models corresponding to each of the identified sub-populations. We included a migration parameter (noted

ψ) to allow for individuals to move from a sub-population to another.

https://doi.org/10.1371/journal.pone.0216742.g001
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dispersal rate led to a rapid erosion of the size of subpopulation C (see Fig 2A, 2B, 2C and 2D).

In our model, the individuals aged between 15 and 18 of the Northern subpopulation B could

migrate south and contribute to the increase of the Southern subpopulation A. As testified by

the archaeological data, this latter group was the last subpopulation to disappear [65,66]. Some

authors even regarded Southern Europe to be a Neanderthal refuge zone [35,67], but this

hypothesis has recently been questioned [68,69].

The dimension of the transition matrix Lt was of 105 rows by 105 columns (i.e. 35 age-clas-

ses, from 1 to 34 and a class for> 35, for each of the 3 subpopulations). For each completed

run, we calculated the time to extinction and the quasi-extinction probability across the 10,000

simulations. We considered a subpopulation or the whole population as extinct when its size

felt below 5,000 individuals. According to ecologicaly studies [70,71], the critical size or “mini-

mum viable population” (MVP) is the point of no return beyond which extinction will cer-

tainly occur. Given that the demographic parameters such as, for example, survival, fertility

rates, and population structure, were not precisely known for Neanderthal populations

because of lack of life-table data, we first set the distribution of model parameters (average and

dispersion) based on the median demographic rates observed in populations of modern

humans with a hunter-gatherer lifestyle, and in populations of large apes extracted from the lit-

erature [72–76]. It should be noted that the model is such that the initial demographic parame-

ters (the age distribution of the population, the number of individuals) did not affect the

result, since after a few generations the structure is determined by the fertility, survival and

migration rates. We monitored time-specific abundance for the three subpopulations (A, B,

and C), as well as for the whole population. In the following, we report the median, and 0.025

and 0.975 percentiles for each model output. All simulations and computations were per-

formed using the R software [77].

Based on the demographic parameters we retrieved from the literature, the Neanderthal

population was found to be stable (population growth rate λ = 1). Second, holding everything

Table 1. Demographic parameters entered in the stochastic Leslie matrix (mean and standard errors) to project population size of Neanderthals according to differ-

ent scenarii of Neanderthal time of extinction in Western Europe. In order to make our model more likely, the demographic parameters used are not stable over such a

long time, but they change stochastically every year.

Subpopulation Demographic

parameter

Survival rate Demise in

10,000 yrs

Demise in

6,000 yrs

Demise in

4,000 yrs

A, B and C Infant survival 0.720 ± 0.10 = = =

Sub-adult survival 0.955 ± 0.05 = = =

Prime age survival 0.970 ± 0.045 = = =

Adult survival 0.990± 0.025 = = =

Old survival 0.980 ± 0.09 = = =

A Primiparous reproduction 0.1415± 0.055 0.1376 ± 0.055 0.1350 ± 0.055 0.1300 ± 0.055

Adult reproduction 0.2700 ± 0.055 = = =

B Primiparous reproduction 0.1415± 0.055 0.1376 ± 0.055 0.1350 ± 0.055 0.1300 ± 0.055

Adult reproduction 0.2700 ± 0.055 = = =

C Primiparous reproduction 0.1700 ± 0.10 0.1376 ± 0.055 0.1350 ± 0.055 0.1300 ± 0.055

Adult reproduction 0.2700 ± 0.055 = = =

A! B Emigration 0.0010 ± 0.005 = = =

B! A Emigration 0.0020 ± 0.005 = = =

A! C Emigration 0.0001 ± 0.005 = = =

C! A Emigration 0.0005 ± 0.005 = = =

B! C Emigration 0.0010 ± 0.005 = = =

C! B Emigration 0.0050 ± 0.005 = = =

https://doi.org/10.1371/journal.pone.0216742.t001
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else constant, we reduced the fertility of primiparous women starting from a value of 0.1415.

In long-living species like hominids, the population growth rate is much less sensitive to varia-

tion in recruitment parameters like juvenile survival than to variation in survival of adults

[78]. Consequently, natural selection shaped life-histories of long-living species with a high

and constant adult survival but a highly variable recruitment, a phenomenon known as envi-

ronmental canalization [79]. Such a sequence in the relative variation of demographic rates in

space and time has been reported repeatedly in other large mammal populations [48,49],

including human populations [80,81], in response to environmental adversity like increasing

population density or decreasing food resources. Assuming a similar functioning of Neander-

thal population dynamics, we decreased the prime age fertility rates until the simulated time at

extinction fell within the confidence limits of the observed time of extinction of Neanderthals.

Since adult female survival is the most resilient demographic parameter to environmental per-

turbation, we kept it unchanged. For each explored scenario, “Survival”, “Demise in 10,000

yrs”, “Demise in 6,000 yrs” and “Demise in 4,000 yrs”, we replicated the simulations of the

Fig 2. Simulated population trajectories of the Neanderthals over 10,000 yrs. Lines color correspond to the three subpopulations of Neanderthals

in Europe (see Fig 1: subpopulation A in green, B in yellow and C in purple) and in black to total population. Dotted red line shows the MVP

(minimum viable population). The top-panel histogram displays the distribution of the time at extinction of the whole Neanderthal population. Right

panel gives the proportion of simulated trajectories that hit the threshold population size of 5,000 under which the population was considered as

extinct, e.g. the quasi-extinction probability. We present results of median of the 10,000 simulations for scenarios where the overall Neanderthal

population never goes extinct (Fig 2A Parameters used in the simulation are shown in Table 1 “Survival”), disappears in 10,000 yrs (Fig 2B

Parameters used in the simulation are shown in Table 1 “Demise in 10,000 yrs”), 6,000 yrs (Fig 2C Parameters used in the simulation are shown in

Table 1 “Demise in 6,000 yrs”) and 4,000 yrs (Fig 2D Parameters used in the simulation are shown in Table 1 “Demise in 4,000 yrs”).

https://doi.org/10.1371/journal.pone.0216742.g002
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population trajectories of Neanderthals 10,000 times. In a second step we kept all the parame-

ters constant and lowered the survival of the youngest child until reaching the extinction of the

whole population and finally we reduced survival rates of adult individuals to study two cata-

strophic scenarios: the situation of an epidemic and a war scenario.

Results

We first used average demographic rates extracted from the literature on hunter-gatherer

humans and great apes as the average for a random draw. These rates were converted into

annual rates (Table 1 column “Survival”) to parameterize the projection matrix and then to

simulate population trajectories over a time period of 10,000 yrs (Fig 2A).

After few iterations the model converged to nearly asymptotic dynamics, and the average of

the 10,000 simulated trajectories of the total Neanderthal population size and of the three sub-

populations (A, B and C) stayed quite stable with a generation time of 25 yrs. With these

demographic parameter values, the extinction probability over the 10,000 yrs was relatively

low (P = 0.2) for the whole population and for the Westernmost subpopulations (A and B).

The extinction probability for the Eastern subpopulation C, which happens to be the smallest

too, was higher, reaching P = 0.6 (Table 2, column “Survival”).

We then successively decreased the value for the fertility rates of young females, initially set

at 0.1415 (Table 1 column “Survival”) in each subpopulation A, B, and C. We found that by

slightly altering the reproduction of young females to 0.1376 (-2.7%) in each subpopulation,

the average total population size of Neanderthals fell below the threshold of 5,000 individuals

within less than 10,000 yrs (Fig 2B). We tabulated the average time to extinction and probabil-

ity of extinction for this model in Table 2 column “Demise in 10,000 yrs”. As expected from

the imposed changes in demographic parameters, subpopulations did not become extinct at

the same time, with the easternmost population (C) collapsing first, followed by the Northern

subpopulation (B) and then the Southern subpopulation (A). We obtained comparable but

more dramatic results when the fertility rate of younger women was further reduced to 0.1345

(-5%: Fig 2C, Table 2 column "Demise in 6,000 yrs") and even more when lowered to 0.1300

(-8%: Fig 2D, Table 2 column "Demise in 4,000 yrs"). Note that the models we proposed differ

in the fertility rate of the younger females only as it adopted different values for each subpopu-

lation each year. The difference between "stable" and "demise" fertility values is minimal, but

large enough to bring about the disappearance of the Neanderthals over a period of between

10,000 and 4,000 yrs, without the need to take into account changes in survival rates.

Table 2. Extinction probability and average time of extinction for the overall Neanderthal population and for each of the 3 subpopulations. We report the outcome

of 10,000 simulated trajectories and the decrease in reproduction rate of primiparous women required for the extinction of Neanderthals in 10,000, 6,000 and 4,000 yrs.

Population Survival rate Demise in

10,000 yrs

Demise in

6,000 yrs

Demise in

4,000 yrs

Primiparous reproduction rate A, B and C 0.1415 0.1376 0.135 0.13

Extinction probability A 0.28 0.55 0.76 0.94

B 0.29 0.57 0.77 0.94

C 0.60 0.83 0.94 0.99

Total 0.26 0.53 0.75 0.93

Average time to extinction A 11,240 7,132 4,809

B 11,238 7,132 4,804

C 10,661 6,594 4,341

Total 11,242 7,134 4,811

https://doi.org/10.1371/journal.pone.0216742.t002
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Then we analyzed the effect of the reduction in survival (and consequently the increase in

mortality) of infants (<1 y.o.). Starting again from the values of the demographic stability

of the population (Table 1 column “Survival”), we decreased the survival rate and found

that a decrease of 5% in the survival rate (0.6850) every year, holding the other parameters

unchanged, led to an extinction of the population in 20 yrs. For the time to extinction of Nean-

derthals to match 10,000 yrs, we had to reduce survival by only 0.4% (0.7171) (Fig 3A), while a

reduction by 1% (0.7128) causes an extinction in almost 6,000 yrs. We finally explored the pos-

sible effects of a disease transmitted by sapiens or of a conflict that would have substantially

affected survival rates of adults: from the parameters of the "Survival" model reducing adult

survival by 10% (keeping all other parameters identical), the whole Neanderthal population

became extinct extremely fast (Fig 3B).

Discussion

The main difficulty when working with Neanderthals is the scarcity of empirical data to reli-

ably test the several hypotheses that could account for their disappearance. From a demo-

graphic point of view, we only know that Neanderthals existed and disappeared at some point

in the past, but we do not know why they disappeared and how long it took for them to

become extinct. Either a single or several events might have come into play. These constraints

led us to formulate very simple models and to explore the expected dynamics with plausible

values of fertility, survival and migration for human populations. For instance, we disregarded

a combination of demographic parameters leading to very low extinction probability because

this clearly did not occur. For the few empirical data we have, like population size or the time

of extinction, the accuracy of the estimates is very low at best.

Nevertheless, our aim here is not to evaluate accurate estimates of demographic parameters,

but to explore the range of possible values that can generate a decreasing trend in Neanderthal

populations.

We showed that, in the long run, a slight change in the fertility rate of younger females

could have had a dramatic impact on the growth rate of the Neanderthal metapopulation and

thus on its long-term survival, in agreement with the observed extinction of Neanderthals

within a 10,000, 6,000 or a 4,000 years period. Our modelling suggests that it is not necessary

to explain the decrease in size of the Neanderthal population on the basis of catastrophic causes

(diseases, extreme climatic events, and disasters such as volcanic eruptions. . . .) or even of the

direct or indirect intervention of sapiens.
By lowering the average fertility rate from 0.141 to 0.137 for "primiparous reproduction",

the population dynamics of Neanderthals switches from a stable or sometimes increasing pop-

ulation to a decreasing population in time which, on the average, eventually dies out over a

period of 10,000 yrs,. If the average fertility rate is slightly reduced to 0.135 (or 0.130), this dis-

appearance, on the average, is attained in just 6,000 yrs (or 4,000 yrs). This shows that it only

takes a slight decrease in resources over a period of some years to cause a decrease in fertility

[82]. It is interesting to note that we have modified primiparous fertility only, therefore focus-

ing on a single class of individuals which comprises 10% of the overall female population

(according to the stable age-structure of the model). If our modeling exploration cannot iden-

tify the origin of a decrease in fertility of young women, at least putative mechanisms can be

put forward: food stress. Because the amount of stored body fat influences fertility in women

[82] a decline in resources (caused by climate degradation or competition with sapiens) may

affect fertility mostly for young women giving birth for the first time. This hypothesis is consis-

tent with the analyzes of exploitation of the bones of fauna carried out in the South of France

[83] that indicate that Neanderthals could have been nutritionally stressed.
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Besides, although our study is focused on women, disappearance of males could be linked

to women fertility. If little is known about the contribution of Neanderthal women to the

retrieval of food resources for the group [84], the male contribution was crucial for the group

Fig 3. Simulated trajectories for the Neanderthals overall population and for the 3 sub-populations with reduced

survival. Parameters used in the simulation are shown in Table 1 “Survival”, reducing young infants survival by 0.4%

(Fig 3A) or reducing adult survival by 10% (Fig 3B).

https://doi.org/10.1371/journal.pone.0216742.g003
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survival. A significant loss of men due to inter-individual conflicts or during hunting activities

would have been of great importance for their physical condition, and hence for female Nean-

derthal fertility.

Neanderthal reproductive decline could be amplified by Homo sapiens. Neanderthals and

Homo sapiens experienced some hybridation in Central Asia and in Western Siberia [85–88]

and on the European continent, as suggested by anthropological [89–91] and genetic evidence

[85,86,92]. This hybridation, although important for sapiens allowing the introgression of sev-

eral useful alleles (see [93] for a review; [45,85]) concerned however a very small number of

individuals, since one individual is estimated for every 300 [94] or 250 yrs [95]. Indeed the

genetic comparison of the Y chromosome between present-day humans and a Neanderthal of

El Sidron [96] suggests that some mutations present in Neanderthals could have caused infer-

tility problems in male hybrids. Such hybrids with less fertility may have contributed to a slight

decrease fertility rate [96,97] in Neanderthal population, whereas in sapiens population their

high number would have made crossings large enough to lead to the suppression of these dele-

terious alleles.

In agreement with a previous publication [61], we emphasize that we considered a subdivi-

sion of Neanderthals among three populations, but given the low Neanderthal population den-

sity, we could suppose a stronger fragmentation. Indeed, on the one hand, the three

geographical areas considered are wide and heterogeneous from the environmental point of

view and, on the other hand, the way of life of Neanderthals as hunter-gatherers corresponds

to a clan structure of interconnected individuals [98]. Therefore fragmentation of the metapo-

pulation was probably greater, causing a postponement of their demise [99,100]. By reinforc-

ing demographically the weakest populations on the verge of extinction, the migration process

decreased the probability of extinction of the overall metapopulation dramatically, as the the-

ory predicts [101]. Obviously, in the absence of migration, the disappearance of the Neander-

thals would have been even more rapid and likely [99,100].

The effects of decreased survival on the extinction probability and time to extinction are

considerable as expected for long-living organisms: a decline of less than 1.5% in survival for

the youngest children leads to rapid extinction (less than 2,000 yrs), while a reduction of sur-

vival rate as small as 0.4% provokes an extinction time of 10,000 years. Another important

result of our model is that the disappearance of Neanderthals caused by diseases (infectious

and other) contracted by contact with sapiens and leading to a high mortality rate leads to very

rapid and sudden extinction. Assuming for instance an infant survival reduced by 10% [102–

105]: the demise of Neanderthals would have been much faster than what the archeological

records currently suggest. Moreover, owing to the very low Neanderthal density, this hypothe-

sis could account for local disappearances of Neanderthal groups and could not lead to com-

plete demise of the entire population [106]. Similarly, due to the low density of Neanderthals,

higher mortality resulting from violence between the two populations could only explain a

local decrease in size and extinction, but it would not be applicable to the entire geographical

space occupied by Neanderthals. Nevertheless, when exploring this hypothesis, from initial

value by reducing adult survival by 10% (keeping all other parameters identical), the whole of

the Neanderthal population became suddenly extinct (Fig 3B).

Our results lead us to the conclusion that the size of the Neanderthal population could have

slowly and gradually decreased over time and that when it was already small and began to

decline, Homo sapiens may well have simply taken advantage of an already low density of

Neanderthals in order to settle into Europe. As proposed for the Iberian region [107] a low

growth rate can be at the origin of Neanderthal disappearance. Our model can make possible

to better understand Neanderthal demise at the level of the entire territory and to identify the

role of each demographic parameters in this process.
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Modeling is shown to be a useful tool for answering the question concerning the disappear-

ance of this population on such a huge geographical space as Europe, Asia and the Near East

and at a time that is not yet exactly known.
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